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1 Introduction

We introduce two new space-time Waveform Relaxation (WR) methods based on
the parareal algorithms and Dirichlet-Neumann waveform relaxation (DNWR) and
Neumann-Neumann waveform relaxation (NNWR). The WR method was first in-
troduced by Lelaramee, Ruehli and Sangiovanni-Vincentelli [15], which has been
applied to analyze for many different kinds of problems, such as differential alge-
braic equations[11], fractional differential equations [13] , reaction diffusion equa-
tions [17]; for further details, see [12]. Domain decomposition methods for time-
dependent partial differential equations (PDEs) can also lead to WR methods, i.e.
Schwarz waveform relaxation (SWR) algorithm [8, 10], optimized Schwarz wave-
form relaxation (OSWR) algorithm [2, 3], and Dirichlet-Neumann and Neumann-
Neumann waveform relaxation methods [6, 7, 22].

The parareal algorithm is a time-parallel method that was proposed by Lions,
Maday, and Turinici in the context of virtual control to solve evolution problems
in parallel [16]. In this algorithm, initial value problems are solved on subintervals
in time, and through iterations the initial values on each subinterval are corrected to
converge to the correct values of the overall solution [1, 9, 5]. The parareal algorithm
has also been combined with waveform relaxation methods [18].

Parallel algorithms based on the decomposition of both time and space domain
have been also studied [21, 19]. However, there was no parallel mechanism in the
time direction. In [20], it was the first time that the combination of Schwarz wave-
form relaxation and parareal for PDEs had been introduced. Further, in [4], a new
parallel algorithm where there is no order between the Schwarz waveform relaxation
algorithm and the parareal algorithm was introduce.
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Fig. 1 Space time decomposition on which the proposed algorithms are based.

In this paper, we propose the parareal Dirichlet-Neumann waveform relax-
ation (PA-DNWR) and the parareal Neumann-Neumann waveform relaxation (PA-
NNWR) methods for the time-dependent problem. For ease of presentation for the
new algorithms, we derive our results for two subdomains in one spatial dimension.

We consider the following initial-value problem of heat equation on bounded
Ω ⊂ R 

∂u
∂ t

−∆u = f (x, t), x ∈ Ω , 0 < t < T,

u(x,0) = u0(x), x ∈ Ω ,
u(x, t) = g(x, t), x ∈ ∂Ω , 0 < t < T.

(1)

2 Parareal Dirichlet-Neumann/Neumann-Neumann waveform
relaxation algorithms

We define the new algorithms for the model problem (1) on the space-time domain
Ω × (0,T ) = (−a,b)× (0,T ). We assume that Ω is decomposed into two nonover-
lapping subdomains, i.e. Ω1 =(−a,0) and Ω2 =(0,b), and the time interval (0,T ) is
decomposed into N equal time subintervals (Tn,Tn+1) with ∆T = Tn+1 −Tn = T/N,
n = 0,1, . . . ,N − 1. We then can define the non-overlapping space-time subdomain
Ωi,n = Ωi × (Tn,Tn+1), i = 1,2,n = 0,1, . . . ,N −1; see Figure 1.

In order to introduce the parareal Dirichlet-Neumann waveform relaxation algo-
rithm for the model problem (1), we first introduce several propagators. We define
two propagator F1,n(U(x),ω(t)) and G1,n(U(x),ω(t)) to solve the following Dirich-
let problem in Ω1,n

∂u1,n

∂ t
=

∂ 2u1,n

∂x2 + f (x, t), (x, t) ∈ Ω1,n,

u1,n(−a, t) = g(−a, t), t ∈ (Tn,Tn+1),

u1,n(0, t) = ω(t), t ∈ (Tn,Tn+1),

u1,n(x,Tn) =U(x), x ∈ Ω1,

(2)

using an accurate approximation and a rough approximation, where U(x) and ω(t)
are given data. Furthermore, two propagators F2,n(U(x),ω(x, t)) and G2,n(U(x),ω(x, t))
are defined to solve the following Neumann problem in Ω2,n
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∂u2,n

