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Abstract Adaptive FETI-DP and BDDC methods are robust methods that can be
used for highly heterogeneous problems when standard approaches fail. In these
approaches, local generalized eigenvalue problems are solved approximately, and
the eigenvectors are used to enhance the coarse problem. Here, a few iterations of an
approximate eigensolver are usually sufficient. Different preconditioning options for
the iterative LOBPCG eigenvalue problem solver are considered. Numerical results
are presented for linear elasticity problems with heterogeneous coefficients.

1 Introduction

Adaptive coarse spaces for FETI-DP or BDDC methods make use of locally com-
puted (approximate) eigenvectors to enhance the coarse problem for faster Krylov
convergence; for different approaches to domain decomposition methods with adap-
tive coarse spaces, see, e.g., [13, 5, 3, 17, 10, 6, 2, 14, 1, 15]. Of course, the solution
of the corresponding local generalized eigenvalue problems in all these approaches
adds a certain computational overhead to the setup of the method which then needs
to be amortized in the iteration phase. It has been observed that an approximation
of the eigenvectors already yields good convergence behavior; see [7]. In this paper,
we consider different types of preconditioners for the iterative eigensolvers to obtain
good approximate eigenvectors in a few steps.

We will give numerical results for the adaptive method of [8] for the equations
of linear elasticity on a bounded polyhedral domain Ω ⊂ R3, i.e., we search for
u ∈ {v ∈ H1(Ω)d : v = 0 on ∂ΩD} such that
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Ω

2µε(u) : ε(v)dx+
∫

Ω

λdiv(u)div(v)dx =
∫

Ω

f · vdx+
∫

∂ΩN

g · vds. (1)

Here, ∂ΩD ⊂ ∂Ω is a subset with positive surface measure where Dirichlet bound-
ary conditions are prescribed. Moreover, ∂ΩN := ∂Ω \∂ΩD is the Neumann bound-
ary, and λ ,µ are the Lamé constants.

2 FETI-DP with a Generalized Transformation of Basis

For an introduction of FETI-DP; see, e.g., [4, 18]. Given a polyhedral domain Ω ⊂
R3, we subdivide Ω into N nonoverlapping subdomains Ω1, . . . ,ΩN such that Ω =⋃N

i=1 Ω i. The FETI-DP system is given by Fλ = d, where

F = BBK−1
BB BT

B +BBK−1
BB K̃T

ΠBS̃−1
ΠΠ

K̃ΠBK−1
BB BT

B = BΓ S̃−1BT
Γ .

Here, S̃ΠΠ constitutes the a priori coarse space where all vertex variables are chosen
to be primal.

We then use the generalized transformation-of-basis approach, as presented in
[9] and applied to the adaptive context in [8], to enforce additional, adaptively com-
puted constraints, which we also denote as a posteriori constraints. The idea of the
transformation-of-basis approach is to make a constraint vector c corresponding to
a (generally local) constraint on the displacements u, i.e., cT u = 0 an explicit basis
vector and enforce the constraint by partial subassembly at the degree of freedom
where the new basis vector is introduced. Given these (orthogonal) transformations
T (i), i = 1, . . . ,N, we therefore solve systems with transformed stiffness matrices
K(i)

= T (i)T K(i)T (i), transformed displacements u(i) = T (i)T u(i), and transformed
right hand sides f (i) = T (i)T f (i), i = 1, . . . ,N. In the standard approach, constraints
in the jump operator B corresponding to these a posteriori primal constraints are
removed. In the generalized approach, we do not remove these rows but assem-
ble the a posteriori primal variables and directly redistribute the continuous values
subsequently to all connected subdomains. That means, in contrast to the standard
transformation-of-basis approach, we also allow for scalings of a posteriori primal
variables, e.g., obtained from the adaptive approach in the next section. For more
details, see [9, 8].

