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Abstract In this paper we present a framework for Fluid-Structure Interaction sim-
ulations. Taking inspiration from the Immersed Boundary technique introduced by
Peskin [1] we employ the finite element method for discretizing the equations of the
solid structure and the finite difference method for discretizing the fluid flow. The
two discretizations are coupled by using a volume based L2–projection approach
to transfer elastic forces and velocities between the fluid and the solid domain. We
present results for a Fluid–Structure Intercation benchmark which describes self-
induced oscillating deformations of an elastic beam in a flow channel.
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1 Introduction

During the last decades, Fluid–Structure Interaction (FSI) [1, 2] has received con-
siderable attention due to various applications where a fluid and a solid interact with
each other (such as in aeronautics, turbomachinery, and biomedical applications).

Several approaches have been developed in order to reproduce the interaction be-
tween a fluid and a surrounding solid structure, which can be classified in boundary-
fitted and embedded boundary methods. In the boundary-fitted methods, the fluid
problem is resolved in a moving spatial domain over which the incompressible
Navier-Stokes equations are formulated in an Arbitrary Lagrange Eulerian (ALE)
framework [3] while the solid structure is usually described in a Lagrangian fash-
ion. Although this approach is known to allow for accurate results at the interface
between solid and fluid, for scenarios that involve large displacements and/or rota-
tions, the fluid grid may become severely distorted, thus affecting both the numerical
stability of the problem and the accuracy of the solution.

In order to circumvent those difficulties, embedded boundary approaches such as
the Immersed Boundary Method (IBM), have been introduced to model the fluid-
structure interaction on a stationary fluid grid analyzed in a Eulerian fashion. The
main aspect of this technique is the representation of the immersed solid material as
a force density in the Navier-Stokes equations.

In the IBM, the volume of the solid is commonly described by systems of fibres
that resist extension, compression, or bending [1, 2, 4]. Some alternative approaches
have been proposed on the basis of the finite element method for the spatial approx-
imation of the Lagrangian quantities (force densities, displacement field, etc.). In
all these approaches the reaction force exerted by the solid on the fluid is computed
explicitly by using the fluid velocity field to get the corresponding displacement of
the solid structure [5, 6, 7].

We describe an alternative framework for FSI simulations, where we employ the
finite difference method for simulating the fluid flow and couple it with a finite el-
ement method for the structural problem. The main novelties of this work are (I)
the description of the solid body motion obtained by solving implicitly the elastody-
namic equations and (II) the treatment of the Lagrangian-Eulerian interaction which
is achieved by means of the L2– projection. Such approach allows for the transfer
of data between non-matching structured (Cartesian) and unstructured meshes arbi-
trarily distributed among different processors.

All the modules of the FSI computational frameworks are integrated into the
multi-physics simulation framework MOOSE (mooseframework.org). The
code is optimised for modern hybrid high-performance computing platforms such
as the Cray XC50 system at the Swiss National Supercomputing Centre CSCS.

2 Strong Formulation of the FSI Problem

In this section we provide a brief description of the methodology adopted in our
framework to solve the FSI problem. Since the proposed approach follows the main
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principle of the IBM, we employ the standard Eulerian formulation for the Navier-
Stokes equations for incompressible flows, whereas the elastic response of the em-
bedded structure is described in a Lagrangian fashion.

Let Ω ⊂Rd (with d = 1,2,3) be a bounded Lipschitz domain denoting the phys-
ical region occupied by the coupled fluid-structure system. We label x ∈ Ω as the
spatial point, and x̂∈ Ω̂s as the material (or reference) point, with Ω̂s ⊂Rd denoting
the material (reference) configuration of the solid domain (Fig. 1).

We assume that the map χ̂χχ : Ω̂s×I→Rd is a one-to-one correspondence between
the material x̂ and the actual x positions occupied by the elastic structure during the
time interval I = [0 T], s. t. (x̂, t)→ x= χ̂χχ(x̂, t), ∀t ∈ I. Additionally, we denote with
Γfsi the physical interface between the fluid and the solid mesh.

