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1 Introduction

We consider the second order elliptic problem in two dimensions

−∇ · (A(x)∇u(x)) = f (x) in Ω ⊂ R2,

u = 0 on ∂Ω ,
(1)

where the scalar coefficient function A(x) > 0 is highly heterogeneous, possibly
with high jumps. While convergence of standard two-level Schwarz preconditioners
depends on the contrast of the coefficient function, we propose a coarse space for
two-level overlapping Schwarz methods which yields a condition number that is in-
dependent of the coefficient function. Our approach can be viewed as an extension
to the GDSW (Generalized Dryja, Smith, Widlund) method [1, 2] since it always
contains the standard GDSW coarse space. Originally, the method was inspired
by the ACMS (Approximate Component Mode Synthesis) special finite element
method [9, 6], which uses enrichment of the discretization space by local eigen-
functions. The ACMS space was first considered as a coarse space for overlapping
Schwarz methods in [7].

Our new coarse space consists of simple nodal finite element functions and of en-
ergy minimizing extensions of solutions of generalized eigenvalue problems on the
edges. Here, we restrict ourselves to the two-dimensional case. For the description
of the three-dimensional case and the proof of the condition number bound, we refer
to [8]. A related method is the SHEM (Spectral Harmonically Enriched Multiscale)
coarse space, introduced in [5], however, our eigenvalue problems do not use mass
matrices; see (5). Other related coarse spaces for overlapping Schwarz methods are,
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e.g., [3, 4]. In our new coarse space and in the one based on the ACMS discretization
method, the construction of the generalized eigenvalue problems is computationally
slightly more expensive than in the SHEM coarse space [5]. However, the dimension
of the coarse space can be reduced significantly in certain cases.

The variational problem corresponding to (1) reads: find u ∈ H1
0 (Ω), such that

aΩ (u,v) = L(v) ∀v ∈ H1
0 (Ω) (2)

with the bilinear form and the linear functional

aΩ (u,v) :=
∫

Ω

(∇u(x))T A(x)∇v(x)dx and L(v) :=
∫

Ω

f (x)v(x)dx,

respectively, where f ∈ L2(Ω). We define the semi-norm corresponding to the bilin-
ear form aΩ (·, ·) as |u|2a,Ω := aΩ (u,u). Let Ku = f be the discretization of prob-
lem (2) by piecewise linear or bilinear finite elements on a family of triangulations
(τh)h. We solve the discretized system using the conjugate gradient method precon-
ditioned by a suitable two-level overlapping Schwarz preconditioner.

2 The GDSW Preconditioner

The GDSW preconditioner [1, 2] is a two-level additive overlapping Schwarz pre-
conditioner with exact solvers; cf. [10]. It can therefore be written in the form

M−1
GDSW = ΦK−1

0 Φ
T +

N

∑
i=1

RT
i K̃−1

i Ri, (3)

where K0 = ΦT KΦ and K̃i = RT
i KRi. The matrices Ri are the restriction operators

to the overlapping subdomains Ω̃i, i = 1, ...,N, and the columns of Φ are the coarse
basis functions. The coarse basis functions are discrete harmonic extensions of in-
terface functions into the interior degrees of freedom of the corresponding nonover-
lapping subdomains. On the interface, the values are defined as the restrictions of
the nullspace of the operator to the edges and vertices of the nonoverlapping domain
decomposition.

The condition number estimate for the GDSW Schwarz operator in case of a
constant coefficient function A is

κ
(
M−1

GDSWK
)
≤C

(
1+

H
δ

)(
1+ log

(
H
h

))2

; (4)

cf. [1, 2]. If A is not constant, the constant C also depends the contrast of A.
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Fig. 1 (left) Graphical representation of Ωe =Ωi∪Ω j and Ω̂e. The set Ω̂e is obtained by removing
from Ωe all elements which are adjacent to the coarse nodes. From this, we also obtain the interior
edge ê := e∩ Ω̂e. (right) Graphical representation of the slab Ω̂ l

e corresponding to the edge e.