3 Adaptive FETI-DP with a Generalized Transformation of Basis

3.1 Generalized Local Eigenvalue Problems and Constraints for a
Transformation of Basis

We now present briefly the adaptive approach introduced in [7, 8]. Given a domain
decomposition Ω =

⋃N
i=1 Ω i, we define as an edge E il the interior of ∂Ωi∩ ∂Ω j ∩
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∂Ωl , i.e., excluding the end points, and as a face F i j the interior of ∂Ωi ∩ ∂Ω j.
Subsequently, we will use the index s ∈ { j, l} to describe eigenvalue problems and
their operators defined on faces (s = j) and edges (s = l), respectively. Let us note
that eigenvalue problems on faces are defined on the closure of the face.

Let Z be either a face or an edge shared by two subdomains Ωi and Ωs. We
introduce B

Z
is = [B(i)

Z
isB

(s)

Z
is ] consisting of all the rows of [B(i)B(s)] that contain

exactly one +1 and one −1. Analogously, we introduce the scaled jump operator
B

D,Z
is = [B(i)

D,Z
is B

(s)

D,Z
is ] as the submatrix of [B(i)

D B(s)
D ]. We need the local operators

Sis := blockdiag(S(i),S(s)) and P
D,Z

is := BT
D,Z

isBZ
is .

We now want to solve generalized eigenvalue problems on a subspace where Sis
is positive definite since Sis is in general only semidefinite. We therefore study the
problem of finding wk

is ∈ (kerSis)
⊥ with µk

is ≥ TOL, such that

sis(PD,Z
isvis,PD,Z

iswk
is) = µ

k
issis(vis,wk

is) ∀vis ∈ (kerSis)
⊥. (2)

There, sis(·, ·) := (·,Sis·) for uis× vis with uis,vis ∈Wi×Ws and Wi, Ws are the local
finite element spaces on Ωi and Ωs. In practice, this is achieved by implementing
projections Πis and Π is and making the computation numerically stable; cf. [13].

The constraint vectors qk
is := PT

D,Z
isSisPD,Z

iswk
is computed from the eigenvalue

problems are either defined on edges or on closed faces. The constraints on closed
faces are then split into (additional) edge constraints and constraints on the open
face. This also enables an edge by edge and face by face orthogonalization.

In our approach, an edge constraint resulting from the eigenvalue problem of two
subdomains sharing this edge will always be enforced for all subdomains sharing
this edge. This does not increase the size of the coarse problem.

All the adaptive constraints are stored in an (orthogonalized) transformation ma-
trix T which is block diagonal with respect to the subdomains and with respect to
blocks corresponding to the faces and edges. The operator RT performs the finite
element assembly in the a posteriori primal variables, i.e., in all degrees of freedom
which belong to an adaptively computed new basis vector. The transposed operator
R then redistributes the values to the individual subdomains. We define the operator
RT

µ := (RT R)−1RT . For more details, see [9, 8].
In contrast to the standard transformation-of-basis approach, we use the same

jump operator B as in the original FETI-DP master system. As a result, as in defla-
tion, the preconditioned system has at least one zero eigenvalue for each adaptively
computed constraint, i.e., for the a posteriori constraints.

The adaptive FETI-DP system using a generalized transformation of basis writes

M̂−1
T F̂λ := (B̂D

̂̃SB̂T
D) (B̂

̂̃S−1
B̂T )λ

:= (BDT Rµ(RT T T S̃T R)RT
µ T T BT

D)(BT R(RT T T S̃T R)−1RT T T BT )λ = d,
(3)
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where F̂ is the transformed FETI-DP operator and M̂−1
T is the transformed Dirichlet

preconditioner. For this system, we now give, without proof, the condition number
bound. For more details, see [8].

Theorem 1. Let NF denote the maximum number of faces of a subdomain, NE the
maximum number of edges of a subdomain, ME the maximum multiplicity of an edge
and TOL a given tolerance for solving the local generalized eigenvalue problems. If
all vertices are chosen to be primal, the condition number κ(M̂−1

T F̂) of the FETI-DP
algorithm with adaptive constraints enforced by the generalized transformation-of-
basis approach satisfies

κ(M̂−1
T F̂)≤ 4max{NF ,NE ME }2TOL.

