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1 Introduction

The choice of coarse spaces play an important role in the design of fast and
robust Schwarz methods for problems of multiscale nature. Standard meth-
ods with standard coarse spaces have often difficulties to solve such problems,
and even fail to converge due to computing in the finite precision arithmetic.
The purpose of this paper is to propose a robust coarse space, adaptively
enriched, for solving second order elliptic problems in three dimensions with
highly varying coefficients, using the standard finite element for the discretiza-
tion and the overlapping additive Schwarz method as the preconditioner. The
coefficient may have discontinuities both inside and across subdomains. The
convergence of the proposed method, as presented in the paper, is indepen-
dent of the distribution of the coefficient, as well as the jumps in the coef-
ficients, when the coarse space is chosen large enough. For similar works on
domain decomposition methods addressing such problems, we refer to Galvis
and Efendiev (2010), Spillane et al (2014) and the references therein.
Additive Schwarz methods for solving elliptic problems discretized by the
finite element, which was proposed over thirty years ago, have been studied
extensively over the past decades, see Smith et al (1996), Toselli and Wid-
lund (2005) for an overview. It is known in general that if the coefficients are
discontinuous across subdomains but are varying moderately with in each
subdomain, then the standard coarse spaces are enough to generate addi-
tive Schwarz methods which are robust with respect to those jumps, cf. e.g.
Smith et al (1996); Toselli and Widlund (2005). This is however not true in
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the case when the coefficients may be highly varying and discontinuous almost
everywhere, the fact which has in recent years drawn several researchers’ at-
traction, cf. e.g. Chartier et al (2003); Mandel and Sousedik (2007); Klawonn
et al (2015, 2016b,a); Galvis and Efendiev (2010); Efendiev et al (2012a,b);
Nataf et al (2010, 2011); Spillane et al (2014); Dolean et al (2012); Kim and
Chung (2015); Kim et al (2017); Calvo and Widlund (2016).

In the present work, we extend some of the ideas presented in those pa-
pers, and propose to construct a coarse space based on the vertices of the
subdomains and a two fold enrichment of the coarse space, which is done
through solving two specially designed lower dimensional eigenvalue prob-
lems, one on each face common to two neighboring subdomains and one on
each interior edge of the subdomains, and chosing the first few eigenfunctions
corresponding to the bad eigenmodes. The analysis show that the condition
number bound of the resulting system depends only on the threshold used to
choose the bad eigenvalues.

The remainder of the paper is organized as follows: in Section 2 we in-
troduce our differential problem, and its finite element discretization. In Sec-
tion 3 a classical overlapping Additive Schwarz method is presented. Section 4
is devoted to the construction of our adaptive coarse space and Section 5 gives
the theoretical bound for the condition number of the resulting system.

2 Discrete Problem
We consider the following elliptic boundary value problem: Find u* € HE (£2)
/ a(x)Vu Vo dx = / fudz, Vv € HY(£2), (1)
Q Q

where a(x) > ag > 0 is the coefficient, 2 is a polyhedral domain in R?
and f € L?(92). Let T, be the quasi-uniform triangulation of {2 consisting of
closed tetrahedra such that 2 = |J e, K. Let hi denote the diameter of
K, and h = maxge7;, hx the mesh parameter for the triangulation.

We will further assume that « is piecewise constant on 7} without any
loss of generality. We assume that there exists a coarse nonoverlapping par-
titioning of {2 into open connected Lipschitz polytopes (2;, called structures,
such that 2 = U£i1ﬁi and they are aligned with the fine triangulation,
in other words a fine triangle of 7, can be contained in only one of the
coarse substructures. For the simplicity of presentation, we further assume
that these substructures form a coarse triangulation of the domain which is
shape regular in the sense of Brenner and Sung (1999).

Let F;; denote the open face common to subdomains (2; and (2;, and let
& denote an open edge of a substructure, not in 9f2. We denote with (2,
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00y, (2in, 082, Fijn, and &, the sets of vertices of the elements of Ty,
corresponding to §2, 042, 2;, 042;, F;;, and &, respectively

Let S} be the standard linear conforming finite element space defined on
the triangulation 7y,

Sp=5r(2) :={ueCOQNH}2): vk € P, KeET}

The finite element approximation u}, of (1) is then defined as the solution to
the following problem: Find uj € S} such that

a(uy,v) = (f,v), Yve S (2)

Note that a can be scaled without influencing the solution, hence we can
easily assume that o(z) > 1. As Vuj, is piecewise constant over the fine ele-
ments, we can further assume that « is piecewise constants over the elements
of Ty, since [ aVuVv dr = (Vu) g (Vv) ik [ a(z) dz.

