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1 Introduction

Classical Waveform Relaxation (WR) was introduced in 1981 for circuit solver ap-
plications [5]. In WR, large systems of differential equations modeling electric cir-
cuits are partitioned into small subcircuits, which are then solved separately, and an
iteration is used to get better and better approximations to the overall solution of the
underlying large circuit. For classical WR, smart partitioning is very important to
enhance the convergence rate, while optimized WR uses more effective transmis-
sion conditions to enhance the convergence rate, and thus permits also partitioning
at less suitable locations in the circuit without negatively affecting the convergence
rate. We study here for the first time the influence of overlapping subcircuits in
classical and optimized WR methods applied to RC circuits.

2 The RC Circuit Equations

Circuit equations are obtained from a given circuit using Modified Nodal Analysis
(MNA), a major invention that led for circuits to a similar assembly procedure like
the finite element method [4]. The MNA circuit equations for the RC circuit of
length N shown in Figure 1 are

v̇ =


b1 c1
a1 b2 c2

. . .
. . .

. . .
aN−2 bN−1 cN−1

aN−1 bN

v+ f, (1)
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Fig. 1: Finite RC circuit of length N.

where the entries in the tridiagonal matrix are given by

{
ai =

1
RiCi+1

,

ci =
1

RiCi
,

i = 1,2, ..,N−1, bi =


−( 1

Rs
+ 1

R1
) 1

C1
, i = 1,

−( 1
Ri−1

+ 1
Ri
) 1

Ci
, i = 2,3, ...,N−1,

− 1
RN−1CN

, i = N.

The resistances Ri and capacitances Ci are strictly positive constants. The source
term on the right-hand side is given by f(t)=(Is(t)/C1,0, ...0)T for some current func-
tion Is(t), and we need to specify initial voltage values v(0) = (v0

1,v
0
2, ..,v

0
N)

T at time
t = 0 to solve this system.

3 The Classical WR Algorithm

To define the classical WR algorithm, we partition the circuit in Figure 1 with
the voltages v to be determined into two sub-circuits with unknown voltages u
and w. For convenience in the analysis that will follow, we assume N to be
even, and we renumber the nodes: instead of using the numbering from 1 to
N, we use the numbering from −N

2 + 1 to N
2 , see Figure 2. We thus have v :=

(v−N
2 +1, ...,v−1,v0,v1, ....vN/2)

T , which is still of length N, and

v1 v2 v3 vN/2v0v−1
v− N

2 +1

u3u2u1u0u−1
u− N

2 +1

w0 w1 w2 w3 wN/2

Fig. 2: Decomposition into two sub-circuits with two nodes overlap.



Analysis of Overlap in Waveform Relaxation Methods for RC Circuits 3

u := (u−N
2 +1, ...,un−2,un−1,un)

T , u j = v j for j =−N
2 +1, . . . ,n,

w := (w1,w2, ...,w N
2
)T , w j = v j for j = 1, . . . , N

2 ,

which are of length N
2 +n and N

2 , since we added n nodes to subcircuit u to have an
overlap of n nodes. The classical WR algorithm applied to the two sub-systems is

u̇k+1 =


b−N

2 +1 c−N
2 +1

. . . . . . . . .
an−2 bn−1 cn−1

an−1 bn




u−N
2 +1
...

un−1
un


k+1

+


0
...
0

cn uk+1
n+1

+


f−N
2 +1
...

fn−1
fn

 ,

ẇk+1 =


b1 c1
a1 b2 c2

. . . . . . . . .
a N

2 −1 b N
2




w1
w2
...

w N
2


k+1

+


a0wk+1

0
0
...
0

+


f1
f2
...

f N
2

 ,
(2)

where uk+1
n+1 and wk+1

0 are determined in classical WR by the transmission conditions

uk+1
n+1 = wk

n+1 and wk+1
0 = uk

0. (3)

Note that in these transmission conditions, we exchange voltages at the interfaces.
The two subsystems are given the initial voltages u(0) = (v0

