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Abstract We discuss a nonoverlapping additive Schwarz method for an h-p DGFEM
discretization of an elliptic PDE with discontinuous coefficients, where the fine grid
is decomposed into subdomains of size H and the coarse grid consists of cells size
H such that h≤H ≤H . We prove the condition number is O(p2/q) ·O(H 2/Hh)
and is independent from the jumps of the coefficient if the discontinuities are aligned
with the coarse grid.

1 Introduction

Let us consider a second order elliptic equation

−div(ρ∇u) = f , (1)

with homogeneous Dirichlet boundary condition. The problem is discretized by
an h-p symmetric weighted interior penalty discontinuous Galerkin finite element
method. A nonoverlapping additive Schwarz method (see [3], [1]) is applied to pre-
condition the discrete equations. For ρ ≡ 1, Antonietti and Houston [1] conjectured
on the basis of numerical experiments that if the coarse space contains piecewise
polynomial functions up to degree p, the condition number is O(pH /h). This con-
jecture has recently been proved in [5] and independently by Antonietti, Houston
and Smears in [2], using slightly different techniques. In the former paper, a general
framework for the analysis of problems with discontinuous coefficients and varying
polynomial degrees across finite elements has been developed; however, a techni-
cal assumption that the basis functions are continuous inside subdomains was made
when the coefficient was allowed discontinous in Ω . On the other hand, [2] made
use of approximation ideas of [6], allowing for more flexibility in the choice of the
finite element spaces. In this note, we extend the analysis to the case when fully
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discontinuous finite elements are employed, under additional assumption that the
coefficient is constant inside coarse grid cells and an H2–regularity assumption on
(1) holds.

For more flexibility and enhanced parallelism, we formulate our results address-
ing the case when the subdomains (where the local problems are solved in parallel)
are potentially smaller than the coarse grid cells [4]. By allowing small subdomains
of diameter H ≤H , local problems are cheaper to solve and the amount of con-
currency of the method is substantially increased, which can be an advantage e.g.
on multi-threaded processors. Moreover, small subdomains give more flexibility in
assigning them to processors for load balancing in coarse grain parallel processing.
In this way, an additional level of domain partitioning gives the user more parame-
ters to fine tune the actual parallel performance, and thus overall efficiency, of the
preconditioner for a given hardware architecture.

The paper is organized as follows. In Section 2, the differential problem and its
discontinuous Galerkin discretization are formulated. In Section 3, a nonoverlapping
two-level, three-grid additive ASM for solving the discrete problem is designed and
analyzed under assumption that the coarse mesh resolves the discontinuities of the
coefficient, the variation of the mesh size and of the polynomial degree are locally
bounded, and the original problem satisfies some regularity assumption. Section 4
presents some numerical experiments.

For nonnegative scalars x,y, we shall write x. y if there exists a positive constant
C, independent of: x, y, the fine, subdomain and coarse mesh parameters h,H,H ,
the orders of the finite element spaces p, q, and of jumps of the diffusion coefficient
ρ as well, such that x≤Cy. If both x . y and y . x, we shall write x' y.

The norm of a function f from the Sobolev space Hk(S) will be denoted by
|| f ||k,S, while the seminorm of f will be denoted by | f |k,S. For short, the L2-norm of
f will then be denoted by | f |0,S.

2 Differential problem and its h-p discontinuous Galerkin
discretization

Let Ω be a bounded open convex polyhedral domain in Rd , d ∈ {2,3}, with Lips-
chitz boundary ∂Ω . We consider the following problem for given f ∈ L2(Ω) and
ρ ∈ L∞(Ω):

Find U∗ ∈ H1
0 (Ω) such that

a(U∗,v) = ( f ,v)Ω , ∀v ∈ H1
0 (Ω), (2)

where
a(u,v) =

∫
Ω

ρ ∇u ·∇vdx, ( f ,v)Ω =
∫

Ω

f vdx.

We assume that there exist constants α0 and α1 such that 0 < α0 ≤ ρ ≤ α1 a.e.
in Ω so that (2) is well–posed. Without loss of generality we shall additionally
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suppose that α0 ≥ 1 and diam(Ω) = 1, which can always be guaranteed by simple
scaling. We also assume that ρ is piecewise constant, i.e. Ω can be partitioned into
nonoverlapping polyhedral subregions with the property that ρ restricted to any of
these subregions is some positive constant.

