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1 Introduction

Isogeometric Analysis (IgA), cf. Hughes et al. [2005], Beirão da Veiga et al.
[2014], is a variant of the Galerkin method where both the geometry of
the computational domain and the solution of the partial differential equa-
tion (PDE) are represented by B-splines or Non Uniform Rational B-splines
(NURBS). One of the strengths of IgA consists in its capability of creat-
ing high-order smooth function spaces, while keeping the number of degrees
of freedom relatively small. Originally, IgA was formulated by means of one
global geometry mapping, which restricts the method to simple domains being
topologically equivalent to the unit square or the unit cube. More complicated
domains are represented as a non-overlapping composition of such simple do-
mains, called patches. In such a multi-patch setting, each of the patches has
its own geometry mapping, and all of the patches are discretized separately.

We are interested in fast solvers for linear systems arising from the dis-
cretization of elliptic PDEs in such a multi-patch setting. The local discretiza-
tion on each patch has typically tensor-product structure.

We use a non-overlapping domain decomposition (DD) method to couple
the problem across the patches, namely the dual-primal IsogEometric Tearing
and Interconnecting (IETI-DP) method, a variant of the FETI-DP method,
see Kleiss et al. [2012]. In general, the geometry mapping does not exhibit
more than C0-continuity across the interfaces. Thus, we only aim to guar-
antee C0-continuity of the solution across the interfaces. Moreover, also for
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a decomposition of the patches into smaller subpatches, e.g., for paralleliza-
tion, the choice of C0 continuity is reasonable if the number of inner dofs
stays large enough, cf. Hofer [2017]. The IETI method is closely related to
the BDDC method, see Toselli and Widlund [2005], Beirão da Veiga et al.
[2013, 2017] and references therein.

So far, the local problems have been solved using direct solvers. Since we
want to choose the given patches also as subdomains of the DD-method, the
local problems become large if the discretization is refined. In this case, inex-
act solvers for the local subproblems, as introduced in Klawonn and Rhein-
bach [2007], could be superior to direct solvers. The aim of this work is to in-
vestigate such approaches in combination with the p-robust multigrid solvers,
which were proposed by Hofreither and Takacs [2017], as inexact solvers.

In the present paper, we consider the Poisson problem on a bounded Lip-
schitz domain Ω ⊂ Rd, with d ∈ {2, 3}, as model problem: For a given,
sufficiently smooth f , find u ∈ V0 := H1

0 (Ω) such that

a(u, v) := (∇u,∇v)L2(Ω) = (f, v)L2(Ω) =: 〈F, v〉 ∀v ∈ V0. (1)

2 Isogeometric Analysis and IETI-DP

On the unit interval, for any spline degree p and number of basis functionsM ,
we define the basis (N̂i,p)Mi=1 of univariate B-splines of maximum smoothness
Cp−1 via Cox-de Boor’s algorithm. A basis for the parameter domain Ω̂ :=
(0, 1)d, is realized by the tensor product of such basis functions, again denoted
by N̂i,p, where i = (i1, . . . , id) ∈ I := {1, . . . ,M1} × . . . × {1, . . . ,Md} and
p = (p1, . . . , pd) are multi-indices.

In standard (single-patch) IgA, the physical domain Ω is given as the
image of the parameter domain under the geometry mapping G : Ω̂ → Rd,
defined by G(ξ) :=

∑
i∈I PiN̂i,p(ξ), with the control points Pi ∈ Rd, i ∈ I.

In a multi-patch setting, the domain Ω (multipatch domain) is composed
of non-overlapping patches Ω(k), k = 1, . . . , N , such that Ω :=

⋃N
k=1Ω

(k)
.

Each patch Ω(k) := G(k)(Ω̂) is represented by its own geometry mapping.
We call Γ :=

⋃
k>l ∂Ω

(k) ∩ ∂Ω(l) the interface, and denote its restriction to
one of the patches Ω(k) by Γ (k) := Γ ∩ ∂Ω(k). Throughout the paper, the
superscript (k) denotes the restriction of the underlying symbol to Ω(k).

We use B-splines not only for defining the geometry, but also for repre-
senting the approximate solution of (1). Once the basis functions are defined
on the parameter domain Ω̂, we define the bases on the patches Ω(k) via the
pull-back principle, and obtain the basis functions Ni,p := N̂i,p ◦ G−1.