−N
2 +1

, ....,v0
n−1,v

0
n)

T and

w(0) = (v0
1,v

0
2, ..,v

0
N
2
)T , and the initial waveforms u0

0, w0
n+1 are needed to start the

WR algorithm.
To simplify our analysis of the convergence factor, we assume that all resistors

and capacitors are the same, R := Ri and C :=Ci for all i ∈ Z, which implies

b := bi and a := ai = ci for all i ∈ Z, (4)

and for our RC circuit b=−2a. To further simplify the analysis, we also assume that
the circuit is of infinite length, N→∞, and by linearity it suffices to analyze the ho-
mogeneous problem corresponding to the error equations, and to study convergence
to the zero solution. Taking a Laplace transform in time with Laplace parameter
s ∈ C of the WR algorithm (2), we get in the homogeneous case when N→ ∞

s ûk+1 =

. . . . . . . . .
a b a

a b


 ...

ûn−1
ûn


k+1

+

 ...
0

aŵk
n+1

 ,
s ŵk+1 =

b a
a b a

. . . . . . . . .


ŵ1

ŵ2
...


k+1

+

aûk
0

0
...

 .
(5)
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Lemma 1. Let a > 0, b < 0, i =
√
−1, and s := σ + iω , with σ > 0 . If −b ≥ 2a,

then the roots λ1,2 := s−b±
√

(b−s)2−4a2

2a of the characteristic equation aûk+1
j−1 +(b−

s)ûk+1
j +aûk+1

j+1 = 0 of the subsystems in (5) satisfy |λ2|< 1 < |λ1|.

Proof. Since a > 0, b < 0 and−b≥ 2a, we can write b =−(2+ε)a for some ε ≥ 0.
Let p+ iq :=

√
(b− s)2−4a2, for p,q ∈ R, with p > 0. We then obtain with σ > 0

that

|λ1| = |
s−b+

√
(b− s)2−4a2

2a
|= |σ + i ·ω +(2+ ε)a

2a
+

1
2a

(p+ i ·q)|

= |(1+ εa+σ + p
2a

+
i

2a
(ω +q)|> 1.

Now by Vieta’s formulas, λ1λ2 = 1, which implies |λ2|< 1 and thus completes the
proof.

Theorem 1 (Convergence factor for Classical WR with Overlap). The conver-
gence factor of the classical WR algorithm (5) with n nodes overlap is

ρcla(s,a,b) =
( 1

λ 2
1

)n+1
. (6)

Proof. The iterate uk+1 for the first subsystem satisfies the recurrence relation

aûk+1
j−1 +(b− s) ûk+1

j +aûk+1
j+1 = 0 for j = . . . ,n−2,n−1,n, (7)

whose solution is ûk+1
j = Ak+1λ

j
1 + Bk+1λ

j
2 for j = . . . ,n− 2,n− 1,n. Since the

solution uk+1
j must remain bounded for all j, we must have Bk+1 = 0. Substituting

j = n into (7), we can determine Ak+1 and obtain the general solution

ûk+1
j =

(
− a

aλ
−1
1 +(b− s)

)
·
( 1

λ n
1

)
·λ j

1 · ŵ
k
n+1 for j = . . . ,n−2,n−1,n. (8)

Similarly, we obtain for the second subsystem

ŵk+1
j =

( −a
(b− s)+aλ2

)
·λ j−1

2 · ûk
0 for j = 1,2, . . .. (9)

Combining (8) and (9) and using Vieta’s formulas λ1 +λ2 =
s−b

a and λ1λ2 = 1 then
gives

ûk+1
j =

(
−a

aλ
−1
1 +(b−s)

)
·
(

−a
(b−s)+aλ2

)
·
(

λ n
2

λ n
1

)
·λ j

1 ûk−1
0

=
(

1
λ 2

1

)n+1
ûk−1

j =: ρcla(s,a,b)ûk−1
j ,

and similarly we find also for the second subsystem ŵk+1
j = ρcla(s,a,b)ŵk−1

j , which
concludes the proof.
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We see that the convergence factor ρcla(s,a,b) is the same for all nodes in both
subsystems, and since |λ1| > 1, classical WR always converges, and convergence
becomes faster when increasing the number of nodes the subsystems overlap. In
the case |b| = 2a however, |ρcla(s,a,b)| → 1 when s→ 0, which indicates slow
convergence for this case.