3 Adaptive GDSW in 2D

The adaptive GDSW coarse space is an extension to the standard GDSW coarse
space since it automatically includes the standard GDSW coarse space. However, if
necessary due to coefficient jumps, additional coarse constraints are selected. These
additional coarse constraints are constructed from solving local generalized eigen-
value problems. Let the interface Γ be partitioned into edges E and vertices V , i.e.,
Γ = (

⋃
e∈E e)∪ (

⋃
v∈V v). For each edge e, we define the sets Ωe and Ω̂e as depicted

in Fig. 1 (left) and the following extension operator:

we : V h
0 (e)→V h

0 (Ωe) , v 7→ we(v) :=
{

v in all interior nodes of e,
0 on all other nodes in Ωe,

where V h
0 (e) := {v|e : v ∈V,v = 0 on ∂e}. Then, we consider on each edge e ∈ E

the generalized eigenvalue problem: find τ∗,e ∈V h
0 (e) such that

a
Ω̂e

(
Hê→Ω̂e

(τ∗,e),Hê→Ω̂e
(θ)
)
= λ∗,e aΩe (we(τ∗,e),we(θ)) ∀θ ∈V h

0 (e) . (5)

Here, Hê→Ω̂e
denotes the discrete harmonic extension from the interior edge ê

into Ω̂e with respect to the bilinear form a
Ω̂e

(·, ·). Let the corresponding eigen-
values be sorted in non-descending order, i.e., λ1,e ≤ λ2,e ≤ ... ≤ λm,e, and the
eigenmodes accordingly, where m = dim

(
V h

0 (e)
)
. We select all eigenmodes τ∗,e

where the eigenvalues are below a certain tolerance, i.e., λ∗,e ≤ tolE . Then we ex-
tend the selected eigenfunctions by zero to Γ \ e, denoted by τ̃∗,e, and subsequently
compute the discrete harmonic extension into the interior of the subdomains, i.e.,
v∗,e := HΓ→Ω (τ̃∗,e).

Note that for every edge e, the left hand side of the eigenvalue problem (5) is
singular. Therefore, since tolE ≥ 0, eigenmodes which span the nullspace are always
selected and added to the coarse space. Therefore, the standard GDSW coarse space
is always a subspace of our automatic coarse space.

In addition to the edge basis functions, we use the nodal coarse basis functions
from the GDSW coarse space, which span the space VV . We denote the resulting
coarse space as the AGDSW (Adaptive GDSW) coarse space:
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V tolE
AGDSW =VV ⊕

(⊕
e∈E

span
{

vk,e : λk,e ≤ tolE
})

Remark 1: For tolE ≥ 0, we obtain VGDSW =V 0
AGDSW ⊆V tolE

AGDSW.
Remark 2: The right hand side of the eigenvalue problem (5) can be extracted from
the fully assembled global stiffness matrix K.
Remark 3: The condition number of the AGDSW Schwarz operator is bounded by

κ
(
M−1

AGDSWK
)
≤C

(
1+

1
tolE

)
; (6)

see [8]. The constant C is independent of H, h, and the contrast of the coefficient
function A. In [8], the three-dimensional case is also covered including the theory.

4 Variants of Adaptive GDSW

Here, we will briefly discuss some possible variants of the AGDSW method.

Mass matrix As in other adaptive coarse spaces where a spectral estimate is used
to replace a Poincaré type inequality, cf., e.g., [3, 4, 5, 7], we can use a (scaled) mass
matrix on the right hand side of the eigenvalue problems. The scaled mass matrix
corresponding to an edge e⊂ (Ω̄i∩ Ω̄ j) arises from the discretization of the scaled
L2-inner product

be (u,v) :=
1
h2 (A ·we(u),we(v))L2(Ωe)

. (7)

Therefore, we obtain for each edge the modified generalized eigenvalue problem:
find τ∗,e ∈V h

0 (e) such that

a
Ω̂e

(
Hê→Ω̂e

(τ∗,e),Hê→Ω̂e
(θ)
)
= λ∗,ebe (τ∗,e,θ) ∀θ ∈V h

0 (e) . (8)

The condition number bound (6) can also be proven for this variant; see [8].

Slabs In order to reduce the computational cost of constructing the generalized
eigenvalue problems, the set Ω̂e can be replaced by a slab of width l elements
around the edge e in (5); cf. Fig. 1 (right) for the graphical representation of a slab
corresponding to the edge e. We denote the slab by Ω̂ l

e. This idea, to use slabs
in the eigenvalue problems, has already been introduced in [7] for related multi-
scale coarse spaces based on the ACMS space and is also common in FETI-DP and
BDDC domain decomposition methods with adaptive coarse spaces.

