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1 Introduction

Optimized Schwarz methods have increasingly drawn attention over the last two
decades because of their improvements in terms of robustness and computational
cost compared to the classical Schwarz method. Their optimized transmission con-
ditions have been obtained through analytical or numerical procedures in many dif-
ferent situations, involving mostly the same partial differential equation on each
subdomain, see [6, 3, 7] and references therein. When dealing with heterogeneous
problems, a domain decomposition approach which allows one to exploit different
solvers adapted to the different physical problems is important. Due to their favor-
able convergence properties in the absence of overlap, and their capability to take
physical properties at the interfaces into account, optimized Schwarz methods are a
natural framework for such heterogeneous domain decomposition methods, where
the spatial decomposition is simply provided by the multi-physics of the problem.

We introduce and analyze here heterogeneous optimized Schwarz methods with
zeroth order optimized transmission conditions for the coupling between the hard
to solve Helmholtz equation [5] and the Laplace equation. It is a simplified in-
stance of the coupling of parabolic and hyperbolic operators, which might arise in
Maxwell equations. The Helmholtz equation is used in the time harmonic regime of
a wave equation and the Laplace operator represents the parabolic part. We consider
a bounded domain Ω ⊂ R2, with sufficiently regular boundary, divided into two
subdomains Ω1 and Ω2 such that Ω = Ω1 ∪Ω2, Γ = Ω1 ∩Ω2, and Σ j = ∂Ω j \Γ .
Our model problem is

(−∆ −qω
2)u = f in Ω ,

∂u
∂n

+ iωu = 0 on Σ1, (1)
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u = 0 on Σ2,

where ω > 0 is the Helmholtz frequency, and q ∈ L∞(Ω) satisfies q = 1 in Ω1 and
q = 0 in Ω2. Since the well-posedness of the problem is not straightforward due to
the indefinite nature of the Helmholtz part, we first analyze it in more detail adapting
arguments presented by Després in [2].

Lemma 1. The norm ||u||2 =
∫

Ω
|∇u|2 +ω

∫
Σ1
|u|2 is equivalent to the canonical

norm on H1(Ω) if |Σ1|> 0.

Proof. We first observe that H1(Ω) is the direct sum of V̄ =
{

v ∈ H1(Ω) :
∫

Ω
v = 0

}
and Ṽ =

{
v ∈ H1(Ω) : v is constant in Ω

}
, H1(Ω) = Ṽ ⊕V̄ . Then, on the one hand,

it easy to see that for all v ∈ Ṽ , there exist a constant C =
√

ω|Σ1|
|Ω | such that

C||v||H1(Ω) ≤ ||v|| ≤C||v||H1(Ω). (2)

On the other hand, for every v ∈ V̄ , we first use the Poincaré inequality to get

||v||2H1(Ω) ≤ (1+C)
∫

Ω

|∇v|2 ≤ (1+C)

(∫
Ω

|∇v|2 +ω

∫
Σ1

|v|2
)
= (1+C)||v||2.

(3)
Exploiting the continuity of the trace operator, we obtain

||v||2 =
∫

Ω

|∇v|2+ω

∫
Σ1

|v|2≤
∫

Ω

|∇v|2+ω

∫
∂Ω

|v|2≤max(1,C∂Ω ω)(
∫

Ω

|∇v|2+
∫

Ω

|v|2).

(4)
Having proved that the two norms are equivalent on the subspaces V̄ and Ṽ with
Ṽ ⊕V̄ = H1(Ω), the two norms are also equivalent on H1(Ω).

Let us define V := {v∈H1(Ω) : v = 0 on Σ2}, with || · ||V = || · ||H1(Ω), and consider
problem (1) in the variational form

Find u ∈V : a(u,v)−b(u,v) =V−1 〈 f ,v〉V ∀v ∈V , (5)

where a(u,v) =
∫

Ω
∇u∇v̄+ iω

∫
Σ1

uv̄, b(u,v) = ω2 ∫
Ω2

uv̄ and f ∈V−1. To use Fred-
holm theory, we now show that the bilinear form b is a compact pertubation of a.

Lemma 2. Let B be an operator from V to V such that

a(Bu,v) = b(u,v) ∀v ∈V, (6)

then B is a continuous compact operator.