Remark 1. Theorem 1 implies û2k
j = (ρcla(s,a,b))kû0

j and ŵ2k
j = (ρcla(s,a,b))kŵ0

j .
Using the Parseval-Plancherel identity, one can then obtain in the time domain

‖u2k
j (t)‖σ ≤

(
sup
ω∈R

ρcla(s,a,b)
)k
‖u0

j(t)‖σ , ‖w2k
j (t)‖σ ≤

(
sup
ω∈R

ρcla(s,a,b)
)k
‖w0

j(t)‖σ ,

where ‖x(t)‖σ := ‖e−σtx(t)‖L2 . For σ = 0, we thus obtain convergence in L2.

4 The Optimized WR Algorithm

New transmission conditions were proposed in [1] for WR, namely

(uk+1
n+1−uk+1

n )+αuk+1
n+1 = (wk

n+1−wk
n)+αwk

n+1,

(wk+1
1 −wk+1

0 )+βwk+1
0 = (uk

1−uk
0)+βuk

0,
(10)

where α and β are weighting factors that can be optimized to obtain more rapid
convergence, leading to optimized waveform relaxation algorithms (OWR). If we
divide the first equation in (10) by α and the second by β , we see that α and β rep-
resent resistances, and the new transmission conditions thus exchange both voltages
and currents at the interfaces. Note also that the classical transmission conditions
(3) become a special case when taking very large values of α and β .

Theorem 2 (Convergence factor for OWR with Overlap). The convergence fac-
tor of the OWR algorithm with n nodes overlap is

ρopt(s,a,b,α,β ) =
( 1

λ 2
1

)n
·
(

α +1−λ1

λ1(1+α)−1

)
.
(

λ1 +β −1
1+(β −1)λ1

)
. (11)

Proof. The transmission conditions (10) can we rewritten as

uk+1
n+1 =

uk+1
n

1+α
+wk

n+1−
wk

n

1+α
, wk+1

0 =−
wk+1

1
β −1

+uk
0 +

uk
1

β −1
.

Proceeding with these values as in the proof of Theorem 1 then leads to (11).

We see that OWR contains an extra term in its convergence factor, compared to
classical WR, and with a good choice of α and β this term can be made smaller than
one and thus leads to better convergence. To obtain the best possible convergence,
we need to solve the min-max problem
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min
α,β

(
max

s
|ρopt(s,a,b,α,β )|

)
. (12)

To simplify this min-max problem in the complex plane, the following Lemma is
useful:

Lemma 2. Let b< 0, a> 0,−b≥ 2a, α > 0 and β < 0. Then the convergence factor
ρopt(s,a,b,α,β ) is an analytic function in the right half of the complex plane.

Proof. We need to show that the denominator of ρopt(s,a,b,α,β ) does not have any
zeros in the right half of the complex plane. We show this by contradiction. Assume
there is a zero. Then λ1 = 0 or (1+α)λ1−1 = 0 or 1+(β−1)λ1 = 0. The first case
is not possible since under the given assumptions |λ1|> 1. Considering the second
case we have λ1 = 1

1+α
. Since α > 0, |λ1| = | 1

1+α
| < 1 which is a contradiction.

Similarly, the third case can not hold since β < 0, which concludes the proof.

