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1 Introduction

Traditionally, domain decomposition methods use sparse direct solvers as building
blocks, i.e., to solve local subdomain problems and/or the coarse problem. Often,
the sparse direct solvers can be replaced by spectrally equivalent preconditioners
without loss of convergence speed. In FETI-DP and BDDC domain decomposition
methods, such approaches have first been introduced in [9, 8, 4], and have since then
successfully been used in large parallel codes [6, 1].

2 An Inexact BDDC Method

2.1 A BDDC Preconditioner for the Assembled System

Let us briefly describe the BDDC preconditioner which can directly be applied to a
linear system

Au = b (1)

arising from a finite element discretization of a partial differential equation on a
computational domain Ω ⊂Rd , d = 2,3. The variant discussed here was first intro-
duced in [9]. Let Ωi, i = 1, . . . ,N, be a nonoverlapping domain decomposition of
Ω such that Ω =

⋃N
i=1 Ω i. Each subdomain Ωi is discretized using finite elements,
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the corresponding local finite element spaces are denoted by Wi, i = 1, . . . ,N, and
the product space is defined by W =W1× . . .×WN . Let us also introduce the global
finite element space V h corresponding to the discretization of Ω and a restriction
R : V h→W . We obtain local problems in the spaces Wi

Kiui = fi, i = 1, · · · ,N.

Introducing the block operators

K =

K1
. . .

KN

 , f =

 f1
...
fN

 ,

we can write A := RT KR and b := RT f . Finally, the interface between the subdo-
mains is Γ :=

⋃N
i=1 ∂Ωi \∂Ω . Let us assume that the degrees of freedom (d.o.f.) on

the Dirichlet boundary ∂ΩD ⊂ ∂Ω are eliminated.
We use the index Γ for degrees of freedom on Γ . For degrees of freedom in the

interior of the subdomains and on the Neumann boundary ∂ΩN ⊂ ∂Ω , we use the
index I. For the construction of a BDDC preconditioner directly applicable to the
assembled linear system Au = b, we subdivide, as usual in BDDC and FETI-DP
methods, the interface Γ into primal (Π ) and the remaining dual (∆ ) degrees of
freedom. As primal variables usually subdomain vertices or averages over edges or
faces are chosen.

Let us introduce the space W̃ ⊂W of functions, which are continuous in all primal
variables and the restriction operator R̄ : W̃ →W . We can now define a partially
assembled system matrix

K̃ := R̄T KR̄ (2)

and the corresponding right hand side f̃ := R̄T f . Using a scaled restriction operator
R̃D : V h→ W̃ , we define the BDDC preconditioner by

M−1
BDDC :=

(
R̃T

D−H PD

)
K̃−1

(
R̃D−PT

D H T
)

; (3)

see [9]. Here, H : W̃ →V h is a discrete harmonic extension operator defined by

H :=
(

0 −(KII)
−1 K̃T

Γ I
0 0

)
, (4)

where KII and K̃Γ I are blocks of the partially assembled stiffness matrix

K̃ =

(
KII K̃T

Γ I
K̃Γ I K̃Γ Γ

)
, (5)

which are common to both, BDDC and FETI-DP methods. The matrix KII is block-
diagonal and applications of K−1

II only require local solves on the interior parts of
the subdomains and are thus easily parallelizable.
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Finally, let PD : W̃ → W̃ be a scaled jump operator defined by

PD = I−ED := I− R̃R̃T
D. (6)

In the FETI-DP literature this operator is often defined as PD = BT
DB; see [12, Chap-

ter 6] and [9] for more details. There, B is the standard jump matrix used in FETI-
type methods. Let us remark that the preconditioned system M−1

BDDCA has, except for
some eigenvalues equal to 0 and 1, the same spectrum as the standard BDDC pre-
conditioner formulated on the Schur complement; see [9, Theorem 1]. Therefore,
under sufficient assumptions (see [9, Assumption 1]), the condition number of the
preconditioned system is bounded by

κ(M−1
BDDCA)≤Φ(H,h). (7)

For a homogeneous linear elasticity problem, if appropriate primal constraints are
chosen, we obtain the well known BDDC (and FETI-DP) condition number bound
with Φ(H,h) = C(1+ log(H/h))2. Here, H always denotes the maximal diameter
of all subdomains and h the minimal diameter of all finite elements.