∂ t
=

∂ 2u2,n

∂x2 + f (x, t), (x, t) ∈ Ω2,n,

∂xu2,n(0, t) = ∂xω(0, t), t ∈ (Tn,Tn+1),

u2,n(b, t) = g(b, t), t ∈ (Tn,Tn+1),

u2,n(x,Tn) =U(x), x ∈ Ω2,

(3)

using an accurate approximation and a rough approximation. Therefore the parareal
Dirichlet-Neumann waveform relaxation algorithm for the model problem (1) con-
sists of the following steps: Given an initial guess ω0

n (t) along the interface Γ =
{x = 0}×(Tn,Tn+1), and an initial guess U0

i,n(x, t), and for k = 0,1,2, . . ., Step I: use
the more accurate evolution operator from (2) and (3) to calculate

uk+1
1,n (x, t) := F1,n(Uk

1,n(x),ω
k
n(t)),

uk+1
2,n (x, t) := F2,n(Uk

2,n(x),u
k+1
1,n (x, t));

Step II: update interface information

ωk+1
n (t) = θuk+1

2,n (0, t)+(1−θ)ωk
n(t);

Step III: update new initial conditions using a parareal step both in space and time
for n = 0,1, . . . ,N −1 by

Uk+1
1,n+1 = uk+1

1,n (·,Tn+1)+G1,n(Uk+1
1,n (x),ωk+1

n (t))−G1,n(Uk
1,n(x),ω

k
n(t)),

Uk+1
2,n+1 = uk+1

2,n (·,Tn+1)+G2,n(Uk+1
2,n (x),Uk+1

1,n+1(x, t))−G2,n(Uk
2,n(x),U

k
1,n+1(x, t)).

(4)
Next we will introduce the parareal Neumann-Neumann waveform relaxation al-

gorithm. Similar, we first introduce two propagators FDi,n(U(x),h(t)) and GDi,n(U(x),h(t))
to solve the following Dirichlet problem in Ωi,n

∂ui,n

∂ t
=

∂ 2ui,n

∂x2 + f (x, t), (x, t) ∈ Ωi,n,

ui,n(x, t) = g(x, t), x ∈ ∂Ω ∩Ωi, t ∈ (Tn,Tn+1),

ui,n(0, t) = h(t), t ∈ (Tn,Tn+1),

ui,n(x,Tn) =U(x), x ∈ Ωi,

(5)

and two propagators FNi,n(u1,n(x, t),u2,n(x, t)) and GNi,n(u1,n(x, t),u2,n(x, t)), i =
1,2 to solve the following Neumann problem in Ωi,n

∂Ψi,n

∂ t
=

∂ 2Ψi,n

∂x2 , (x, t) ∈ Ωi,n,

Ψi,n(x, t) = 0, x ∈ ∂Ω ∩Ωi, t ∈ (Tn,Tn+1),

∂niΨi,n(0, t) = ∑
j

∂n j u j,n(0, t), x ∈ Γ , t ∈ (Tn,Tn+1),

Ψi,n(x,Tn) = 0, x ∈ Ωi,

(6)
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using an accurate approximation and a rough approximation.
Therefore the parareal Neumann-Neumann waveform relaxation algorithm for

the model problem (1) consists of the following steps: Given an initial guess h0
n(t)

along the interface Γ = {x = 0}× (Tn,Tn+1), and an initial guess U0
i,n(x, t), and for

k = 0,1,2, . . ., Step I: use the more accurate evolution operator from (5) to calculate
the Dirichlet problem

uk+1
i,n (x, t) := FDi,n(Uk

i,n(x),h
k
n(t)), i = 1,2;

Step II: use the more accurate evolution operator from (6) to calculate the Neumann
problem

Ψ k+1
i,n (x, t) := FNi,n(uk+1

1,n (x, t),uk+1
2,n (x, t))), i = 1,2;

Step III: update interface information

hk+1
n (t) = hk

n(t)−θ(Ψ k+1
1,n (0, t)+Ψ k+1

2,n (0, t));

Step IV: update the new initial conditions using a parareal step both in space and
time for n = 0,1, . . . ,N −1 by

Uk+1
1,n+1 = uk+1

1,n (·,Tn+1)+GD1,n(Uk+1
1,n (x),hk+1

n (t))−GD1,n(Uk
1,n(x),h

k
n(t)),

Uk+1
2,n+1 = uk+1

2,n (·,Tn+1)+GD2,n(Uk+1
2,n (x),hk+1

n (t))−GD2,n(Uk
2,n(x),h

k
n(t)).

(7)

Different from regular DNWR/NNWR and using parareal to solve the subprob-
lems, our new methods are in parallel both in space and time, and there is no order
between DNWR/NNWR and parareal. Meanwhile, we don’t need to using parareal
to achieve the convergence for each subproblem for each DNWR/NNWR iteration.