Since ρopt(s,a,b,α,β ) is analytic in the right half of the complex plane, i.e for
s = σ + iω , σ ≥ 0, by the maximum principle for analytic functions, its maxi-
mum in modulus is attained on the boundary. Let s = r · eiθ , where r ∈ [0,∞)and
θ ∈ [−π/2,π/2]. From the definition of λ1 given in Lemma 1, we observe that

limr→∞ λ1 =∞ and hence limr→∞ ρopt(s,a,b,α,β )= limr→∞

(
−1

(α+1)(β−1)

)
·
(

1
λ 2

1

)n
=

0. Thus the maximum lies on the boundary when θ = ±π/2 and r < ∞ , i.e. when
σ = 0. For σ = 0, one can show that |ρopt(ω,a,b,α,β )| is symmetric in ω , and
hence it is sufficient to optimize the convergence factor for ω ≥ 0. To simplify the
min-max problem further, we use the fact that in our RC circuit, both sub-systems
have very similar electrical properties. Since we assumed furthermore that all circuit
elements have the same value, it makes sense to choose β = −α , which can be in-
terpreted as having the same current flow between the subsystems, just into opposite
directions. Therefore, the min-max problem (12) simplifies to

min
α

(
max
ω≥0
|ρopt(ω,a,b,α)|

)
, ρopt(ω,a,b,α) =

(
α +1−λ1

λ1(1+α)−1

)2
.
( 1

λ 2
1

)n
.

(13)

Theorem 3 (Asymptotically optimized α). For an RC circuit of infinite length with
b =−(2+ ε)a, where ε → 0, the optimized parameter α∗ for n nodes overlap is

α
∗ =

(
ε

n

)1/3
. (14)

Proof. This result can be proved using asymptotic analysis: one can show that the
solution to the min-max problem (13) is given by equioscillation when ε→ 0, i.e α∗

satisfies |ρopt(ω̄,a,b,α∗)|= |ρopt(0,a,b,α∗)| and ∂

∂ω
ρopt(ω̄,a,b,α∗) = 0 for some

interior maximum point ω̄ > 0. The details are however too long and technical for
this short paper, and will appear in [2].
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Fig. 3: Convergence for long time T = 1000.
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Fig. 4: Convergence for short time T = 2.

5 Numerical Results

We simulate an RC circuit of length N = 80 with R = 0.5kΩ , C = 0.63µF , a = 1
RC

and b =−(2+ ε)a. We apply Backward Euler with ∆ t = 0.1, and simulate directly
the error equations, starting with a random initial guess. In Figure 3, we show for
ε = 10−4 the influence of overlap on the convergence of classical and optimized
WR (e.g. WR2 means WR with overlap 2) for a long time interval (0,T ), T = 1000.
We see that OWR converges much faster than classical WR, see also Figure 5 for a
theoretical comparison of the convergence factors. For a short time interval, T = 2,
classical WR is already very fast, see Figure 4. We determined the optimal choice of
α for these experiments solving the min-max problem (13) numerically. Next, we
compare this min-max approach with the asymptotic optimization for b = −(2+
ε)a from Theorem 3, and also with running the algorithm for many choices of α

numerically. Figure 6 shows that all three give similar results. Finally, we show in
Figure 7 and 8 a comparison of the convergence factors for the differently optimized
α for two choices of ε .
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Fig. 7: Convergence factor for optimized α

by different methods for ε = 10−1.
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Fig. 8: Convergence factor for optimized α by
different methods for ε = 10−5.

6 Conclusion

We studied here for the first time the influence of overlap on the convergence of
classical and optimized waveform relaxation algorithms for RC circuits. We defined
an optimization problem which permits to obtain a theoretically optimized parame-
ter leading to the fastest possible convergence of the optimized variant. Our analysis
shows that overlap enhances the performance of both algorithm variants, which we
also illustrated by numerical experiments. While the optimized variant converges
much faster when used on long time intervals compared to the classical one, for
short time intervals the optimization is less important. We finally compared numer-
ically three different approaches to obtain the optimized parameter in the transmis-
sion conditions, and observed that the three methods give similar parameters.
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