Proof. We first prove continuity, i.e. ∃C > 0 : ∀u ∈ V, ||Bu||V ≤C||u||V . From the
definition of B, and applying Lax-Milgram to (6), we have ||Bu||V ≤ 1

α
||b(u)||V−1 ,

where b(u) : V → R is the functional defined by V−1 < b(u),v >V := b(u,v). Then
we have ∀v ∈V
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|V−1 < b(u),v>V | := |b(u,v)|=ω
2|
∫

Ω2

uv̄| ≤ω
2||u||L2(Ω2)

||v||L2(Ω2)
≤ω

2||u||L2(Ω2)
||v||V .

We thus conclude that ||b(u)||V−1 ≤ ω2||u||L2(Ω2)
, and hence have the bound

||Bu||V ≤
1
α

ω
2||u||V .

To prove compactness, let un be a bounded sequence in V , i.e ∃C > 0 : ∀n, ||un||V <
C. From weak compactness of V it follows that there exists a subsequence un j such
that un j ⇀ u for some u. Hence un j converge strongly to u in L2 (Ω). Considering
a(Bun j −Bu,Bun j −Bu) = b(un j − u,Bun j −Bu) we have letting n→ ∞ and
using the Cauchy-Schwarz inequality∣∣∣∣∫

Ω

|∇(Bun j −Bu)|2 + iω
∫

Σ1

|Bun j −Bu|2
∣∣∣∣≤ω

2||un j−u||L2(Ω2)
||Bun j−Bu||L2(Ω2)

.

(7)
We observe that Bun j ⇀ Bu in V because un j ⇀ u in V and B is a continuous
operator [1]. Hence, both un j and Bun j converge strongly in L2(Ω). In particular
we have that a(Bun j −Bu,Bun j −Bu)→ 0 which implies ||Bun j −Bu|| → 0.
With Lemma 1, we have that Bun j →Bu in V and thus B is a compact operator.

Since B is a compact operator, thanks to Fredholm alternative, existence of the
solution of problem (5) follows from uniqueness. We need two further Lemmas to
prove uniqueness. We denote with γ ju and S ju the trace of u and the trace of the
normal derivative on the j-th interface and we introduce the space E(Ω ,∆) := {u ∈
H1(Ω) :−∆u ∈ L2(Ω)}.

Lemma 3 (Grisvard, Theorem 1.5.3.11, page 61, [9]). Let Ω be an open bounded
subset of R2 whose boundary is a curvilinear polygon of class C1,1 with interfaces
Σ j, j = 1, ..,N. The mappings u→ γ ju and u→ S ju have a unique continuous ex-
tension from E(Ω ,∆) to respectively H

1
2 (Σ j) and H−

1
2 (Σ j). Moreover for every

u ∈ E(Ω ,∆) and v ∈ H1(Ω) with γ jv ∈ H
1
2 (Σ j) ∀ j, the Green’s formula holds:

(−∆u,v) = (∇u,∇v)−
N

∑
j=1
〈S ju,γ jv〉. (8)

Lemma 4 (Després, Corollary 2.1, page 22, [2]). Let Ω be an open bounded arc-
connected subset of R2 and assume that Γ is a nonempty open subset of ∂Ω of class
C2 and q ∈ L∞(Ω). If u ∈ H2(Ω) satisfies

(−∆ −qω
2)u = 0 on Ω , u|Γ = ∂nu|Γ = 0, (9)

then u=0 in Ω .

Theorem 1. Under the hypotheses of Lemmas 3 and 4, u≡ 0 is the only solution of
the boundary value problem (1) with f = 0.
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Proof. Choosing v ∈ D(Ω), the space of C∞(Ω) functions with compact support,
in the weak formulation of eq. (1) we obtain −∆u−qω2u = 0. Hence, since u ∈V ,
∆u ∈ L2(Ω) and u ∈ E(Ω ,∆). Exploiting Green’s formula and choosing v = u we
get ∫

Ω

|∇u|2−ω
2
∫

Ω1

|u|2 + iω
∫

Σ1

|u|2 = 0. (10)

Considering the imaginary part we have
∫

Σ1
|u|2 = 0, which implies u = 0 on Σ1.