2.2 Using Inexact Solvers and Implementation Remarks

In this paragraph, we describe the use of inexact solvers in the preconditioner M−1
BDDC

as suggested in [9] and also provide some remarks on our implementation. We as-
sume that K̂−1 and K̂−1

II are spectrally equivalent preconditioners for K̃ and KII ,
respectively. In this paper, we always choose a fixed number of V-cycles of an
AMG method for solving problems including K̃−1 and K−1

II for those precondi-
tioners. While K̂−1 requires an MPI parallel implementation of an AMG method,
an application of K̂−1

II requires only a sequential AMG, due to the block diagonal
structure of KII . Using K̂−1

II , we define an approximate discrete harmonic extension
Ĥ by

Ĥ :=
(

0 −K̂−1
II K̃T

Γ I
0 0

)
. (8)

We investigate two different variants of the inexact BDDC preconditioner in this
paper, namely

M̂−1
BDDC,1 :=

(
R̃T

D−H PD

)
K̂−1

(
R̃D−PT

D H T
)

(9)

and
M̂−1

BDDC,2 :=
(

R̃T
D−Ĥ PD

)
K̂−1

(
R̃D−PT

D Ĥ T
)
. (10)

Let us remark that in M−1
BDDC,1 the discrete harmonic extension is applied exactly

using a direct solver, while in M−1
BDDC,2 the approximate discrete harmonic extension
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Ĥ is used. Assuming that we have chosen an appropriate K̂, i.e., satisfying

c̃uT K̃u≤ uT K̂u≤ C̃uT K̃u, ∀u ∈ W̃ , (11)

a condition number bound of the same quality as (7) is valid,

κ(M−1
BDDC,2A)≤ C̃C

c̃
(1+Φ(H,h));

see [9, Theorem 4]).
Our parallel implementation uses C/C++ and PETSc version 3.6.4 [3]. While

the matrix K̃ is an MPI parallel matrix, all other matrices are completely local
to the computational cores. All restrictions and prolongations are performed using
PETSc VecScatter and VecGather operations. More details on the implementation
of the linear BDDC preconditioner can be found in [7], where a parallel imple-
mentation of an nonlinear inexact BDDC method is applied to hyperelasticity and
elasto-plasticity problems.

2.3 The GM (Global Matrix) Interpolation

Good constants c̃,C̃ in equation (11) are important for fast convergence. It is well
known, that for scalability of multigrid methods the preconditioner should preserve
nullspace or near-nullspace vectors of the operator. This is especially important for
K̃. It is a bit less important for the blocks K(i)

II in KII , where a large portion of the
boundary has Dirichlet data. In this latter case, standard methods can also work well.

Since the AMG method should preserve the nullspace of the operator on all lev-
els, these nullspace vectors have to be in the range of the AMG interpolation. While
classical AMG guarantees this property only for constant vectors, the global matrix
approach (GM), introduced in [2], allows the user to specify certain near-nullspace
vectors, which are interpolated exactly from the coarsest to the finest level; details
on the method and its scalability can be found in [10, 2]. Since we are interested in
linear elasticity problems, we choose the rotations of the body in W̃ for the exact in-
terpolation. All translations of the body are already interpolated exactly in classical
AMG approaches for systems of PDEs since they use classical interpolation applied
component-by-component. We partially assemble the rotations of the subdomains
Ωi in the primal variables. In our implementation, we always use BoomerAMG
from the hypre package [5], where a highly scalable implementation of the GM2
approach is integrated; see [2]. We will compare the use of the GM2 approach with
a hybrid AMG approach for systems of PDEs. By hybrid AMG approaches, we refer
to methods, where the coarsening is based on the physical nodes (nodal coarsening)
but the interpolation is based on the unknowns. In general, a nodal coarsening ap-
proach is beneficial for the solution of systems of PDEs, and all degrees of freedom
belonging to the same physical node are either all coarse or fine on a certain level.
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The latter fact is also mandatory for the GM approach. Therefore, GM is based on
the same nodal coarsening and can also be considered as a hybrid approach.

3 Numerical Results

As model problems, we choose linear elasticity problems in two and in three dimen-
sions. In two dimensions, we consider a beam Ω = [0,8]×[0,1] with a homogeneous
Dirichlet boundary condition on the left; see also Fig. 1. A constant volume force is
applied in y-direction and the material is chosen to be homogeneous with E = 210
and ν = 0.3.

Fig. 1 Beam problem in two dimensions; exemplary decomposition in 32 subdomains depicted.

We first provide a comparison of the preconditioners M−1
BDDC,1 and M−1

BDDC,2 using
a hybrid AMG approach or the GM2 approach for K̂, respectively; see Fig. 2 for
the results. Let us remark that we always use the standard hybrid approach for the
approximation of the discrete harmonic extension Ĥ in the case of M−1

BDDC,2, since
this appears to be sufficient so far; also see the remark above on the large Dirichlet
boundary. We always use an HMIS coarsening, extended + i interpolation, and a
threshold of 0.375 for the detection of strong coupling. The interpolation operators
of the AMG method are truncated to a maximum of Pmax entries per row, to keep the
operator complexity low and to obtain sufficient weak scalability. We always choose
Pmax such that the operator complexity of the hybrid approach and GM2 approach
are similar, to provide a fair comparison. We always use preconditioned GMRES
with a relative stopping criteria of 10−8.