Since each subdomain inherits a local triangulation 75, ((2%) from 75, ((2),
two local subspaces can be defined as the following,

Sh(ﬂl) = {ulﬁl U € Sh} and Sh,O(-Qi) = Sh(_Q,L) n Hol(_QZ),

along with a local projection operator P; : S, — S 0(§2;) as the following,
find P;u € Sh0(£2;) such that

a;(Piu,v) = a;(u,v), Vv € Sy o(f2),
where a;(u,v) := ajg, (u,v) = fﬂ,; a(x)VuVo dx.

The discrete harmonic part of u € Sp,($2;) is defined as H;u := u — P;u, or
equivalently as H,u € Sp,(§2;) which satisfies the following,

a;(Hiu,v) =0, Yv € Sy, 0(£2;), 3)
Hiou(s) =u(s), Vs € .

We say that a function u € Sy, is discrete harmonic if it is discrete harmonic
in each subdomain, i.e. ujo, = Hiuo, Vi.

3 Additive Schwarz Method

In this section, we present the overlapping additive Schwarz method for the
discrete problem (2). We refer to Smith et al (1996); Toselli and Widlund
(2005) for a more general discussion of the method.
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Decomposition of Sy,

The space S}, is decomposed into the local subspaces {V;};, and the global
coarse space Vp, as follows.

Vi={ueSy: vix)=0 Yo e 2, \ 2}, i=1,...,N,

where u € V; can take nonzero values at the nodes that are in {2; and on
012; only, giving {V;}; as subspaces with minimal overlap. The global coarse
space V) is defined in Section 4. For ¢ = 0, ..., N, the projection like operators
T;: S, — V; are defined as

a(Tyu,v) = a(u,v), Yv e V. (4)

Now, introducing the additive Schwarz operator as T := Ty + Zivzl T;, the
original problem (2) can be replaced with the following equivalent problem:
Find uj such that

Tujy, = g, ()

where g = Zi\;o g; and g; = T;u. Note that g; may be computed without
knowing the solution u} of (2): a(g;,v) = (f,v) for all v € V.

4 Adaptive vertex coarse space

We introduce our adaptive vertex based coarse space in this section. Each
edge € inherits a 1D triangulation 75, (€) from 7y,. For each edge &y, let Sp,(E)
be the space of traces of functions of S} on the edge, that is the space of
continuous piecewise linear functions on 75 (E), let Sy o(E) = SK(E) N H(€)
be its subspace with compact support, and let the edge bilinear form ag (u, v) :
Sp0(E) x Sp0(E) = R be defined as

ag(u,v) = Z /eaeu'v’ ds, (6)

e€Th(E)

where @, = max.cgx ax is the maximum value of the coefficient over the
tetrahedra sharing the fine edge e € T, (€). Here v/, v’ are the weak deriva-
tives of u,v € Sj, (). The definition of the form ag(u,v), in particular the
definition of @, is introduced in a way which enables us to estimate this form
from above by the sum of energy norms over all subdomains which share this
edge.
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4.1 Vertex based interpolation operator

We introduce the vertex interpolation operator Iy : Sip(2) — Sip(£2) as
follows. For u € Sy (2)

Iyu(x) = u(z) where x is a crosspoint (a subdomain vertex inside (2),
Ivu on each edge € satisfies, cf. (6):

ag(Iyu,v) =0, Vv e S, o(E). (7

Ivu(z) =0 at all z € F;;, for each face Fij,
Iy u is discrete harmonic in the sense as described in Section 2.

Note that Iy u is uniquely determined by the values of u at the crosspoints,
as (7) uniquely determines Iy u at the edge interior nodes, Iy u is equal to
zero at all face interior nodes, and then extended as discrete harmonic to
the subdomain interior nodes, cf. (3). The auxiliary coarse space Vo is then
defined as the image of this interpolation operator Iy, that is Vo i= Im(Iy) =
Iy Sp,. The coarse space Vj is the algebraic sum of VO and a sequence of small
subspaces built with functions that are extensions of certain eigenfunctions
of the two particular classes of eigenvalue problems presented below.

4.2 FEigenvalue problems

We start by introducing the two classes of local eigenvalue problems, one on
the subdomain edges or the edge interfaces, and one on the subdomain faces
or the face interfaces.