We now have homogeneous Dirichlet data on the whole domain ∂Ω = Σ1 ∪ Σ2.
Regularity results for Dirichlet problems in smooth domains state that u ∈ H2(Ω).
Exploiting again the Green’s formula and −∆u−qω2u = 0 in Ω , we obtain

H−
1
2 (Σ1)
〈∂u

∂n
,v〉

H
1
2 (Σ1)

+ iw
∫

Σ1

uv = 0. (11)

Since u = 0 on Σ1, we can conclude that ∂nu = 0 on Σ1 and by the unique continu-
ation principle in Lemma 4, the result follows.

2 Heterogeneous Optimized Schwarz methods

In order to make analytical calculations, we simplify the analysis and set Ω = R2,
with Ω1 being the left half plane and Ω2 the right half plane. The heterogeneous
optimized Schwarz method is given by

(−ω2−∆)u1 = f in Ω1, (∂x +S1)(un
1)(0, ·) = (∂x +S1)(un−1

2 )(0, ·),
−∆u2 = f in Ω2, (∂x +S2)(un

2)(0, ·) = (∂x +S2)(un−1
1 )(0, ·), (12)

where the S j, j = 1,2 are linear operators along the interface in the y direction. The
system is closed by the Sommerfeld radiation condition limx→−∞

√
|x| x
|x| (∂xun

1 −
iωun

1) = 0 and by the boundedness condition limx→+∞ un
2 = 0. The goal is to find

which operators lead to the fastest convergence. We define the errors e j := u− u j,
and taking the Fourier transform of the error equations in the y direction, we obtain

(−ω2−∂xx + k2)(ên
1) = 0 k ∈ R, x < 0,

(∂x +σ1(k))(ên
1)(0,k) = (∂x +σ1(k))(ên−1

2 )(0,k), k ∈ R,
(−∂xx + k2)(ên

2) = 0 k ∈ R, x > 0,
(∂x +σ2(k))(ên

2)(0,k) = (∂x +σ2(k))(ên−1
1 )(0,k), k ∈ R,

(13)

where σ j(k) are the Fourier symbols of the operators S j. Solving the equations in
(13) and imposing the radiation/boundedness conditions, we get

ên
1 = ên

1(0,k)e
λ (k)x, ên

2 = ên
2(0,k)e

−|k|x,

where λ (k) := i
√

ω2− k2 if k < ω and λ (k) :=
√

k2−ω2 if k ≥ ω . Applying the
transmission conditions, it follows that
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ên
1 = ρ(k)ên−2

1 , ên
2 = ρ(k)ên−2

2 ,

where

ρ(k) =
−|k|+σ1(k)
λ (k)+σ1(k)

λ (k)+σ2(k)
−|k|+σ2(k)

.

Next, to approximate the optimal choice for σ1(k) and σ2(k) which would require
non local operators, we set σ1 = −σ2 = p(1+ i). This choice is motivated by [4]
where the single and double sided optimizations were studied and compared for
the time harmonic Maxwell equations. Since both σ j and λ (k) contain complex
numbers, we have to study the modulus of the convergence factor,

|ρ(k, p)|2 =


((k− p)2 + p2)

((k+ p)2 + p2)

((
√

k2−ω2− p)2 + p2)

((
√

k2−ω2 + p)2 + p2)
k ≥ ω,

((k− p)2 + p2)

((k+ p)2 + p2)

((
√

ω2− k2− p)2 + p2)

((
√

ω2− k2 + p)2 + p2)
k < ω.

(14)

Since we are interested in minimizing the convergence factor over all relevant nu-
merically represented frequencies, we study now the minimax problem

min
p≥0

max
k∈[kmin,kmax]

|ρ(k, p)|2, (15)

where kmin is the minimum frequency and kmax is the maximum frequency supported
by the numerical grid.

Theorem 2. Assuming that kmax > 2ω , the solution of the minimax problem (15) is
given by p∗ = ω√

2
if |ρ(kmax, p∗ = ω√

2
)|2 ≤ (

√
2−1)2+1

(
√

2+1)2+1
, and otherwise it is given by

the unique p∗ such that |ρ(k = ω, p∗)|2 = |ρ(kmax, p∗)|2.

