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Abstract A convergence proof of Asynchronous Optimized Schwarz Methods ap-
plied to a shifted laplacian problem, with negative shift, in R2 is presented. Suffi-
cient conditions for convergence involving initial values of the approximation of the
solution are discussed.

1 Introduction

Optimized Schwarz Methods are Domain Decomposition methods in which the
boundary conditions on the artificial interfaces are of Robin type, i.e., containing
one or more parameters that can be optimized [1, 3, 4].

In our context, Asynchronous Schwarz methods are those where each subdomain
solve is performed with whatever new information (to be used for the boundary
conditions) has arrived from the neighboring subdomains since the last update, but
without necessarily waiting for new information to arrive. For more details on asyn-
chronous methods, see, e.g. [2] and references therein. See also Section 1.2 below.

In this paper we add more details to the convergence proof given in [5] of Asyn-
chronous Optimized Schwarz (AOS) where it is used to solve Poisson’s equation
in R2. The results presented here complement those of [5].
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2 José C. Garay, Frédéric Magoulès and Daniel B. Szyld

1.1 Preliminaries

The aim is to provide a complete proof of the convergence of AOS for

∆u−ηu = f in R2, (1)

with vanishing value of u at infinity, and η > 0. The space R2 is divided into p
overlapping infinite vertical strips. This means we have p− 1 vertical lines, say at
coordinates x = `1, . . . `p−1; and we assume for simplicity that we have the same
overlap 2L between subdomains. We also assume, without loss of generality, that
except for the subdomains at infinity, that each strip has the same width, i.e., `s−
`s−1 = W for s = 2, . . . , p− 1, so that `s = `1 +(s− 1)W . It follows then, that the
overlap satisfies 2L <W , and usually L�W . Thus, we have Ω (1) =]−∞;`1 +L]×
R, Ω (s) = [`s−1−L;`s +L]×R, s = 2, . . . , p−1, and Ω (p) = [`p−1−L;+∞[×R. In
this context, the normal vector is in the x direction (with the appropriate sign).

Let f (s) and un
s denote the restriction of f and un, the approximation to the

solution at the iteration n, to Ω (s), s= 1, . . . , p, respectively. Thus, un
s ∈V (s), a space

of functions defined on Ω (s). We consider transmission conditions (on the artificial
interfaces) composed of local operators. The local problems and the synchronous
iteration process is described by the following equations

(∆ −η)un+1
1 = f (1) on Ω (1),

∂un+1
1

∂x +Λun+1
1 =

∂un
2

∂x +Λun
2 for x = `1 +L,

For s = 2, . . . , p−1,

− ∂un+1
s

∂x +Λun+1
s =− ∂un

s−1
∂x +Λun

s−1 for x = `s−1−L,
(∆ −η)un+1

s = f (s) on Ω (s),
∂un+1

s
∂x +Λun+1

s =
∂un

s+1
∂x +Λun

s+1 for x = `s +L,

− ∂un+1
p

∂x +Λun+1
p =−

∂un
p−1

∂x +Λun
p−1 for x = `p−1−L,

(∆ −η)un+1
p = f (p) on Ω (p),

(2)

where Λ is a local approximation to the Poincaré-Steklov operator using differential
operators (e.g., Λ = α and for artificial boundary conditions of OO0 family of arti-
ficial conditions, with α constant, and Λ = α +β

∂ 2

∂τ2 for the OO2 family, where ∂ 2

∂τ2

is the tangential second derivative with respect to the boundary and β a constant; α

and β are parameters whose values are chosen to optimize convergence properties
and thus minimize convergence bounds).

Using linearity we obtain that the error of the synchronous iterative procedure is
the solution of (2) with f = 0. The Fourier transform in the y direction of the error
of the local problem s at iteration n then can be written as (see [5])

ûs
n(x,k) = An

s (k)e
−θ(k)|x−(ls−1−L)|+Bn

s (k)e
−θ(k)|x−(ls+L)| (3)

where θ(k) =
√

η + k. Let c(n)T = ((c1(n),c2(n), . . . ,cp−1(n),cp(n)) =
(Bn

1,A
n
2, Bn

2, . . . ,A
n
p−1,B

n
p−1,A

n
p), where c1 = Bn

1 and cp = An
p are scalars, and
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cs = (An
s ,B

n
s ) are ordered pairs for s = 2, . . . , p− 1. Plugging the expression (3)

into (2) (with f = 0), we can write the iteration from u(n) to u(n+ 1) in terms of
the coefficients c(n) and c(n+ 1) obtaining an (2p− 1)× (2p− 1) matrix T̂ such
that c(n+ 1) = T̂ c(n); see [5] for more details. In that reference, it is shown that
the operator T̂ is contracting in max norm, and in this paper we continue the proof
starting precisely from this result1.