The modified generalized eigenvalue problem reads: find τ∗,e ∈V h
0 (e) such that

a
Ω̂ l

e

(
Hê→Ω̂ l

e
(τ∗,e),Hê→Ω̂ l

e
(θ)
)
= λ∗,eaΩe (we(τ∗,e),we(θ)) ∀θ ∈V h

0 (e) . (9)



Adaptive GDSW Coarse Space in 2D 5

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2 Discontinuous coefficient functions A with different types of channels and inclusions inter-
secting the interface. Maximum coefficient (dark blue color): Amax = 106 (left), Amax = 108 (right);
1/H = 4; H/h = 30 (left); H/h = 40 (right); δ = 2h.

Coeff. function A from Fig. 2 (left) Coeff. function A from Fig. 2 (right)
V0 tolE it. κ dimV0 tolE it. κ dimV0

VGDSW 264 1.04 ·106 33 45 26.18 33
VAGDSW 10−1 29 7.15 93 10−1 34 10.06 81

10−2 29 7.15 93 10−2 44 26.20 57
VAGDSW−M 10−1 29 7.15 93 10−1 44 26.20 57

10−2 29 7.15 93 10−2 44 26.20 57
VSHEM 10−3 20 4.33 69 10−3 23 5.03 213

10−6 20 4.33 69 10−6 23 5.03 213

Table 1 Results for the coefficient functions in Fig. 2: tolerance for the selection of the eigen-
functions, iterations counts, condition numbers, and resulting coarse space dimension for different
coarse space variants; 1/H = 4, H/h = 30 (left), H/h = 40 (right), and δ = 2h; maximum coeffi-
cient Amax = 106 (left) and Amax = 108 (right).

The slab variant is computationally cheaper and the bound can be proven anal-
ogously to the standard version with no modifications. However, the coarse space
dimension can increase due to the use of this variant (if Ω̂ l

e ⊂ Ω̂e).

5 Numerical Results

We present numerical results for model problem (1) for f ≡ 1 and various coefficient
functions, comparing the different AGDSW approaches with the standard GDSW
as well as the SHEM coarse space, recently introduced by Gander, Loneland, and
Rahman in [5]. Finally, we show results using slabs of varying widths.

In all figures, the light and dark blue colors correspond to the minimum co-
efficient (Amin = 1.0) and maximum coefficient (Amax = 106 or Amax = 108), re-
spectively. We use piecewise bilinear finite elements, and solve the discrete lin-
ear system using the conjugate gradient method with a relative stopping criterion,
||r(k)||2/||r(0)||2 ≤ 10−8, where r(0) and r(k) are the initial and the k-th unprecondi-
tioned residual, respectively. By VGDSW, we denote the standard GDSW space and
by V tol

AGDSW the new adaptive GDSW coarse space. The variant which uses a scaled
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Fig. 3 (Left:) Sample random coefficient function with a density of approximately 40% high co-
efficients Amax = 106 (dark blue color). 1/H = 4; H/h = 40; δ = 1h. (Right:) Detailed view of a
coefficient function with Amax = 108 (dark blue color) and 1/H = 20, H/h = 40, δ = 1h.

Random coeff. function A from Fig. 3 (left) Coeff. fn. A from Fig. 3 (right)
V0 tolE it. κ dimV0 tolE it. κ dimV0

VGDSW > 500 ( - ) 2.8 ·105 ( 6.9 ·104) 33 ( 0.0) 3 042 4.9 ·107 1 121
VAGDSW 10−1 34.3 ( 1.7) 11.8 ( 2.0) 185.1 ( 7.0) 10−1 47 16.2 3 087
VAGDSW−M 10−1 51.6 ( 3.7) 22.6 ( 7.6) 148.4 ( 8.5) 10−1 75 40.1 1 862
VAGDSW 5 ·10−2 62 28.5 2 257
VAGDSW−M 5 ·10−2 85 59.4 1 706
VAGDSW 10−2 78.9 ( 6.4) 81.7 ( 25.1) 127.7 ( 9.5) 10−2 92 97.2 1 702
VAGDSW−M 10−2 112.2 (11.6) 119.5 ( 44.8) 181.1 (10.7) 10−2 92 97.2 1 702
VSHEM 10−3 36.6 ( 3.3) 18.2 ( 6.8) 215.0 ( 8.4) 10−2 48 19.9 4 450
VSHEM 10−6 80.1 (28.2) 14 283.8 (15 740.5) 189.2 ( 8.1) 10−4 60 32.3 4 324