Let Th = {K1, . . . ,KNh} denote an affine nonconforming partition of Ω , where Ki
are either triangles in 2-D or tetrahedrons in 3-D. For K ∈Th we set hK = diam(K).
By E in

h we denote the set of all common (internal) faces (edges in 2-D) of elements
in Th, so that e ∈ E in

h iff e = ∂Ki∩∂K j is of positive measure. We will use symbol
Eh to denote the set of all faces (edges in 2-D) of fine mesh Th, that is those either
in E in

h or on the boundary ∂Ω . For e ∈ Eh we set he = diam(e). We assume that
Th is shape- and contact–regular, that is, it admits a matching submesh Tĥ which is
shape–regular and such that for any K ∈Th the ratios of hK to diameters of simplices
in Tĥ covering K are uniformly bounded by an absolute constant. In consequence,
if e = ∂Ki∩∂K j is of positive measure, then he ' hKi ' hK j . We shall refer to Th as
the “fine mesh”. Throughout the paper we will assume that the fine mesh is chosen
in such a way that ρ|K is already constant for all K ∈Th.

We define the finite element space V p
h in which problem (2) is approximated,

V p
h = {v ∈ L2(Ω) : v|K ∈ PpK for K ∈Th} (3)

where PpK denotes the set of polynomials of degree not greater than pK . We shall
assume that 1≤ pK and that polynomial degrees have bounded local variation, that
is, if e = ∂Ki∩∂K j ∈ E in

h , then pKi ' pK j .
Next, we discretize (2) by the symmetric weighted interior penalty discontinuous

Galerkin method, see for example [3], [1]:
Find u∗ ∈V p

h such that

A p
h (u∗, v) = ( f ,v)Ω , ∀v ∈V p

h , (4)

where
A p

h (u, v) = Ap
h(u, v)−F p

h (u, v)−F p
h (v, u)

and

Ap
h(u, v) = ∑

K∈Th

(ρ ∇u,∇v)K + ∑
e∈Eh

〈γ[u], [v]〉e, F p
h (u, v) = ∑

e∈Eh

〈{ρ∇u} , [v]〉e.

Here for K ∈Th and e∈Eh we use standard notation: (u,v)K =
∫

K uvdx and 〈u,v〉e =∫
e uvdσ . On e ∈ E in

h such that e = ∂Ki∩∂K j we set

{ρ∇u}= ρ(∇u|Ki
+∇u|Kj

), [u] = u|Ki
n|Ki

+u|K j
n|Kj

,

with

ρ =
ρ|Ki

ρ|K j

ρ|Ki
+ρ|Kj

, h = min{hKi ,hK j}, p = max{pKi , pK j}, γ =
ρ p2

h
δ ,
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where δ > 0 is a prescribed constant. The unit normal vector pointing outward Ki is
denoted by n|Ki

. On e which lies on the boundary of Ω and belongs to a face of Ki,
we set {ρ∇u}= ρ|Ki

∇u|Ki
, [u] = u|Ki

n|Ki
and γ = ρ|Ki

pKiδ/hKi .
For sufficiently large penalty constant δ the discrete problem (4) is well–defined,

therefore we can define a norm |||u|||
Ω

by the identity |||u|||2
Ω
= Ap

h(u, u).

3 Nonoverlapping two-level, three-grid additive Schwarz method

Let us introduce the subdomain grid TH as a partition of Ω into NH disjoint open
polygons (polyhedrons in 3-D) Ωi, i = 1, . . . ,NH , such that Ω̄ =

⋃
i=1,...,NH

Ω̄i and
that each Ωi is a union of certain elements from the fine mesh Th. We shall retain
the common notion of “subdomains” while referring to elements of TH . We set
Hi = diam(Ωi) and H = (H1, . . . ,HNH ). We assume that there exists a reference
simply-connected polygonal (polyhedral in 3-D) domain Ω̂ ⊂ Rd with Lipschitz
boundary, such that every Ωi is affinely homeomorphic to Ω̂ and the aspect ratios
of Ωi are bounded independently of h and H. Moreover, we assume that the number
of neighboring regions in TH is uniformly bounded by an absolute constant N .

Next, let TH be a shape-regular affine triangulation by triangles in 2-D or
tetrahedrons in 3-D, with diameter H . We denote the elements of TH by Dn,
n = 1, . . . ,NH . We shall call this partition the “coarse grid” and assume:

ρ|Dn
= ρn is a constant for each Dn ∈TH .

We clearly have NH ≤ NH ≤ Nh and TH ⊆ TH ⊆ Th (inclusions understood
in the sense of subsequent refinements of the coarsest partitioning), and maxh ≤
maxH ≤ H . We define the additive Schwarz method following [1] and [4], by
introducing the following decomposition of V p

h :

V p
h =V0 +

NH

∑
i=1

Vi, (5)

where the coarse space consists of functions which are polynomials inside each
element of the coarse grid:

V0 = {v ∈V p
h : v|Dn

∈ Pq for all n = 1, . . . ,NH } (6)

where 1≤ q≤min{pK : K ∈Th}. Next, for i = 1, . . . ,NH we define

Vi = {v ∈V p
h : v|Ω j

= 0 for all j 6= i}.