1.2 Mathematical model of asynchronous iterative methods

Let X (1), ...,X (p) be given sets and X be their Cartesian product, i.e., X =X (1)×·· ·×
X (p). Thus x ∈ X implies x =

(
x(1), ...,x(p)

)
with x(s) ∈ X (s) for s ∈ {1, ..., p}. Let

T (s) : X → X (s) where s ∈ {1, ..., p}, and let T : X → X be a vector-valued map (it-
eration map) given by T = (T (1), ...,T (p)) with a fixed point x∗, i.e., x∗ = T (x∗). Let
{tn}n∈N be the sequence of time stamps at which at least one processor updates its
associated component. Let {σ(n)}n∈N be a sequence with σ(n)⊂ {1, ..., p} ∀n∈N.
The set σ(n) consists of labels (numbers) of the processors that update their asso-
ciated component at the n-th time stamp. Define for s,q ∈ {1, ..., p}, {τs

q(n)}n∈N
a sequence of integers, representing the time-stamp index of the update of the data
coming from processor q and available in processor s at the beginning of the compu-
tation of x(s)(n) which ends at the n-th time stamp. Let x(0) =

(
x(1)(0), ...,x(p)(0)

)
be the initial approximation (of the fixed point x∗). Then, the new computed value
updated by processor s at the nth time stamp is

x(s)(n) =

{
T (s)

(
x(1)(τs

1(n)), ...,x
(p)(τs

p(n))
)
, s ∈ σ(n)

x(s)(n−1), s /∈ σ(n)·

It is assumed that the three following conditions (necessary for convergence) are
satisfied

∀s,q ∈ {1, . . . , p} ,∀n ∈ N∗,τ(s)q (n)< n, (4)
∀s ∈ {1, . . . , p} ,card{n ∈ N∗|s ∈ σ(n)}=+∞, (5)

∀s,q ∈ {1, . . . , p} , lim
n→+∞

τ
(s)
q (n) = +∞. (6)

Condition (4) indicates that data used at the time tn must have been produced before
time tn, i.e., time does not flow backward. Condition (5) means that no process will
ever stop updating its components. Condition (6) corresponds to the fact that new
data will always be provided to the process. In other words, no process will have a
piece of data that is never updated.

1 In [5] it is indicated that given T̂ is contracting, then T n → 0, where T maps u(n) to u(n+ 1),
but this implication may not always hold. This is why we need to complete the proof in a different
manner. We do so by showing explicitly that (8) holds.
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2 Convergence proof for the asynchronous case

We now present the convergence proof of the asynchronous implementation of Op-
timized Schwarz with transmission conditions composed of local operators (as de-
scribed in section 1.1) when applied to (1). Note that the local problem of AOS is
obtained by replacing, in (2), n+1 by tnew and n by the corresponding update times
of the values of u received from the neighboring subdomains and available at the
begining of the computation of the new update. Let us define a time stamp as the
instant of time at which at least one processor finishes its computation and produces
a new update. Let tm be the m− th time stamp and utm

s be the error of the local prob-
lem s at time t = tm. Note then that the asynchronous method converges if for any
monotonically increasing sequence of time stamps {tm}m∈N we have

lim
m→∞

utm
s = 0 (7)

Thus, in order to prove convergence of the asynchronous iterations, we just need
to prove that (7) holds for any monotonically increasing sequence of time stamps
{tm}m∈N, which is what we prove next.

Theorem 1. Let us define a time stamp tm as the instant of time at which at least
one processor finishes its computation and produces a new update. Let utm

s (x,y)
be the error of the local problem s (of the asynchronous version of (2)), s ∈
{1, ..., p}, and ûtm

s (x,k) be its corresponding Fourier transform in the y direction.
Let S = {ls−1−L : s = 2, ..., p} ∪ {ls +L : s = 1, ..., p−1} (i.e., S is the set of the
x−coordinates of each of the artificial boundaries of each of the local problems.
Then, if û0

s (x,k) is uniformly bounded in k ∈ N and x ∈ S, we have, ∀s ∈ {1, ..., p},
limm→∞ utm

s (x,y) = 0 in Ω (s) for any (monotonically increasing) sequence of time
stamps {tm}m∈N.