Table 2 Results for the coefficient functions in Fig. 3: tolerance for the selection of the eigen-
functions, iteration counts, condition numbers, and resulting coarse space dimension for different
coarse space variants. (Left:) Averaged results for 100 random coefficient functions (≈ 40% den-
sity); standard deviation in brackets. GDSW never converged within the maximum iteration num-
ber of 500. 1/H = 4, H/h= 40, and δ = 1h; maximum coefficient Amax = 106. (Right:) 1/H = 20;
H/h = 40; δ = 1h; maximum coefficient Amax = 108.

mass matrix in the right hand side of the eigenvalue problem, cf. section 4, is denoted
by V tol

AGDSW−M, the variant using a slab of width w = lh is denoted by V tol
AGDSW−E(l),

and the SHEM coarse space by V tol
SHEM; cf. [5].

In Table 1, we compare the different coarse spaces for the two coefficient func-
tions illustrated in Fig. 2. It is evident that, for the coefficient function from Fig. 2
(left), the GDSW coarse space is not sufficient to yield a low condition number
and a small number of iterations; see Table 1 (left). This is due to multiple discon-
nected, high coefficient channels and inclusions intersecting the interface. However,
the GDSW coarse space is sufficient for the coefficient function from Fig. 2 (right);
see Table 1 (right). Here, only one connected high coefficient component exists per
edge, all other high coefficient components are entirely contained in the overlap. Let
us remark that a reduction of the overlap to one element, i.e., δ = 1h, and only us-
ing the standard GDSW coarse space leads to 207 iterations and a condition number
of 8.97 · 107. In Table 1, all adaptive methods achieve low condition numbers and
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Coeff. function A from Fig. 4
V0 slab width (lh) it. κ dimV0

VGDSW - 55 761 497.6 5
VAGDSW−E(l) 1h 26 10.8 23
VAGDSW−E(l) 2h 26 10.8 23
VAGDSW−E(l) 3h 26 10.8 23
VAGDSW−E(l) 4h 26 10.8 19
VAGDSW−E(l) 7h 28 10.8 15
VAGDSW−E(l) 10h 30 15.0 11
VAGDSW−E(l) 13h 32 19.9 7
VAGDSW−E(l) 42h 31 19.9 7
VSHEM - 24 8.3 21

Fig. 4 Coefficient function with many connected channels intersecting the interface. Maximum
coefficient Amax = 106 (dark blue); 1/H = 2; H/h = 42; δ = 2h.

Table 3 Results for the coefficient function in Fig. 4: slab width, iterations counts, condition num-
bers, and resulting coarse space dimension for different coarse space variants. A tolerance for the
selection of the eigenfunctions of 10−3 was used for VAGDSW−E(l) and VSHEM; 1/H = 2, H/h = 42,

and δ = 2h; maximum coefficient Amax = 106.

converge in few iterations for both coefficient functions. For the coefficient func-
tion from Fig. 2 (left), both adaptive GDSW coarse spaces have higher coarse space
dimensions compared to the SHEM coarse spaces. This can be explained as fol-
lows: first, the entire GDSW coarse space is always included in the AGDSW coarse
space and second, all high coefficient components intersecting the interface are dis-
connected. For the coefficient function from Fig. 2 (right), many channels of high
coefficients intersecting the interface are connected. Here, the coarse space V 10−6

SHEM
has a dimension of 213, where both AGDSW approaches lead to a significantly
lower coarse space dimension of 57 using a tolerance of 10−2.

In Fig. 3 (left), a randomly generated coefficient function is displayed. Averaged
results for 100 random coefficient functions are listed in Table 2 (left). The coeffi-
cient functions are constructed as follows: uniformly distributed numbers are ran-
domly generated in the interval [0,1]. A value above 0.6 corresponds to a high coef-
ficient Amax = 106 in a finite element. Otherwise the coefficient is set to Amin = 1.0.
The coefficient of an element that touches the global domain boundary is always set
to Amin.