Proof. We consider p > 0, because for p = 0 the convergence factor is equal to 1,
and for p < 0 it is greater than one, while for values of p > 0, the convergence factor
is always less than 1. We introduce a change of variables which will be useful in the
computations, namely x =

√
k2−ω2 if k≥ω and x =

√
ω2− k2 for k < ω . Problem

(15) then becomes

min
p>0

max

(
max

[0,
√

ω2−k2
min]

G(x, p), max
[0,
√

k2
max−ω2]

F(x, p)

)
, (16)

where

G(x, p) =
((x− p)2 + p2)

((x+ p)2 + p2)

((
√

ω2− x2− p)2 + p2)

((
√

ω2− x2 + p)2 + p2)
,

F(x, p) =
((x− p)2 + p2)

((x+ p)2 + p2)

((
√

x2 +ω2− p)2 + p2)

((
√

x2 +ω2 + p)2 + p2)
.
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First, we observe that ∂G
∂x |x=0 = ∂F

∂x |x=0 = − (2((ω−p)2+p2))
(p((ω+p)2+p2))

< 0 for all p > 0 and

G(0, p) = F(0, p). Indeed, x = 0 (k = ω) is a cusp for ρ2(k, p) and hence it is a local
maximum which needs to be minimized. The minimum of G(0, p) with respect to

the variable p is given by p̄ = ω√
2

and G(x = 0, p = ω√
2
) = (

√
2−1)2+1

(
√

2+1)2+1
≈ 0.176. We

thus have found a lower bound for the value of the minimax problem. Next, we study
how G(x, p) behaves in the rest of the interval, and start by restricting our attention
to the case p≥ p̄. Computing the partial derivative with respect to x of G(x, p), we
find that it has a unique zero x1 given by the root of the non linear equation

x(4p4 + x4)(2p2 + x2−ω
2) = ((ω2− x2)2 +4p2)(2p2− x2)

√
ω2− x2. (17)

To proof uniqueness, it is enough to notice that the LHS is zero for x = 0 and strictly
increasing on x, if p ≥ p̄, while the RHS is greater than zero for x = 0 and strictly
decreasing in x. Therefore G(x, p) decreases until x < x1 and then increases mono-

tonically. If x1 >
√

ω2− k2
min then the max

[0,
√

ω2−k2
min]

G(x, p) = G(0, p), otherwise

if x1 ≤
√

ω2− k2
min it is sufficient to notice that G(

√
ω2− k2

min, p) < G(ω, p) =
G(0, p), to conclude that it holds again max

[0,
√

ω2−k2
min]

G(x, p) = G(0, p). Next we

focus on the second interval, considering the function F(x, p). The zeros of the
derivative ∂F

∂x are given by the zeros of the equation

x(4p2 + x4)(22 + x2−2p2) = (2p2− x2)((ω2 + x2)2 +4p2)
√

ω2 + x2.

Repeating an argument similar to the one above, we find that again there is a unique
zero x2, in this case ∀p > 0, which again might or might not belong to the interval
[0,
√

k2
max−ω2]. If x2 is outside the interval or F(

√
k2

max−ω2, p̄) ≤ F(0, p̄), then
we can conclude that the optimal value p∗ is given by p∗ = p̄, i.e. the value which
minimizes the convergence factor for the frequency k =ω . Otherwise the local max-
ima are located at x= 0 and x=

√
k2

max−ω2. We compute the partial derivative w.r.t

the variable p, which satisfies ∂F
∂ p |x=

√
k2

max−ω2 < 0 for p ∈ I = [0,
√

k2
max−ω2

2 ], and
under the non restrictive hypothesis kmax > 2ω , we have that p̄ ∈ I. Analyzing the
sign of the derivative shows that it is not useful to look for p∗ in [0, ω√

2
], since both

local maxima would increase. This justifies why we studied G only for p≥ p̄. Since
∂F
∂ p |x=0 > 0 for p > ω√

2
and because

F(
√

k2
max−ω2,

√
k2

max−ω2

2
)=

(
(
√

2−1)2 +1
(
√

2+1)2 +1

)2

<F(0,
ω√

2
)<F(0,

√
k2

max−ω2

2
),

(18)
we conclude that there exists a unique value p∗ such that F(0, p∗)=F(

√
k2

max−ω2, p∗),
which concludes the proof.

Remark 1. It is interesting to note that this problem is different from the ones already
studied in the literature, because the convergence factor is immediately bounded
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from below: it is not possible to get a better convergence factor than ρ2(k, p) =
(
√

2−1)2+1
(
√

2+1)2+1
. We also did not have to exclude the resonnance frequency k = ω by

introducing ω− and ω+, as in the Helmholtz case [8]; the optimized Schwarz method
can benefit from the heterogeneity, leading to |ρ(k = ω, p)|2 < 1.