The strong formulation of the complete FSI problem reads as follows:

ρ̂s0
∂ 2ûs

∂ t2 − ∇̂x̂ · P̂ =d on Ω̂s (a)

ρ f
∂v f

∂ t
+ρ f

(
v f ·∇

)
v f +∇p f −µ∆v f = ffsi on Ω (b)

∇ ·v f =0 on Ω (c)

v f =
∂us

∂ t
on Γfsi (d) (1)

Here Eq. 1(a) is the equation of the elastodynamics where ρ̂s0 is the mass density
per unit undeformed volume of the elastic structure, ûs = ûs(x̂, t) is the related dis-
placement field, P̂= P̂(x̂, t) is the first Piola-Kirchhoff stress tensor, d is a prescribed
external body force, and ∇̂x̂ · is the divergence operator computed in the reference
configuration. For an hyperelastic material, the first Piola-Kirchhoff stress tensor P̂
is related to the deformation through a constitutive equation derived from a given

scalar valued energy function Ψ , i. e. P̂ = F̂ ∂ψ(Ê)
∂ Ê

, where Ê := 1/2(F̂T F̂− I) is the

Lagrangian-Green strain tensor and F̂ is the deformation gradient tensor defined as
F̂ = ∇x̂x.

Eq.s 1(b-c) represent the standard Navier-Stokes equations where ρ f is the fluid
density, v f is the velocity field of the fluid, p f is the pressure, ∇x is the gradient
operator, ∆x is the Laplacian operator computed in the current configuration and ffsi

Fig. 1 Lagrangian (left) and Eulerian (right) coordinate systems adopted in the Immersed Bound-
ary method.
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is the force density generated by the embedded solid structure as we will describe
in Section 3.1.
Remark In the equation of the elastodynamics, i. e. Eq. 1(a), the evaluation of the
inertial term must take care of the fluid in which it is embedded. This can be done by
subtracting the density of the fluid phase from the solid one (i.e. ρ̂s0−ρ f ) [14]. It is
worth to pointing out that, since in our case the fluid velocity field is used to recover
the displacement of the FSI interface, this difference is restricted only to Γfsi.

3 Discretization of the FSI problem

In this section, we provide some details about the discretization in time and in space
of the solid and the fluid sub-problem.

3.1 Solid Problem
For the time discretization of the solid problem, we adopt the classical Newmark

scheme. This scheme is based on a Taylor expansion of the displacements and the
velocities:

ûs,n+1 = ûs,n +∆ t vs,n + ∆ t2

2
((1−2β )as,n +2βas,n+1)

v̂s,n+1 = v̂s,n +∆ t ((1−α)ûs,n +α âs,n+1)

where ∆ t is the time step size, as := ∂ 2ûs
∂ t2 and vs := ∂ ûs

∂ t are the the acceleration
and the velocity of the solid, respectively, and the parameters α and 2β are chosen
such that α = 2β = 1/2.

For the spatial discretization of the structure problem, we assume that the solid
domain Ω̂s can be approximated by a discrete domain Ω̂ h

s and the associated mesh
T̂ h

s = {Ês ⊆ Ω̂ h
s |
⋃

Ês = Ω̂ h
s }, where its elements Ês form a partition. The Galerkin

formulation of the elastodynamics equation reads:
For every t ∈ (0; T ] find ûh

s (·, t) ∈ V̂h
s := [V̂ h

s (T̂
h

s )]
d ⊂ [H1

0 (Ω̂s)]
d so that:

(ρ̂s0âh
s ,δuh

s )+a(uh
s ,δuh

s )− (dh
s ,δuh

s ) = 0 (2)

By defining (Fh,δuh
s ) = a(uh

s ,δuh
s )− (dh

s ,δuh
s ) and using the Green’s formula

we get:
(ρ̂s0âh

s ,δuh
s )+(Fh,δuh

s ) = (fh
fsi,δuh

s )L2(Γ h
fsi)

(3)

where fh
fsi represents the reaction force exerted by the solid structure on the fluid.