Outline of the proof

Note first that all the derivatives of utm
s exist and are continuous. Then, if utm

s
converges to zero uniformly in [l− ε, l + ε]×R as m→ ∞ and the first and deriva-
tives of other orders of utm

s contained in Λ are continuous, it can be shown that
limm→∞

(
∂utm

s
∂x +Λutm

s

)
(x,y) = 0 uniformly in {l}×R.

We want to prove that for any sequence of time stamps {tm}m∈N and for every
s ∈ {1, ..., p} we have limm→∞ |utm

s (x,y)| = 0 in Ω (s). Note that, to prove this state-
ment, by the argument given in the previous paragraph, with Sε = ∪z∈S[z−ε,z+ε],
we just need to prove that for every s ∈ {1, ..., p} it holds limm→∞ |utm

s (x,y)| = 0
uniformly in Sε ∩ [`s−1, `s]×R, since this implies that the values of the boundary
conditions of each local problem will converge to zero, and consequently so will do
the solution of each local problem in its interior domain.

Observe that, if limm→∞ |ûtm
s (x,k)|= 0 and

lim
m→∞

∫
∞

−∞

|ûtm
s (x,k)|dk =

∫
∞

−∞

lim
m→∞
|ûtm

s (x,k)|dk, (8)
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we have

lim
m→∞
|utm

s (x,y)| = lim
m→∞

∣∣∣∣ 1
(2π)2

∫
∞

−∞

ûtm
s (x,k)eiykdk

∣∣∣∣
≤ 1

(2π)2 lim
m→∞

∫
∞

−∞

|ûtm
s (x,k)|dk =

1
(2π)2

∫
∞

−∞

lim
m→∞
|ûtm

s (x,k)|dk = 0.

Thus, in order to prove that limm→∞ |utm
s (x,y)| = 0 in Ω (s), it suffices to prove

that, for every s ∈ {1, ..., p}, the following three statements hold:

1. limm→∞ |Atm
s (k)|= 0 and limm→∞ |Btm

s (k)|= 0.
2. limm→∞ |ûtm

s (x,y)|= 0 for ∀x ∈ Sε ∩ [`s−1, `s] and y ∈ R.
3. For all x ∈ Sε ∩ [`s−1, `s] and y ∈ R, (8) holds.

Item 3. means, in other words, that if |ûtm
s (x, .)| goes to zero as m goes to infinity, so

will do its integral over k ∈R, and, in turn, the inverse Fourier transform of ûtm
s (x, .).

Proof of the Theorem

We first prove that ||c(0)||∞ < ∞. For ease of notation, for each subdomain s,
let the left artificial boundary condition be ps(k) and the right artificial boundary
condition qs(k). Thus, it follows from the expression (3) that, at x = ls−1−L,

û0
s (ls−1−L,k)=A0

s (k)+B0
s (k)e

θ(k)(ls−1−ls−2L) =A0
s (k)+B0

s (k)e
−θ(k)(W+2L) = ps(k)

(9)
and at x = ls +L

û0
s (ls+L,k) = A0

s (k)e
−θ(k)(ls−ls−1+2L)+B0

s (k) = A0
s (k)e

−θ(k)(W+2L)+B0
s (k) = qs(k).

(10)
From (10) we have B0

s (k) = qs(k)−A0
s (k)e

−θ(k)(W+2L). Then, plugging this ex-
pression of B0

s (k) into (9) gives

A0
s (k)+

[
qs(k)−A0

s (k)e
−θ(k)(W+2L)

]
e−θ(k)(W+2L) = ps(k),

A0
s (k)

[
1− e−2θ(k)(W+2L)

]
= ps(k)−qs(k)e−θ(k)(W+2L),

A0
s (k) =

ps(k)−qs(k)e−θ(k)(W+2L)

1− e−2θ(k)(W+2L)
,

|A0
s (k)| =

|ps(k)−qs(k)e−θ(k)(W+2L)|
|1− e−2θ(k)(W+2L)|

≤ |ps(k)|+ |qs(k)|e−θ(k)(W+2L)

1− e−2
√

η(W+2L)
.