The main idea of IETI-DP is to decouple the patches by tearing the in-
terface unknowns which introduces additional degrees of freedom (dofs). We
denote the resulting space by Vh. Then, continuity is again enforced using
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Lagrange multipliers λ. Hence, the local subproblems on each patch are es-
sentially pure Neumann problems (at least for interior patches). Due to the
presence of a kernel, a straight-forward Schur complement formulation is not
possible. In order to overcome this problem, certain continuity conditions are
enforced by incorporating them into the space Vh, (strongly enforced conti-
nuity conditions) which yields the smaller space Ṽh. There, we formulate the
following problem. Find (u, λ) ∈ Ṽh × Λ such that[

K̃ B̃T

B̃ 0

] [
u
λ

]
=

[
f̃
0

]
, (2)

where K̃ is the stiffness matrix, B̃ the jump operator, and f̃ the right hand
side. Here and in what follows, we do not distinguish between the IgA func-
tions and their vector representation with respect to the chosen basis.

Now, we split Vh into interior dofs and interface dofs, which yields an
interface spaceW . By splitting Ṽh analogously, we obtain the space W̃ . Based
on this splitting, we formulate the problem using the Schur complement of
the stiffness matrix K in Vh with respect to the interface dofs: S := KBB −
KBIK

−1
II KIB , where the subindices B and I denote the boundary and interior

dofs, respectively. The restriction of S to W̃ is denoted by S̃, which yields
the following saddle-point formulation: Find (w, λ) ∈ W̃ × Λ such that[

S̃ B̃T

B̃ 0

] [
w
λ

]
=

[
g̃
0

]
, (3)

where g̃ := ĨT (fB−KBIK
−1
II fI) and Ĩ : W̃ →W is the canonical embedding.

We denote the subspace of W̃ satisfying the strongly enforced continuity
conditions homogeneously by W∆ and the S-orthogonal complement by WΠ .
In the literature, our choice of WΠ is often called energy minimizing primal
subspace. Finally, we can define the Schur complement F of the saddle-point
problem (3), and obtain the problem: Find λ ∈ Λ such that

Fλ := (B̃S̃−1B̃T )λ = B̃S̃−1g̃ := d. (4)

Equation (4) is solved by means of the conjugate gradient (CG) method
using the scaled Dirichlet preconditioner M−1sD := BDSB

T
D, where BD is a

scaled version of the jump operator B on Vh. Note that we can approximate
S̃−1 because S̃ can be represented (by reordering of the dofs) as a block
diagonal matrix of matrices S(k)

∆∆ for each patch and the matrix SΠΠ . For a
summary of the algorithm and a more detailed explanation, we refer, e.g., to
Toselli and Widlund [2005], Hofer and Langer [2017] and references therein.
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3 Incorporating Multigrid in IETI-DP

We investigate different possibilities to incorporate a multigrid solver into the
IETI-DP algorithm. The application of the IETI-DP algorithm requires the
solution of local Neumann and Dirichlet problems.

3.1 Local Dirichlet problems

We have to solve linear systems with the system matrix K(k)
II in the appli-

cation of S in the preconditioner and when calculating the right hand side
g̃. These linear systems are Dirichlet problems (up to boundary conditions).
The right hand side g̃ has to be computed very accurately, i.e., at least up to
discretization error. However, for the preconditioner, a few MG V-cycles are
usually enough, since we only have to ensure the spectral equivalence of the
inexact scaled Dirichlet preconditioner to the exact one, cf. Klawonn et al.
[2016] and references therein.

3.2 Local Neumann problems

Local Neumann problems appear in the construction of the S-orthogonal
basis for WΠ and in the application of S∆∆. In order to construct the nodal
and S-orthogonal basis {φ(k)j }j of W

(k)
Π , we have to solve[

S(k) C(k)T

C(k) 0

][
φ
(k)
j

µ
(k)
j

]
=

[
0

e
(k)
j

]
, ∀j ∈ {1, . . . , n(k)

Π }, (5)

where e
(k)
j ∈ Rn

(k)
Π is the j-th unit vector, and the matrix C(k) realizes the

n
(k)
Π strongly enforced continuity conditions contributing to the patch Ω(k).

Instead of solving (5) directly, we solve[
K(k) C(k)T

C(k) 0

][
φ
(k)

j

µ
(k)
j

]
=

[
0

e
(k)
j

]
, ∀j ∈ {1, . . . , n(k)

Π }, (6)

and obtain the desired basis functions by φj = φj |Γ (k) . Note that {φ(k)j }j is
a K-orthogonal basis. The system is solved with the Schöberl-Zulehner (SZ)
preconditioner, see Schöberl and Zulehner [2007].