Eigenvalue problem on edge interface
Find the eigen pairs (A§,9%) € Ry x S 0(€)
ag (5, v) = Asbe (%, v), Vv € Spo(E), (8)

where ag(u,v) is as defined in (6), and

be(u,v) =h™? ; ot b de, 9)
£

and Gg is a 3D layer around and along the edge £, defined as the sum of
all fine tetrahedra of 7; those touching £ by a fine edge or a vertex, and
4,0 € Sy, are the discrete zero extensions of u,v € S, 0(€). The scaling in the
form be (u,v), and in the form bg;(u,v) in (11) below, comes from an inverse
inequality and the lines of the proof of Theorem 1, which will be provided in a
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full version of this paper published elsewhere. The functions ¢f are extended
inside as follows, taking zero values at the nodal points of all remaining edges
and faces, and then extending further inside as discrete harmonic in the sense
as described in Section 2. The extension is denoted by the same symbol.
Writing the eigenvalues in the increasing order, i.e. 0 < A\§ < \§ < "')‘ih
for Mg = dim(Sy,0(£)), we define the local edge spectral component of the
coarse space as follows. Let Ve = Span(wf);‘il,where ng < Mg is the number
of eigenfunctions z/Jf, whose eigenvalues )\f are less then a given threshold
prescribed for each subdomain by the user.

Eigenvalue problem on face interface

Each face Fy,; inherits a 2D triangulation consisting of triangles T (Fg;), and
a local face finite element space Sj,(Fy;) being the space of traces of S, onto
Fity and Sy o(Fri) = Sh(Fr) N HE(Fri). We introduce F;; as the sum of
closed triangles of 7, (Fk;) such that all their nodes are not in 0F;.

The face eigenvalue problem is then to find the eigen pairs (Afl,w;?l) €
R4 X Sh,0(Fg) such that

akl(wfl,v) = )\]]-:“bkl( ;;171))’ Yv € Sh)o(]:kg), (10)

where

ap(u,v) = Z /QTVu(x)Vv(x), bkl(u,v):hfs/ at b de, (11)

TC]:[,M T G]:kl

and a, = max.cox ax is the maximum value of the coefficient over the
tetrahedra sharing the fine face 7 € T, (F1 1), Gr,, is a 3D layer of tetrahedra
around and along the face Fy;, defined as sum of all fine tetrahedra of T}
those touching Fy; by a fine face, a fine edge or a vertex, and a, v € S} are the
discrete zero extensions of u,v € Sy 0(Fii). The functions 1/)}” are extended
inside as follows, taking zero values at the nodal points of all remaining faces
and edges, and then extending further inside as discrete harmonic in the same
sense as in Section 2. The extension is denoted by the same symbol.

Again, by writing the eigenvalues in the increasing order as 0 < A\ <
ML < )\’fvllm for My = dim(Sh,0(Fki)), we can define the local face spectral

component of the coarse space as follows. Let Vi = Span(wfl)?gl,

where
ng; < My, is the number of eigenfunctions w;?l whose eigenvalues )\?l are less
than a given threshold provided by an user.

Finally, The coarse space V{, after the enrichment takes the following form:

Vo=Vot > Vit > Ve (12)
FuCl' Ecr
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Note that VO = Iy S}, as defined in Section 4.1.

Remark 1. The bilinear forms bg(u,v), cf. (9), and by (u, v), cf. (11), can be
defined in other ways. For instance, we can consider larger layers G¢ or Gr,,,
or even consider nonzero extensions of u € Sp, () and u € Sp, o(F), but
with minimal energy. We can also take the bilinear forms to be equal to the
restrictions of the scaled original energy form to their respective layers or to
the whole substructures, that is following the ideas of Klawonn et al (2015,
2016b,a). In all cases, we will have similar estimates as in Theorem 1 in the
next section.

5 Condition number

Following the abstract Schwarz framework, cf. Smith et al (1996); Toselli
and Widlund (2005), and the classical theory of eigenvalue problems, we
can show the following theoretical bound on the condition number for the
preconditioned system of our method.

Theorem 1. For all uw € Sy, the following holds,

-+ max

c (1 + max
ne+1 Fri )\nkl+1

> a(u,u) < a(Tu,u) < C alu,u),
where C,c are positive constants independent of the coefficient «, the mesh
parameter h and the sudomain size H.
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