By a similar process we obtain

|B0
s (k)| ≤

|qs(k)|+ |ps(k)|e−θ(k)(W+2L)

1− e−2
√

η(W+2L)
.
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Let p∗(k) and q∗(k) be such that

max
s∈{1,...,p}

{
max

{
|ps(k)|+ |qs(k)|e−θ(k)(W+2L)

1− e−2
√

η(W+2L)
,
|qs(k)|+ |ps(k)|e−θ(k)(W+2L)

1− e−2
√

η(W+2L)

}}

=
|p∗(k)|+ |q∗(k)|e−θ(k)(W+2L)

1− e−2
√

η(W+2L)

Then, we have that

||c(0)||∞ ≤
|p∗(k)|+ |q∗(k)|e−θ(k)(W+2L)

1− e−2
√

η(W+2L)
.

By hypothesis, û0
s is uniformly bounded in k ∈ N and x ∈ S. Thus, there exists a

number M > 0 such that û0(x,k) ≤M for any k ∈ R and x ∈ S. Then, we have that
|ps(k)|, |qs(k)| ≤M for any k∈R and s∈{1, ...p}. Then, necessarily,|p∗(k)|, |q∗(k)| ≤
M, and consequently ||c(0)||∞ < ∞.

Let {tm} be a monotonically increasing sequence of time stamps. As mentioned
previously, in [5] it is proven that ||T̂ (k)c(k)||∞ ≤ ρ||c(k)||∞, with ρ < 1. This im-
plies that after one application of a local operator to an arbitrary vector cold(k) we
have

|Anew
s |, |Bnew

s | ≤ ||T̂ s(k)cold(k)||∞ ≤ ρ||cold(k)||∞
and after all processes have updated their values at least once, say at time stamp t∗,
we have at least |At∗

s |, |Bt∗
s | ≤ ρ||c0(k)||∞. This implies, in turn, that given a mono-

tonically increasing sequence {tm}m∈N, at time tm we have

|Atm
s |, |Btm

s | ≤ ρ
φs(m)||c0(k)||∞

where, for each s ∈ {1, ..., p}, φs : N→ N such that φs(m)→ ∞ as m→ ∞. Then,

lim
m→∞
|Atm

s (k)| ≤ lim
m→∞

ρ
φs(m)||c0(k)||∞ = ||c0(k)||∞ lim

m→∞
ρ

φs(m) = ||c0(k)||∞0 = 0.

Similarly, limm→∞ |Btm
s (k)|= 0, and therefore

lim
m→∞
|ûtm

s (x,k)| = lim
m→∞

∣∣∣Atm
s (k)e−θ(k)|x−(ls−1−L)|+Btm

s (k)e−θ(k)|x−(ls+L)|
∣∣∣

≤ lim
m→∞

(∣∣Atm
s (k)

∣∣e−θ(k)|x−(ls−1−L)|+
∣∣Btm

s (k)
∣∣e−θ(k)|x−(ls+L)|

)
=
(

lim
m→∞

∣∣Atm
s (k)

∣∣)e−θ(k)|x−(ls−1−L)|+
(

lim
m→∞

∣∣Btm
s (k)

∣∣)e−θ(k)|x−(ls+L)|

= 0.

To complete the proof, we need to show that (8) holds for x ∈ Sε ∩ [`s−1, `s] and
y ∈R. We show now that, for all m ∈N, |ûtm

s (x, .)| is bounded by an L1(R) function.
To that end, we have that,
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|ûtm
s (x,k)| = |Atm

s (k)e−θ(k)|x−(ls−1−L)|+Btm
s (k)e−θ(k)|x−(ls+L)|| (11)

≤ |Atm
s (k)|e−θ(k)|x−(ls−1−L)|+ |Btm

s (k)|e−θ(k)|x−(ls+L)|

≤ ρ
φs(m)||c(0)||∞(k)

(
e−θ(k)|x−(ls−1−L)|+ e−θ(k)|x−(ls+L)|

)
≤ ρ

φs(m) |p∗(k)|+ |q∗(k)|e−θ(k)(W+2L)

1− e−2
√

η(W+2L)

(
e−θ(k)|x−(ls−1−L)|+ e−θ(k)|x−(ls+L)|

)
.

Let

g(x,k) =
|p∗(k)|+ |q∗(k)|e−θ(k)(W+2L)

1− e−2
√

η(W+2L)

(
e−θ(k)|x−(ls−1−L)|+ e−θ(k)|x−(ls+L)|

)
.