3.2 Fluid Problem
The time integration of the fluid problem is carried out by a 3rd order low-storage

Runge-Kutta scheme for both the advective and the diffusion terms [8].
For the discretization of Eq. 1(b), the usage of high-order (sixth) explicit-finite

differences leads to a linear system of equations of the form:



An immersed boundary method based on the L2-projection approach 5[
H G
D 0

][
v f

p f

]
=

[
z
0

]
Here the matrices D and G are the spatial discretization of the divergence and the
gradient operators, z is the discrete representation of the right hand side, whereas H
is the Helmholtz operator which coincides with the identity matrix (except for the
boundary conditions) due to the usage of a purely explicit time integration scheme.
By applying D to the equation Hv f +Gp f = 0, one may derive the following equa-
tion for the pressure:

DH−1Gp f = DH−1z (4)

In order to guarantee the gradient of the pressure to be unique, the Schur comple-
ment DH−1G must be h-elliptic (i.e. must have only one zero eigenvalue). To this
aim Arakawa-C grids are adopted which combine several types of nodal points lo-
cated in different geometrical positions.

4 L2 - projection
For coupling the two sub-problems we adopt a volume L2–projection which al-
lows for the transfer of discrete fields between non conforming meshes arbitrarily
distributed among several processors. Such an approach ensures convergence, effi-
ciency, flexibility and accuracy without requiring a priori information on the relation
between the different meshes. To this aim, we attach Lagrangian basis functions to
the finite difference discretization [9], define the corresponding finite element space
as Vh

f = Vh
f (T

h
f ) ⊂ [H1

0 (Ω)]d and introduce the vector of Lagrange multipliers λλλ
h
fsi

with the related virtual variations, δλλλ h
fsi ∈Mh

fsi(T̂
h

s ∩T h
f ) ⊂ [H1(Ω̂s ∩Ω)]d , where

T h
f represents the fluid grid.

In the following, the projection operator P : V h
f →V h

s is defined by focusing on the
scalar case, which means that for each component of the velocity vh

f ,i ∈V h
f , we may

find wh
s,i = P(vh

f ,i) ∈ V̂ h
s , such that the following weak-equality condition holds:∫

T̂ h
s ∩T h

f

(vh
f ,i−P(vh

f ,i))δλ
h
f si dV =

∫
T̂ h

s ∩T h
f

(vh
f ,i−wh

s,i)δλ
h
fsi dV = 0 ∀ δλ

h
fsi ∈Mh

fsi

(5)
By writing vh

f , wh
s and δλ h

fsi in term of basis functions (here the index i is omit-

ted for a simpler notation), i.e. vh
f = ∑l∈J f

vl
f Nl

f , wh
s = ∑ j∈Js w j

sN j
s and δλ h

fsi =

∑k∈Jfsi
δλ k

fsiN
k
fsi (where Js, J f and Jfsi are index sets), we get the so called mortar

integrals: Bk,l =
∫

Ih
Nl

f Nk
fsi dV and Sk, j =

∫
Ih

N j
s Nk

fsi dV . Equation 5 can be then writ-
ten in the following algebraic form:

ws = S−1Bv f = Tv f (6)

The transpose of T is used to transfer the reaction force from the solid to the fluid
grid.



6 M.G.C. Nestola, B. Becsek, H. Zolfaghari, P. Zulian, D. Obrist and R. Krause

In order to reduce the computational cost required to compute the inverse of the
matrix S, we adopt dual basis functions for the function space Mh

fsi. In this case this
function space is spanned by a set of functions which are biorthogonal to the basis
functions of V̂h

s with respect to the L2-inner product:

(Nk
fsi,N

j
s )L2(Ih) = δ

k, j(N j
s ,1)L2(Ih) ∀k, j (7)

The usage of the dual basis functions corresponds to replacing the standard L2–
projection with a Pseudo–L2–projection, which allows for a more efficient evalua-
tion of the transfer operator T since the matrix S becomes diagonal. The assembly of
the transfer operator is done in several steps [10]: (a) we compute the overlapping
region by means of a tree search algorithm, (b) generate the quadrature points for
integrating in the intersecting region, (c) compute the local element-wise contribu-
tions for the operators B and S by means of numerical quadrature, and (d) assemble
the two mortar matrices.

5 Overview of the FSI algorithm

In our framework a segregated approach is adopted to solve the fully coupled FSI
problem. More specifically, we use a fixed point (Picard) iteration scheme for solv-
ing the arising coupled non-linear discrete system.