The SZ preconditioner for (6) requires preconditioners K̂(k) and Ĥ(k)

for the upper left block K(k) and its inexact Schur complement H(k) :=

C(k)(K̂(k))
−1
C(k)T , respectively. The preconditioner K(k) is realized by a few
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MG V-cycles. It is required that K̂(k) > K(k), which implies that K̂(k) has to
be positive definite. In order to handle also the case where K(k) is singular,
we need to set up MG based on a regularized matrix K(k)

M := K(k) + αM̂ (k),

where α is chosen to be 10−2 and M̂ (k) is the mass matrix on the parameter
domain. Note that we can exploit the tensor product structure to efficiently
assemble the mass matrix M̂ (k). Secondly, the SZ preconditioner requires that
Ĥ(k) < H(k). Since in our case the number of rows of C(k) is given by n(k)Π , a
small number that does not change during refinement, we calculate the inex-
act Schur complement exactly. This can be performed by applying (K̂(k))

−1

to n
(k)
Π vectors. Finally, by a suitable scaling, e.g., Ĥ(k) := 0.99H(k), we

obtain the desired matrix inequality.
The second type of Neumann problem appears in the application of F . We

look for a solution of the system S
(k)
∆∆w

(k)
∆ = f

(k)
∆ , which can be written as[

S(k) C(k)T

C(k) 0

] [
w

(k)
∆

µ(k)

]
=

[
f (k)

0

]
. (7)

Certainly, one can use the same method as above. However, we can utilize
the fact that we search for a minimizer of 1

2 (S
(k)w(k), w(k)) − (w(k), f (k)) in

the subspace given by C(k)w(k) = 0. This solution can be computed by first
solving the unconstrained problem, and then projecting the minimizer into
the subspace using a energy-minimizing projection. The projection is trivial
because the decomposition of W̃ into WΠ and W∆ is S-orthogonal.

Note that the CG algorithm, when applied to a positive semidefinite ma-
trix, stays in the factor space with respect to the kernel and computes one
of the minimizers. The solution of the constrained minimization problem is,
as outlined above, obtained by applying the projection. As long as the num-
ber of CG iterations is not too large, numerical instabilities are not observed
when applying CG to a positive semidefinite problem.

The S-orthogonal basis has to be computed very accurately in order to
maintain the orthogonality. Since the equation S

(k)
∆∆w

(k)
∆ = f

(k)
∆ appears in

the system matrix F , its solution also requires an accuracy of at least the
discretization error.

3.3 Variants of inexact formulations

From the discussion above, we deduce four (reasonable) versions:

(D-D) The classical IETI-DP method, using direct solvers everywhere.
(D-MG) We use MG in the scaled preconditioner for the solution of the

local Dirichlet problems and the transformation of the right hand side, see
Section 3.1. As already mentioned, the required accuracy for computing g̃ has
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to be of the order of discretization error, whereas a few V-cycles are enough
for the preconditioner.

(MG-MG) We use MG for all patch-local problems, i.e., the local Dirich-
let and Neumann problems. This implies that also the calculation of the basis
forW∆ is performed by means of MG, which turns out to be very costly. More-
over, for each application of F , we have to solve a local Neumann problem in
W∆ with the accuracy in the order of the discretization error.

(MG-MG-S) To overcome the efficiency problem of the requirement of
solving a linear system with MG very accurately, we use the saddle point
formulation instead of F . On the one hand, at each iteration step, we only
have to apply a given matrix instead of solving a linear system. On the other
hand, we now have to deal with a saddle point problem. Moreover, the it-
eration is not only applied to the interface dofs, but also to the dofs in the
whole domain.

We will always assume that the considered multipatch domain has only
a moderate number of patches, such that the coarse problem can still be
handled by a direct solver. For extensions to inexact version for the coarse
problem, we refer to Klawonn and Rheinbach [2007].

For the first three methods, we use the CGmethod to solve Fλ = d as outer
iteration. For (MG-MG-S), we have to deal with the saddle point problem (2),
which we solve using the Bramble-Pasciak CG (BPCG) method, cf. Bramble
and Pasciak [1988]. The building blocks for this method are a preconditioner
ˆ̃
K for K̃ and F̂ for the Schur complement F . The construction of ˆ̃

K follows
the same steps as in the previous section, but we only apply a few MG V-
cycles. Concerning F̂ , a good choice is the scaled Dirichlet preconditioner
M−1sD , cf. Klawonn and Rheinbach [2007].