The results in Table 2 (left) show that all adaptive coarse spaces (AGDSW and
SHEM) yield low condition numbers and numbers of iterations. On average, com-
pared to the SHEM coarse space, for these problems, the adaptive GDSW ap-
proaches have lower coarse space dimensions. For example, V 10−6

SHEM and V 10−2

AGDSW
converge in approximately the same number of iterations, i.e., 80.1 and 78.9, re-
spectively. However, V 10−6

SHEM has a coarse space dimension of 189.2, whereas the
dimension of V 10−2

AGDSW is 127.7. This corresponds to a reduction by 33 percent.
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We also consider a foam-like coefficient function, as depicted in Fig. 3 (right).
The results in Table 2 (right) show that a robust preconditioner, with additional
coarse constraints, is needed as VGDSW requires over 3 000 iterations to converge.
The adaptive GDSW variants and VSHEM need few iterations to converge. How-
ever, V 10−4

SHEM requires a much larger coarse space, of dimension 4 324, compared to
V 5·10−2

AGDSW, dimension 2 257, while requiring approximately the same number of iter-
ations to converge. This corresponds to a reduction by 48 percent.

We now investigate the use of different slab widths in the variant VAGDSW−E(l);
cf. section 4. We are able to reduce the computational cost by using small slabs.
However, when the detection of connected high coefficient components is weak-
ened, we may enlarge the coarse space. This can be observed clearly for the coef-
ficient function in Fig. 4. Increasing the slab width decreases the resulting coarse
space dimension for VAGDSW−E(l); also cf. Table 3. In this particular example, a slab
width of 13 is sufficient to achieve the same result as with the maximum slab width
of 42 since the slab then contains only two high coefficient components per edge.

References

1. Clark R. Dohrmann, Axel Klawonn, and Olof B. Widlund. Domain decomposition for
less regular subdomains: overlapping Schwarz in two dimensions. SIAM J. Numer. Anal.,
46(4):2153–2168, 2008.

2. Clark R. Dohrmann, Axel Klawonn, and Olof B. Widlund. A family of energy minimizing
coarse spaces for overlapping Schwarz preconditioners. In Domain decomposition methods in
science and engineering XVII, volume 60 of Lect. Notes Comput. Sci. Eng., pages 247–254.
Springer, Berlin, 2008.

3. Victorita Dolean, Frédéric Nataf, Robert Scheichl, and Nicole Spillane. Analysis of a two-level
Schwarz method with coarse spaces based on local Dirichlet-to-Neumann maps. Comput.
Methods Appl. Math., 12(4):391–414, 2012.

4. Juan Galvis and Yalchin Efendiev. Domain decomposition preconditioners for multiscale
flows in high-contrast media. Multiscale Modeling & Simulation, 8(4):1461–1483, 2010.

5. Martin J. Gander, Atle Loneland, and Talal Rahman. Analysis of a new harmonically enriched
multiscale coarse space for domain decomposition methods. Technical report, arxiv.org. 16
Dec 2015.

6. Alexander Heinlein, Ulrich Hetmaniuk, Axel Klawonn, and Oliver Rheinbach. The approx-
imate component mode synthesis special finite element method in two dimensions: Parallel
implementation and numerical results. J. Computat. Appl. Math., Vol. 289:116–133, 2015.

7. Alexander Heinlein, Axel Klawonn, Jascha Knepper, and Oliver Rheinbach. Multiscale coarse
spaces for overlapping Schwarz methods based on the ACMS space in 2D. Technical Report
Preprint 2016-09 at http://tu-freiberg.de/fakult1/forschung/preprints, Technische Universität
Bergakademie Freiberg, Fakultät für Mathematik und Informatik, 2016. Submitted 08/2016
to ETNA.

8. Alexander Heinlein, Axel Klawonn, Jascha Knepper, and Oliver Rheinbach. Adaptive GDSW.
Technical report, 2017. In Preparation.

9. Ulrich Hetmaniuk and Richard B. Lehoucq. A special finite element method based on compo-
nent mode synthesis. ESAIM: Mathematical Modelling and Numerical Analysis, 44(3):401–
420, 4 2010.

10. Andrea Toselli and Olof Widlund. Domain decomposition methods—algorithms and theory,
volume 34 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 2005.