(12)
Thus, we have |ûtm

s (x,k)| ≤ g(x,k) for any m∈N. We show next that g(x, .)∈ L1(R).
Since |p∗(k)|, |q∗(k)| ≤M, we have

g(x,k)≤M
1+ e−θ(k)(W+2L)

1− e−2
√

η(W+2L)

(
e−θ(k)|x−(ls−1−L)|+ e−θ(k)|x−(ls+L)|

)
(13)

Thus,∫
∞

−∞

|g(x,k)|dk ≤
∫

∞

−∞

M
1+ e−θ(k)(W+2L)

1− e−2
√

η(W+2L)

(
e−θ(k)|x−(ls−1−L)|+ e−θ(k)|x−(ls+L)|

)
dk

=
M

1− e−2
√

η(W+2L)

∫
∞

−∞

(
e−θ(k)|x−(ls−1−L)|+ e−θ(k)|x−(ls+L)|

+e−θ(k)[W+2L+|x−(ls−1−L)|]+ e−θ(k)[W+2L+|x−(ls+L)|]
)

dk

≤ M
1− e−2

√
η(W+2L)

(
2

|x− (ls−1−L)|
+

2
|x− (ls +L)|

+
2

W +2L+ |x− (ls−1−L)|
+

2
W +2L+ |x− (ls +L)|

)
. (14)

Note that for x ∈ Sε ∩ [`s−1, `s] we have |x− (ls−1−L)|, |x− (ls−1 +L)| ≥ 2L− ε .
Then, plugging these inequalities in (14), we obtain∫

∞

−∞

|g(x,k)|dk ≤ 4M(W +6L−2ε)

(1− e−2
√

η(W+2L))(2L− ε)(W +4L− ε)
, (15)

i.e., g(x, .) ∈ L1(R). Consequently, for any x ∈ Sε ∩ [`s−1, `s] there exists a g(x, .) ∈
L1(R) such that |ûtm

s (x,k)| ≤ g(x,k) for all m ∈ N, and by the Lebesgue Dominated
Convergence Theorem we have then that (8) holds.

The above argument was for s = 2, ..., p−1. Using the same argument but with
Atm

1 = 0 and −∞ instead of ls−1−L, we can see that (8) holds for s = 1; and, using
the same argument but with Btm

p = 0 and ∞ instead of ls +L, it can be shown that (8)
holds for s = p.

Thus, from (11), (12), (15) we have ∀x ∈ Sε ∩ [`s−1, `s] and y ∈ R that
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|utm
s (x,y)| ≤ 1

(2π)2

∫
∞

−∞

|ûtm
s (x,k)|dk≤ ρφs(m)

π2
M(W +6L−2ε)

(1− e−2
√

η(W+2L))(2L− ε)(W +4L− ε)
.

Consequently, utm
s → 0 uniformly in Sε ∩ [`s−1, `s]×R as m→∞. Then, as explained

in the outline of the proof, the values of the boundary conditions of each local prob-
lem go to zero as m goes to infinity, and therefore ∀s∈ {1, ..., p} we have utm

s → 0 in
Ω (s) as m→ ∞. Given that the sequence of time stamps was arbitrary, the theorem
is proven. ut

Remark 1: Note that the condition that û0
s (x,k) is uniformly bounded in k ∈N and

x ∈ S can be weakened to the condition that p∗ and q∗ be such that g(x, .) ∈ L1(R).
Remark 2: Note that, for synchronous and asynchronous iterations, for a given tm,

the value of φs(tm) is, in general, different for each s, but they have a common lower
bound, i.e., φs(tm)≥ nmin, where nmin = mins∈{1,...,p}{ns} and ns is the local update
number of process s. Also, for any s, the value of φs(tm) can be much larger than
ns. For the synchronous case all the local update numbers are equal to the global
iteration number, therefore, nmin is just the (global) iteration number.

3 Conclusion

In [5], it was shown that the operator T̂ mapping the coefficients of the Fourier
transform of the error at one iteration to those at the next iteration is contracting
in max norm. In this paper, we use this result to complete a proof that, for the
operator ∆ − η , the asynchronous optimized Schwarz method converges for any
initial approximation u0 that gives an initial error with Fourier Transform (along the
y direction) uniformly bounded on each of the artificial interfaces.
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