4 Numerical Experiments

We solve the model problem (1) on a two and a three dimensional com-
putational domain. In the two dimensional case, we use the quarter annulus
divided into 32 = 8×4 patches, as illustrated in Fig. 1(left). The three dimen-
sional domain is the twisted quarter annulus, decomposed into 128 = 4×4×8
patches as presented in Fig. 1(right). We use B-splines of maximal smoothness
inside a patch and C0-coupling across the patch interfaces.

We have chosen the continuity of the vertex values and the edge averages
for the two dimensional example, and the continuity of the edge averages for
the three dimensional example as strongly enforced continuity conditions.

For the examples with polynomial degree p = 2, we use a standard MG
method based on a hierarchy of nested grids keeping p fixed and use a stan-
dard Gauss Seidel (GS) smoother. For the examples with higher polynomial
degree (p = 4 or 7), we have used p = 1 on all grid levels but the finest grid.
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Fig. 1 Quarter annulus in 2d (left), twisted quarter annulus in 3d (right).

This does not yield nested spaces. Thus, we cannot use the canonical em-
bedding and restriction. Instead, we use L2-projections to realize them. On
the finest grid, we use a MG smoother suitable for high-order IgA, namely
a variant of the subspace-corrected mass smoother proposed and analyzed
in Hofreither and Takacs [2017]. For this smoother, it was shown that a re-
sulting MG method is robust with respect to both the grid size and the
polynomial degree. However, for p = 1 or 2, standard approaches are more
efficient. Thus, we again use this smoother only for the finest level, while for
all other grid levels we use standard GS smoothers. To archive better results,
we have modified the subspace-corrected mass smoother by incorporating a
rank-one approximation of the geometry transformation.

For the outer CG or BPCG iteration, we use a zero initial guess, and
the reduction of the initial residual by the factor 10−6 as stopping criterion.
The local problems related to the calculation of the S-orthogonal basis are
solved up to a tolerance of 10−12. In case of the (MG-MG) version, the local
Neumann problems (7) in W∆ are solved up to a relative error of 10−10. The
number of MG cycles in the preconditioner is fixed. For the local Dirichlet
problems in the scaled Dirichlet preconditioner, we use 2 V-cycles. The local
Neumann problems, which appear in the preconditioner of the (MG-MG-S)
version, are approximately solved by 3 V-cycles. In the following, we report
on the number of CG iterations to solve (4) and BPCG iterations for (2) and
the total time in seconds, which includes the assembling, the IETI-DP setup
and solving phase. For the weak scalability tests in Table 1 and Table 2, we
observe in all cases a polylogarithmic growth of the outer iterations and a
quasi-optimal behavior of the computation time.

The algorithm is realized with the open source C++ library G+Smo1 We
utilize the PARDISO 5.0.0 Solver, cf. Kuzmin et al. [2013], for performing
the LU factorizations. To allow a better comparison of the different variants,
we only perform serial computations.2

1 G+Smo (Geometry plus Simulation modules) v0.8.1, http://gs.jku.at/gismo.
2 Our code is compiled with the gcc 4.8.3 compiler with optimization flag -O3. The results
are obtain on the RADON1 cluster at Linz. We use a single core of a node, equipped with
2x Xeon E5-2630v3 “Haswell” CPU (8 Cores, 2.4Ghz, 20MB Cache) and 128 GB RAM.
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D-D MG-D MG-MG MG-MG-S
p = 2\Dofs It. Time It. Time It. Time It. Time

134421 9 10 9 8 9 13 14 14
530965 10 45 10 37 10 54 15 90

2110485 11 224 11 172 11 272 16 568
8415253 11 1005 11 762 11 1181 15 3394

33607701 OoM OoM 13 5070 OoM
p = 7\Dofs It. Time It. Time It. Time It. Time

45753 10 26 10 27 10 57 14 54
155961 11 108 11 110 11 225 15 211
572985 12 498 12 495 12 1048 17 1013

2193465 13 2384 13 2265 14 4427 18 4344
8580153 OoM OoM 15 18484 20 19958

Table 1 Numerical results for the quarter annulus in 2d.

D-D MG-D MG-MG MG-MG-S
p = 2\Dofs It. Time It. Time It. Time It. Time

14079 11 3 11 3 11 8 25 7
86975 12 19 12 19 12 59 26 59

606015 14 213 14 197 14 484 30 616
4513343 OoM 16 2764 16 5244 35 11657

p = 4\Dofs It. Time It. Time It. Time It. Time
40095 13 30 13 33 13 112 23 104

160863 15 234 15 254 15 659 28 633
849375 16 2237 17 2356 17 5403 32 5298

5390559 OoM OoM 19 45243 37 52831

Table 2 Numerical results for the twisted quarter annulus in 3d.