For a given time step n and given a starting solution at the Picard iteration l, the
following steps are performed within iteration l +1:

Step 1: Velocity values are transferred from the fluid grid to the solid mesh.
Step 2: The elastodynamic equation (Eq. 1(a)) is solved with the Dirichlet bound-
ary conditions (Eq. 1(d)).
Step 3: The reaction force ffsi is computed and transferred from the solid mesh
to the fluid grid.
Step 4: The Navier-Stokes problem (Eq. 1(b)-(c)) is solved by using the force ffsi
as source term.
Step 5: Suitable residual norms are computed between the FSI interaction force
terms evaluated at iterations l and l +1, i. e. ‖fl+1

fsi − fl
fsi‖∞/‖f0

fsi‖ for the relative
convergence criterion and ‖fl+1

fsi − fl
fsi‖∞ for the absolute convergence criterion

[6], and compared with given threshold values. This ensures the satisfaction of
the coupling between the two sub-problems, thus leading to either a new Picard
iteration or a new time step n + 1 otherwise.

We employ the numerical solver IMPACT (Incompressible (Turbulent) flows on
Massively PArallel CompuTers) for solving the non-dimensional Navier-Stokes
equations [8]. The solid problem and the assembly of the transfer operator are im-
plemented in the finite-element framework MOOSE (www.mooseframework.
org), whereas the library MOONoLiTH (https://bitbucket.org/zulianp/
par_moonolith) is used for detecting the overlapping region between the fluid
and the solid grids and computing the corresponding intesections.

www.mooseframework.org
www.mooseframework.org
https://bitbucket.org/zulianp/par_moonolith
https://bitbucket.org/zulianp/par_moonolith
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6 Numerical Results

In this section we present results related to the Turek-Hron FSI benchmark which
considers the incompressible flow of a Newtonian fluid around an elastic solid struc-
ture composed of a disk and a rectangular trailing beam.

The dimensions of the fluid channel are (Fig. 2 (a)): length L f = 3.0m and height
H f = 0.41m. The disk center is positioned at C = (0.2m,0.2m) (measured from the
left bottom corner of the channel) and the radius is r = 0.05m. The elastic structure
bar has length Ls = 0.35m and height Hs = 0.02m; the right bottom corner is po-
sitioned at (0.6m,0.19m), and the left end is fully attached to the circle. The fluid
properties are ρ f = 1000kg/m3 and µ = 1Pa · s which lead to a Reynolds number
of 200. The density of the solid structure is the same as the fluid phase, and a Saint-
Venant Kirchhoff model is adopted as constitutive law, for which the first Piola-
Kirchhoff stress tensor is defined as: P̂ = F̂(λ tr(Ê)I+2µÊ) with µ = 2.0MPa and
λ = 4.7MPa. Periodic boundary conditions are imposed along the inlet and the out-
let of the fluid channel together with no-slip boundary conditions on the top and the
bottom. Moreover at the inlet a Poiseuille flow with a centerline velocity of 1.5m/s
is enforced by a fringe region appended downstream.

In Fig. 2 (b) we show the displacements in x and y direction of a control point P
located at the end of the elastic beam (A≡ (0.6m, 0.2m), Fig. 2 (a)). The amplitude
of the last period of oscillation is in the range of 0.03m for the vertical displacement
and of 0.0025m for the horizontal displacement; the frequency of the y-displacement
is about 6s−1, and the frequency for the x-displacement is about 11s−1. All values
are in good agreement with the original benchmark results [11]. In Fig. 2 (c) we
also show the forces exerted by the lift and drag forces acting on the cylinder and
the beam structure together. Again the values agree well with the results obtained
by other numerical methods applied to the same problem [12]. Finally, the fluid

Fig. 2 (a) Geometry of the Turek-Hron benchmark. (b) Amplitude displacement in x and y direc-
tion of a control point A located at the end of the elastic beam. (c) Lift and drag forces. (d) Fluid
vorticity.
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vorticity is depicted in Fig. 2 (d) ranging from −30s−1 to 30s−1, in agreement with
numerical values reported in Griffith [13] .

7 Conclusion

In this article we present a novel FSI framework based on the IMB. The description
of the solid motion, obtained by solving implicitly the elastodynamic equations, en-
sures to yield extra stability and robustness. Moreover, the use of the fluid solver
IMPACT and of the software MOONoLith for the L2−projection allows for a com-
pletely parallel framework suitable for the simulation of complex and large simula-
tions such the blood flow in human arteries and through heart valves.
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