We now present two asymptotic results. First we want to study how our algorithm
behaves when we take finer and finer meshes. Let h→ 0, h being the mesh size, and
suppose that the maximum frequency supported by the numerical grid scales like
kmax = π/h→ ∞.

Theorem 3. When the physical parameters ω and kmin are fixed, kmax =
π

h and h→
0, then the solution of problem (15) is given by

p∗ =
√

ωπ

2
·h−1/2 +o(h−1/2), |ρ(k, p∗)|2 = 1− 4

√
ω√
π

h
1
2 +o(h1/2). (19)

Proof. For kmax→ ∞, ρ(kmax, p)→ 1, and hence the solution of the minimax prob-
lem is given by equioscillation. Inserting the ansatz p≈Cph−α into |ρ(k=ω, p)|2 =
|ρ(k = kmax, p)|2 and comparing the leading order terms then gives the result.

The second result is typical of the Helmholtz equation. As ω increases, in order to
control the so called pollution effect, we need to decrease significantly h in order to
have a good approximation of the solution. Generally, the scaling relation used is
h = Ch

ωγ , with γ > 1. Common values are γ = 3
2 , or γ = 2.

Theorem 4. If kmin is fixed, kmax = π

h , ω goes to infinity and h = Ch
ωγ , with γ > 1,

then the solution of problem (15) is given by

p∗ =
√

π

2
√

Ch
·ω

1+γ

2 +o(ω
1+γ

2 ), |ρ(k, p∗)|2 = 1− 4
√

Ch√
π

ω
1−γ

2 +o(ω
1−γ

2 ).

Proof. A direct calculation shows that |ρ(k = kmax,
ω√

2
)|2→ 1 for ω→∞, and thus

again the solution is given by equioscillation. Expanding equation |ρ(k = ω, p)|2 =
|ρ(k = kmax, p)|2, with the ansatz p =Cpωα then leads to the desired result.

3 Numerical experiments

We implemented our heterogeneous optimized Schwarz method on a square domain
Ω := (−1,1)× (−1,1), with Ω1 := (−1,0)× (−1,1) and Ω2 := (0,1)× (−1,1).
We used second order centered finite differences for the interior points and first
order approximations for the boundary terms. In Figure 1 on the left, we show the
modulus of the solution of problem (1) for ω2 = 50 and f = 1. On the right in
Figure 1, we show a comparison between the optimal numerical value p and the
theoretical estimation provided by Theorem 2. We see that our simplified analysis
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Fig. 1 Parameters ω2 = 50, h = 0.05. Left: Modulus of u(x,y). Right: Parameter p vs number of
iterations. The optimal p given by equioscillation is indicated by a star.

on unbounded domains is able to give quite a good approximation of the optimal
parameter in the bounded domain context. Finally, we show in Table 1 the behavior
of the algorithm when the mesh size h decreases and for large values of ω , with
hω

3
2 = const. In brackets, we show the number of iterations required for a non-

h Optimal p∗ maxk |ρ2(p∗,k)| iterations
1

50 16.52 0.4225 53 (810)
1

100 23.53 0.55043 73 (1614)
1

200 33.37 0.6543 104 (3284)
1

400 47.27 0.7403 148 (6554)

ω Optimal p∗ maxk |ρ2(p∗,k)| iterations
10π 34.8451 0.2119 31 (839)
20π 84.7084 0.2622 38 (2954)
40π 205.0570 0.3167 46 (8096)
60π 342.6739 0.3506 48 (>10000)

Table 1 The two tables show the behaviour of the heterogeneous optimized Schwarz method under
mesh refinement and when ω increases with hω

3
2 held constant.

optimized case, i.e. using p= 1. We clearly see that the optimization leads to a much
better algorithm, which deteriorates much more slowly when the mesh is refined,
and ω increases.

4 Conclusions

We presented and analysed a heterogeneous optimized Schwarz method for the cou-
pling of Helmholtz and Laplace equations. We proved the well-possedness of the
coupled problem, and then introduced optimized Robin transmission conditions,
giving asymptotic formulas for the optimized parameters and associated conver-
gence factor. Our results indicate that a much weaker dependence on the mesh pa-
rameter can be achieved with optimized transmission conditions, and we are cur-
rently working on further improvement by studying second order optimized trans-
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mission conditions.
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