3.2 Solving the Local Generalized Eigenvalue Problems

Adaptive methods are most suitable for hard problems that are not solvable by
standard techniques, e.g., as a result of strong heterogeneities present in the prob-
lem. However, as a result of these heterogeneities the local generalized eigenvalue
problems can also be expected to be ill-conditioned, and unpreconditioned itera-
tive eigensolvers may also struggle; see, e.g., [16]. As in [16], we use the iterative
LOBPCG eigenvalue problem solver; see [12]. In practice, when using two projec-
tions Πis and Π is to remove the rigid body modes from Sis, the right hand side of
the eigenvalue problems writes

Π is(ΠisSisΠis +σis(I−Πis))Π is +σis(I−Π is) (4)

where σis is chosen as σis = max(diag(Sis)). The projection I−Π is consists of the
sum of several rank one matrices, and we usually avoid to building the matrix ex-
plicitly. The operator ΠisSisΠis +σis(I−Πis) can be built cheaply by only scaling
a few rows and columns of the Schur complements and adding some constants; see
Figure 1 for the nonzero pattern of Sis and ΠisSisΠis +σis(I−Πis).

We test five different preconditioners for the iterative eigensolver. First, we take
a Cholesky decomposition of the fully assembled right hand side (4) as the (expen-
sive) base line to compare against. We also test an LU and ILU(0) decomposition
of ΠisSisΠis +σis(I−Πis) and use the projection Π is to remove the corresponding
kernel from the preconditioner, i.e., we, e.g., use

Π isLU
(

ΠisSisΠis +σis(I−Πis)
)

Π is,

where LU(·) denotes the computation of the LU decomposition of the argument.
Finally, we also test two different local lumped versions, i.e., an LU and a ILU(0)
decomposition of KΓ Γ ,is = blockdiag(K(i)

Γ Γ
,K(s)

Γ Γ
), so for the LU decomposition, we

implement the preconditioner
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Fig. 1 Representative nonzero pattern of the matrices Sis (left) and Sis−
[
ΠisSisΠis +σis(I−Πis)

]
(center) for two randomly chosen subdomains Ωi, Ωs. Composite material with irregular decom-
position (right; visualization for N = 27 and 1/h = 10N1/3). In the right picture, large coefficients
E2 = 1e+ 06 are shown in dark purple in the picture and low coefficients are not shown; subdo-
mains are shown in different colors in the background and by half-transparent slices.

Π isΠisLU
(

KΓ Γ ,is

)
ΠisΠ is.

3.3 Heuristic Modifications

As in [7], we will introduce two heuristic variants (denoted Algorithm Ib and Ic).
The original algorithm is denoted Algorithm Ia.

Algorithm Ib: Reducing the number of edge eigenvalue problems We dis-
card edge eigenvalue problems for edges that do not have high coefficient jumps in
their neighborhood of one finite element.

Algorithm Ic: Reducing the number of edge constraints In addition, we also
discard all edge constraints from face eigenvalue problems if there are no coefficient
jumps in the neighborhood of the edge.

The condition number bound derived for Algorithm Ia will, in general, not hold
for the two variants, however, it is likely that a modified theory, using slab tech-
niques as in [10], can be derived for Algorithm Ib.