Theorem 1 (Convergence for parareal DNWR). Assuming that the F-propagator
is an exact solver and G-propagator is chosen as backward Euler method, if a = b,
then θ = 1/2 is the optimal parameter and fixed T > 0, and the parareal DNWR
algorithm is convergent in finite steps; if a ̸= b, for θ = 1/2 and fixed T > 0, the
parareal DNWR algorithm is convergent.

Theorem 2 (Convergence for parareal NNWR). Assuming that the F-propagator
is an exact solver and G-propagator is chosen as backward Euler method, if a = b,
then θ = 1/4 is the optimal parameter and fixed T > 0, and the parareal DNWR
algorithm is convergent in finite steps; if a ̸= b, for θ = 1/4 and and fixed T > 0,
the parareal DNWR algorithm is convergent

Proof. The first parts of both theorems can be directly obtained by the convergence
results of parareal in [9], and DNWR and NNWR in [6]; and the proves of the
second parts are technical and will in [14], a detailed numerical study of how the
algorithm depends on the various parameters in Section 3.
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Fig. 2 Convergence of parareal DNWR for various values of the parameter θ with T = 2 and
∆T = 1/5 for a = b = 3 on the left and a = 2, b = 3 on the right.

3 Numerical experiments

The numerical experiments in this section were performed for the model problem (1)
on the domain (−a,b)× (0,T ) with f = 0, u0(x) = x(x+1)(x+3)(x−2)exp(−x),
g(−a, t) = t and g(b, t) = t exp(t). The diffusion problem is discretized using a cen-
tered finite differences with mesh size h = ∆x = 2× 10−2 in space and backward
Euler with ∆ t = 4× 10−3 in time. The domain is decomposed into the space-time
subdomains Ωi,n as described in Section 2. We test the algorithms by choosing
h0

n(t) = t2, t ∈ (Tn,Tn+1) as an initial guess.
We first test the parareal DNWR algorithm. Figure 2 shows the convergence be-

havior for different values of θ with T = 2 and ∆T = 1/5 for the case a = b = 3
on the left, and for the case a = 2, b = 3 on the right. Note that θ = 1/2 is the best
parameter in both cases as sated in Theorem 1, and the performance of the parareal
DNWR algorithm is similar when compared to the parareal algorithm, especially
when chose the parameter θ = 1/2. Then we show the convergence behavior for the
best parameters θ = 1/2 for different numbers of the time subintervals N with T = 2
for both cases in Figure 3, and for different time window length T with ∆T = 1/5
in Figure 4. We observe that the convergence of the parareal DNWR slows down
when the number of time intervals N is increased and time interval T is increased,
which is similar to the performance of the parareal algorithm; see [9].

For the parareal DNWR algorithm, Figure 5 shows the convergence behavior for
different values of θ with T = 2 and ∆T = 1/5 for the case a= b= 3 on the left, and
for the case a = 2, b = 3 on the right. Note that θ = 1/4 is the best parameter in both
cases. Then we show the convergence behavior for the best parameters θ = 1/4 for
different numbers of the time subintervals N with T = 2 for both cases in Figure 6,
and for different time window length T with ∆T = 1/5 in Figure 7. We observe that
parareal NNWR also has the similar perfomance as that of the parareal algorithm
and parareal DNWR. However, compared to parareal DNWR, the parareal NNWR
needs almost double numbers of iterations to achieve convergence in the same cases.
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Fig. 3 Convergence of parareal DNWR for various values of the number of time subintervals N
with T = 2 and θ = 1/2 for a = b = 3 on the left and a = 2, b = 3 on the right.
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Fig. 4 Convergence of parareal DNWR for various values of the time window length T with ∆T =
1/5 and θ = 1/2 for a = b = 3 on the left and a = 2, b = 3 on the right.

4 Conclusions

We introduced the parareal DNWR and parareal NNWR algorithms for the heat
equation, and provide their convergence properties for the two subdomain decom-
position in one spatial dimension case. We showed that the convergence can be
achieved in a finite number of iterations when choosing a proper relaxation param-
eter as chose for the DNWR and NNWR algorithms. Numerical results illustrate
our analysis, which also indicate that the performance of parareal DNWR is better
than that of parareal NNWR. We will further find the possible way to improve the
performance parareal NNWR.
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