One can view V0 as a rough approximation to V p
h (using coarser grid and lower order

polynomials), cf. condition (9), while Vi can be thought of as V p
h restricted to Ωi, ex-

tended by zero elsewhere. Note that V p
h already is a direct sum of spaces V1, . . . ,NH



Nonoverlapping additive Schwarz for h-p DG FEM 5

and when TH = TH , this decomposition coincides with [1]. Using decomposition
(5) we define, for i = 1, . . . ,NH , subdomain solvers Ti : V p

h →Vi, by

Ap
h(Tiu, v) = A p

h (u, v) ∀v ∈Vi,

so that on each subdomain one has to solve only a relatively small system of linear
equations (a “local problem”) for ui = Tiu|Ωi . These problems are independent one
from another, so can be solved in parallel. The coarse solve operator is T0 : V p

h →V0
defined analogously as Ap

h(T0u, v0) =A p
h (u, v0) for all v0 ∈V0. The preconditioned

operator is

T = T0 +
NH

∑
i=1

Ti. (7)

Obviously, T is symmetric with respect to A p
h (·, ·). For Dn in TH let us define an

auxiliary seminorm

|||u|||2Dn,in = ∑
K∈Th(Dn)

ρ|∇u|20,K + ∑
e∈E in

h (Dn)

γ|[u]|20,e, (8)

where E in
h (Dn) = {e ∈ Eh : e⊂ D̄n \∂Dn}.

Lemma 1 (see [5]). Assume that V0 has the following approximation property:

∀u ∈V p
h ∃u(0) ∈V0 :

NH

∑
n=1

(
ρnq2

H 2 |u−u(0)|20,Dn + |||u−u(0)|||2Dn,in

)
. A p

h (u, u).

(9)

Then the operator T defined in (7) satisfies the inequalities

β
−1A p

h (u, u). A p
h (Tu, u). A p

h (u, u) ∀u ∈V p
h ,

where

β =
H 2

q
max

n=1,...,NH

{
p2

i
hiHi

}
(10)

with hi = min{hK : K ∈Th(Ωi)} and pi = max{pK : K ∈Th(Ωi)}.

Theorem 1. Let us assume that there holds the following H2–stability property: for
every g ∈ L2 the solution z ∈ H1

0 (Ω) of the problem

−div(ρ∇z) = ρg (11)

belongs to H2(Ω) and ∑
NH
n=1 ρn||z||22,Dn

. ∑
NH
n=1 ρn|g|20,Dn

with constant independent
of g. Then cond(T ) = O(β ) where β is as in (10).

Proof. We will show that the assumptions of Lemma 1 are satisfied. The proof will
extend the tools from [2] to the case of discontinuous coefficient; see also [6]. Let
us define the lifting operator R : L2(Eh)→V p

h by
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(ρR(φ),w) = ∑
e∈Eh

〈{ρw} ,φ〉e ∀w ∈V p
h

and the discrete gradient of u ∈V p
h as G(u) = ∇hu−R([u]). Note that

(ρR([u]),R([u]))= ∑
e∈Eh

〈{ρR([u])} , [u]〉e . ∑
e∈Eh

h1/2

p
|ρ1/2R([u])|0,e ·

p

h1/2 |ρ
1/2[u]|0,e,

so by trace inequality (ρR([u]),R([u])) . |ρ1/2R([u])|0,Ω ·∑e∈Eh
〈γ[u], [u]〉e, from

which we conclude stability estimate

|ρ1/2R([u])|20,Ω . ∑
e∈Eh

〈γ[u], [u]〉e ∀u ∈V p
h . (12)

Let U ∈ H1
0 (Ω) solve the problem

(ρ∇U,∇w)
Ω
= (ρG(u),∇w)

Ω
∀w ∈ H1

0 (Ω).

From the definition of U and mentioned above property of the lifting operator R it
directly follows that

|ρ1/2
∇U |0,Ω . |||u|||. (13)

In order to prove (9) we estimate separately

NH

∑
n=1
|||u−u(0)|||2Dn,in .

NH

∑
n=1
|||u−U |||2Dn,in +

NH

∑
n=1
|||U−u(0)|||2Dn,in = I1 + I2

and

NH

∑
n=1

ρn|u−u(0)|20,Dn .
NH

∑
n=1

ρn|u−U |20,Dn +
NH

∑
n=1

ρn|U−u(0)|20,Dn = I3 + I4.