4 Numerical Results

We present numerical results for Algorithms Ia, Ib, and Ic. We have a soft matrix
material with E1 = 1 with 4N2/3 stiff beams with E2 = 1e+ 06; see Fig. 1. We
consider Ω = [0,1]3 with Dirichlet boundary conditions for the face with x = 0
and zero Neumann boundary conditions elsewhere; we have f = [0.1,0.1,0.1]T and
E(x) ∈ {1,1e + 6}. For the domain decomposition, the METIS graph partitioner
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with options -ncommon=3 and -contig is used. Each local eigenvalue problem
is solved using LOBPCG with a block size 10, a given number of maximum iter-
ations from {5,25,100}, and a preconditioner; see Section 3.2. Our a priori coarse
space uses at least three primal vertices on each edge in order to remove local hinge
modes; see [13, 7]. We also set edge nodes primal that belong to an single noded
edges. The corresponding edge eigenvalue problem becomes superfluous. We as-
sume the Young modulus E(x) to be constant on each finite element, and we use
ρ-scaling in the form of patch-ρ-scaling. The coefficient (E(x∗)) at a node x∗ will
be set as the maximum coefficient on the support of the corresponding nodal basis
function ϕx∗ ; cf. [11]. In the tables, “κ” denotes the condition number of the adap-
tively preconditioned FETI-DP operator, “its” the number pcg iterations, “|Π ′|” the
size of the initial vertex coarse space and “|Π |” the size of the corresponding a pos-
teriori coarse space; the number of subdomains is “N”. The pcg algorithm is stopped
after a relative reduction of the starting residual by 10−10 or when 500 iterations are
reached.

5 Conclusion

We have presented results for different preconditioniers of the local generalized
eigenvalue problems. Obviously, the most expensive algorithm, the Cholesky de-
composition of the assembled right hand side of the eigenvalue problem yields the
best results with respect to the condition numbers and the iteration counts of the
FETI-DP algorithm. In this case, only a few iterations (e.g., 1-5) of the LOBPCG
solver are sufficient; cf. also our results in [7, 8]. However, an LU or ILU(0)-
factorization of ΠisSisΠis +σis(I−Πis) with a few more iterations can suffice. To
choose an LU or ILU decomposition of ΠisSisΠis + σis(I −Πis) is a reasonable
choice since this matrix can be built easily but just manipulating a few rows and
columns of Sis; see Figure 1. Note that the slight differences in the condition num-
bers and iteration counts result from a small difference in the coarse space size. The
results for the lumped preconditioner, an LU or ILU decomposition of KΓ Γ ,is are
given for completeness and to show that the results were not as satisfactory as ex-
pected. Eventually, note from [8] that also too many iterations (e.g., 200) of the local
solver might not be helpful if the local scheme diverges without notice. A heuristic
strategy for an (almost) optimal a priori choice of the maximum LOBPCG iteration
number is still under development.
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Local Preconditioner: Chol
(
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)

.
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25 3.84 18 1926 3.84 18 1926 3.84 20 660
100 3.84 18 1938 3.84 18 1938 3.85 21 666

43 351 5 471.97 62 5074 471.97 62 5074 521.66 67 1647
25 54.34 30 5259 54.34 30 5259 90.89 33 1830
100 56.50 30 5328 56.50 30 5328 99.32 32 1884

Local Preconditioner: Π isILU(0)
(

ΠisSisΠis +σis(I−Πis
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25 3.26e+04 500 462 3.26e+04 500 462 8.40e+04 500 111
100 197.47 108 324 197.47 108 324 200.09 110 75

43 351 5 1.06e+06 500 0 1.06e+06 500 0 1.06e+06 500 0
25 4.56e+04 500 1236 4.56e+04 500 1236 8.51e+04 500 282
100 2.54e+04 316 978 2.54e+04 316 978 6.15e+04 329 222

Table 1 Compressible linear elasticity on an irregular decomposition of Ω = [0,1]3 with N sub-
domains, 1/h = 10N1/3 and composite material with Young’s modulus E1 = 1 and E2 = 1e+06.
Coarse spaces for TOL = 10 for all generalized eigenvalue problems.
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16. Bedřich Sousedı́k. Adaptive-Multilevel BDDC. PhD thesis, University of Colorado Denver,
2010.

17. Nicole Spillane and Daniel J. Rixen. Automatic spectral coarse spaces for robust finite ele-
ment tearing and interconnecting and balanced domain decomposition algorithms. Internat. J.
Numer. Methods Engrg., 95(11):953–990, 2013.

18. Andrea Toselli and Olof B. Widlund. Domain Decomposition Methods - Algorithms and
Theory, volume 34 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin
Heidelberg New York, 2005.