In Table 1, we summarize the results for the two dimensional domain for
p = 2 and 7. The size of the coarse space WΠ is 73. We observe that re-
placing the direct solver in the preconditioner with two MG V-cycles does
not change the number of outer iterations. Moreover, going from the Schur
complement to the saddle point formulation and using BPCG there, leads
only to a minor increase in the number of outer iterations. In all cases, the
logarithmic dependence of the condition number on h is preserved. The ad-
vantage of the formulation using only MG, especially (MG-MG), is its smaller
memory footprint, therefore, the possibility of solving larger systems. How-
ever, the setting with the best performance is (MG-D). Concluding, for small
polynomial degrees and using the GS smoother, (MG-MG) gives reasonable
trade off between performance and memory usage and for larger polynomial
degrees, this setting can be still recommended if memory consumption is an
issue.

In the case p = 2, for the inner iterations, we have observed that the
CG needed on average 8 iterations to compute g̃, the calculation of the S-
orthogonal basis needed on average 14 iterations, and the solution of (7)
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required on average 10 iterations. For the second case, p = 7, we needed 9
iterations to compute g̃, 13 iterations for the calculation of the S-orthogonal
basis and 10 iterations for the solutions of (7). Here and in what follows,
we have taken the average over the patches, the individual levels and the
individual steps of the outer iteration. We mention that the number of inner
iterations was only varying slightly.

In Table 2, we summarize the results for the three dimensional domain
and for p = 2 and 4. The size of the coarse space WΠ is 240. We observe that
replacing the direct solver in the preconditioner with two MG V-cycles does
not change the number of outer iterations. We further observe that the results
are similar to the one of the two dimensional case. However, the number of
iterations almost doubled when using BPCG for (MG-MG-S). In all cases,
the logarithmic dependence of the condition number on h is preserved. The
advantage of the formulation using only MG, especially (MG-MG), is its
smaller memory footprint, therefore the possibility of solving larger systems.
The best performance is obtained sometimes by (D-D) and sometimes by
(MG-D), where both approaches are comparable in all cases.

Concerning the inner iterations, for p = 2, we need on average 15 CG
iterations to compute g̃, 22 CG iterations to build up each S-orthogonal basis
function, and 18 CG iterations to solve (7). In the case of p = 4, we needed
on average only 10 iterations to compute g̃, 14 iterations for the construction
of the S-orthogonal basis functions, and 11 iterations for solving (7).

The last test deals with the weak scalability of the method, where we only
investigate the two dimensional setting for p = 7. We fix the ratio H/h and
increase the number of patches. We expect constant number of iterations and
a linear increase of the computation time. In Table 3, beside the Dofs, we
report the size of the coarse space nΠ and the number of patches N . For
each method, we provide the number of iterations and the computation time
in seconds. We observe that the number of iterations and computation time
behave as expected.

p = 7 D-D MG-D MG-MG MG-MG-S
nΠ N Dofs It. Time It. Time It. Time It. Time
73 32 45753 10 27 10 27 10 62 20 60

337 128 183921 11 111 11 108 11 268 15 234
1441 512 737505 11 446 11 438 11 1111 13 943
5953 2048 2953665 10 1777 10 1729 10 4468 12 3821

24193 8192 11821953 OoM OoM 10 19691 11 15392

Table 3 Weak scalability of the methods with respect to the number of patches.
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Abstract In Isogeometric Analysis (IgA), non-trivial computational do-
mains are often composed of volumetric patches where each of them is dis-
cretized by means of tensor-product B-splines or NURBS. In such a set-
ting, the dual-primal IsogEometric Tearing and Interconnecting (IETI-DP)
method, that is nothing but the generalization of the FETI-DP method to
IgA, has proven to be a very efficient solver for huge systems of IgA equa-
tions. Using IETI-DP, basically any patch-local solver can be extended to the
global problem. So far, only direct solvers have been considered as patch-local
solvers. In the present paper, we compare them with the option of using ro-
bust multigrid as patch-local solver. This is of special interest for large-scale
patch-local systems or / and for large spline degrees, because the convergence
of standard smoothers deteriorates with large spline degrees and the robust
multigrid smoother chosen is only available on tensor-product discretizations.