Clearly, I1 . |||u|||2+ |||U |||2 = |||u|||2+ |ρ1/2∇U |20,Ω . |||u|||2 by (13). In order
to bound I3, we use a variant of Aubin–Nitsche trick [2], which is the reason for our
H2–stability assumption. Let us define z ∈ H1

0 (Ω) as in (11) with g = u−U . After
multiplying (11) by (u−U) and integrating by parts on each fine grid element K,
we sum over all K ∈ Th; using the definition of R we arrive after some calculations
at

I3 = |ρ1/2(u−U)|20,Ω = ∑
e∈Eh

〈{ρ∇(zh− z)} , [u]〉e +(ρ∇(z− zh),R([u]))Ω
= I5 + I6

for any zh ∈ V p
h . Applying Schwarz inequality first and then choosing zh as the

approximation to z in V p
h we have, by the approximation property of V p

h (cf. e.g. [2,
eq. (13)],
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I6 .|ρ1/2R([u])|0,Ω · |ρ1/2
∇(z− zh)|0,Ω

. |||u|||( ∑
K∈Th

ρ
h2

K

p2
K
||z||22,K)1/2 . |||u|||H

q
(

NH

∑
n=1

ρn||z||22,Dn)
1/2,

so from H2–stability assumption we conclude that I6 . |||u||| ·
H

q
|ρ1/2(u−U)|0,Ω .

In a similar way we obtain I5 . |||u||| ·
H

q
|ρ1/2(u−U)|0,Ω , whence I3 .

H

q
|||u|||.

Finally, we bound the terms I2 and I4 in a standard way, by choosing u(0) on each
Dn as the q–th order polynomial interpolant of U|Dn

. See [5, Corollary 2] for details.

4 Numerical experiments

The H2–stability requirement in Theorem 1 is quite limiting. As the following ex-
perimental results indicate, the preconditioner works well for checkerboard distri-
bution of the coefficient, so there is room to relax assumptions Theorem 1.

Let us choose Ω = (0,1)2. We divide Ω into NH = 2M × 2M squares Dn
(n = 1, . . . ,NH ) of equal size. Let ρ be constant on a 2×2 grid with checkerboard
distribution: ρ = 1 in “white” squares and ρ = ρR (specified later) in “red” squares.
For simplicity we choose TH = TH , refined into a uniform fine triangulation Th
based on a square 2m×2m grid, with each square split into two triangles of identical
shape. We discretize problem (2) on the fine mesh Th using (4) with equal polyno-
mial degree p across all elements in Th and with δ = 7. For the coarse problem, we
use polynomials of degree q.

We report the number of Preconditioned Conjugate Gradient iterations (with zero
as the initial guess) for operator T , required to reduce the initial norm of the precon-
ditioned residual by a factor of 108 and (in parentheses) the condition number of T
estimated from the PCG convergence history. We set the coefficients of the discrete
solution u∗ as random numbers from uniform distribution and construct f such that
(4) holds.

q → 1 2 3 4 5
ρR ↓
100 90 (166) 72 (96) 64 (70) 57 (56) 54 (47)
108 89 (155) 69 (94) 63 (71) 57 (55) 53 (48)

Table 1 Dependence of the number of iterations and the condition number (in parentheses) on the
contrast ratio ρR and the coarse space polynomial degree q. Fixed p = 6, M = 2, m = 4.

From Table 1 it is clear the converegence rate is independent from the jump of
the coefficient and the improvement of the condition number due to increase of q
is diminishing roughly like O(1/q). Table 2 confirms that the condition number
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p → 2 3 4 5 6
m ↓
3 26 (11) 37 (22) 47 (37) 58 (57) 67 (78)
4 36 (20) 50 (42) 62 (72) 75 (112) 83 (149)
5 48 (38) 65 (79) 81 (140) 98 (219) 113 (303)

Table 2 Dependence of the number of iterations and the condition number (in parentheses) on the
fine mesh size h = 2−m and polynomial degree p. Fixed q = 1, M = 2 and ρR = 104.

M → 2 3 4 5
m ↓
3 47 (37) 38 (20)
4 62 (72) 49 (39) 38 (20)
5 81 (140) 65 (75) 50 (39) 38 (20)

Table 3 Dependence of the number of iterations and the condition number (in parentheses) on
H = H = 2−M and h = 2−m. Fixed p = 4, q = 1, ρR = 104.

dependence on p and h behaves approximately like O(p2/h). For varying h and
H = H, an O(H /h) dependence of the condition number is verified in Table 3.
See [5] for more experimental results.
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