In Fig. 2, we present results for the two dimensional beam which is decomposed
into 512 subdomains. We increase the problem size by increasing the subdomain
size. As primal constraints, we only consider subdomain vertices. We use piecewise
quadratic finite elements and thus, the smallest problem carries 882 and the largest
problem 136K degrees of freedom per subdomain. We always use one MPI rank per
subdomain but use two MPI ranks for each core of the JUQUEEN BlueGene/Q at
Forschungszentrum Jülich, Germany, to make use of the hardware threads. There-
fore, we have 500 MB of memory available for each subdomain. Using direct solvers
for the discrete harmonic extension (i.e., M−1

BDDC,1), we always have slightly lower
GMRES iteration counts and faster runtimes compared to M−1

BDDC,2, but M−1
BDDC,2

is more memory efficient. The largest problem, which can be solved with M−1
BDDC,1
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carries 81K d.o.f. per subdomain (H/h = 100), while M−1
BDDC,2 can handle problems

twice as large, with 136K d.o.f. per subdomain (H/h = 130).
As expected, BDDC using the GM2 approach clearly outperforms the hybrid

approach. While the iteration count grows with H/h for the hybrid approach, it stays
nearly constant for the GM2 approach. For the problem with H/h = 120, M−1

BDDC,2

with GM2 is six times faster than M−1
BDDC,2 combined with the hybrid approach,

and for H/h = 130, M−1
BDDC,2 with the hybrid approach does not fit in the memory.

Choosing Pmax = 2 solves this problem, but the number of iterations is even higher.

Fig. 2 Comparison for growing H/h and 512 subdomains of the different preconditioners M−1
BDDC,1

using direct solvers (UMFPACK) for the discrete harmonic extension and M−1
BDDC,2 using an inexact

discrete harmonic extension. Both variants are equipped with hybrid AMG (marked with an H)
or GM2, respectively. pmax denotes the truncation of the interpolation matrices. Left: GMRES
iterations. Right: Time to solution. Computation performed on JUQUEEN BlueGene/Q at FZ
Jülich, Gemany.

We also present a weak scaling study for the best performing combination of
M−1

BDDC,2 and the GM2 approach using H/h = 80 and H/h = 100; see Fig. 3. While
a radical truncation of Pmax = 2 works fine for up to 8192 subdomains, Pmax = 4 is
necessary for the larger configurations. All in all, the parallel efficiency of 91% on
131K MPI ranks and 65K cores and a total problem size of 10 billion degrees of
freedom is satisfying.

Finally, we present a weak scaling study in three dimensions. We again consider a
linear elastic material and deform a heterogeneous cube. We have a single spherical
stiff inclusion (E = 21000, nu = 0.3) in each subdomain. The remaining material
is softer with E = 210, nu = 0.3. This time, we choose piecewise linear finite ele-
ments, H/h = 20, and, as primal constraints, we enforce continuity in all subdomain
vertices and in the midpoints of all edges. We use the same AMG settings as before.
In Fig. 4, we again observe a sufficient weak scaling behavior using M−1

BDDC,2 with
the GM2 approach, while the hybrid approach cannot deliver satisfying convergence
behavior, since it cannot fulfill (11) with good bounds.
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Fig. 3 Weak scalability for H/h = 80 and H/h = 100 and different truncations pmax. Setup de-
notes the BDDC setup time, including all AMG setup times and Solve the time spent in the GMRES
iteration. Computation performed on JUQUEEN BlueGene/Q at FZ Jülich, Gemany.

Fig. 4 Heterogeneous and linear elastic material in three dimensions; H/h = 20. See Fig. 2 for
the remaining notation. Good scalability is achieved using the GM2 interpolation. Computation
performed on JUQUEEN BlueGene/Q at FZ Jülich, Gemany.

4 Conclusion

We have shown that a classical AMG approach based on nodal coarsening for sys-
tems of PDEs is not sufficient as a preconditioner of the partially coupled matrix in
the inexact BDDC approach introduced in Li and Widlund [9], since, for elasticity,
it does not fulfill (11) with good bounds. This can be resolved using the GM2 ap-
proach, which preserves the nullspace of the partially assembled stiffness matrix in
the inexact BDDC method [9]. Our results show that the inexact BDDC approach
from [9] using a classical AMG preconditioner with GM2 interpolation is highly
parallel scalable and memory efficient.
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10. John Ruge and Klaus Stüben. Efficient solution of finite difference and finite element equa-
tions by algebraic multigrid (AMG). In J.D. Paddon and H. Holstein, editors, The Institute
of Mathematics and its Applications Conference Series, volume 3, pages 169–212. Clarenden
Press, Oxford, 1985.

11. Michael Stephan and Jutta Docter. JUQUEEN: IBM Blue Gene/Q Supercomputer System at
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