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Abstract We consider the numerical solution of saddle point systems of equa-
tions resulting from the discretization of PDE-constrained optimization problems,
with additional bound constraints on the state and control variables, using an inte-
rior point method. In particular, we derive a Bramble–Pasciak Conjugate Gradient
method and a tailored block triangular preconditioner which may be applied within
it. Crucial to the usage of the preconditioner are carefully chosen approximations
of the (1,1)-block and Schur complement of the saddle point system. To apply the
inverse of the Schur complement approximation, which is computationally the most
expensive part of the preconditioner, one may then utilize methods such as multigrid
or domain decomposition to handle individual sub-blocks of the matrix system.

1 Introduction

A key application of domain decomposition methods, alongside a range of other
numerical techniques, is within preconditioned iterative methods for linear systems
of equations. In this paper, we examine such systems arising from optimization
problems constrained by PDEs—in particular we wish to consider the application
of interior point methods to formulations with additional bound constraints. The
crucial computational element of such solvers is the development of a fast and robust
method for the Newton systems that arise at each interior point iteration. We refer
to [1, 3, 8, 13], and the references therein, for previous research on such iterative
methods, as well as to [5] for the development of a multigrid scheme.

The key component of the authors’ previous work [13] was the consideration of
saddle point solvers for these linear systems. It was found that iterative methods
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accelerated by block triangular preconditioners are highly effective for the solution
of such systems, often more so than those incorporating analogous block diagonal
matrices; however, in general it is difficult to robustly predict the convergence rate
of the iterative scheme when using block triangular preconditioners. In this work,
we present a new Bramble–Pasciak Conjugate Gradient method which allows one
to employ an efficient block triangular approximation, for which the preconditioned
system is self-adjoint and positive definite in some non-standard inner product. This
also enables one to predict the convergence of the algorithm based on the eigenval-
ues of the preconditioned system. Such guarantees are not available if one uses more
standard Krylov subspace methods for non-symmetric systems, for instance GMRES
or BICG. This also provides a framework for domain decomposition techniques,
multigrid methods, or other tailored schemes to tackle the individual portions of the
block matrix systems at hand. The main contribution of this paper is therefore the
presentation of a new solver with the shared advantages of both its faster compu-
tational performance, due to the favourable properties of block triangular precondi-
tioners, and the theoretical guarantees of convergence which it provides.

This paper is structured as follows. In Section 2 we describe the PDE-constrained
optimization problem of which we wish to consider the numerical solution. In Sec-
tion 3 we outline the Bramble–Pasciak Conjugate Gradient method, as well as the
block triangular preconditioner that we apply within it. In Section 4 we ascertain the
effectiveness of our methodology when applied to a number of practical problems.

2 PDE-Constrained Optimization Problem

The problem of which we consider the numerical solution in this paper is given as
follows:

min
y,u

1
2
‖y− ŷ‖2

L2(Ω)+
β

2
‖u‖2

L2(Ω)

s.t. Dy = u, in Ω ,

y = f , on ∂Ω ,

ya ≤ y≤ yb, a.e. in Ω ,

ua ≤ u≤ ub, a.e. in Ω .

This problem is solved on a domain Ω ⊂ Rd , d ∈ {2,3}, with boundary ∂Ω . Here,
y, ŷ and u represent the state, desired state and control variables, with D some given
PDE operator. Further, β is a (positive) regularization parameter, with f , ya, yb, ua,
ub given functions. The key to this problem is that we wish to find functions y and u
which solve the minimization problem constrained by a system of PDEs, while also
placing upper and lower bounds on the values that these functions may take.

As illustrated in [13], we may solve this problem using a discretize-then-optimize
strategy, where a Lagrangian is built on the discrete level and optimality conditions
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are subsequently derived from it. The Lagrangian of which we wish to find the
stationary point(s), when a finite element method is applied to tackle the barrier
optimization problem, is given as follows:

L
(
y,u,λλλ

)
=

1
2

yT My−yT
d y+

β

2
uT Mu+λλλ

T (Ky−Mu− f)

−µ ∑
j

log
(
y j− ya, j

)
−µ ∑

j
log
(
yb, j− y j

)
−µ ∑

j
log
(
u j−ua, j

)
−µ ∑

j
log
(
ub, j−u j

)
,

where y and u are the discrete state and control variables, and y j, ya, j, yb, j, u j, ua, j,
ub, j denote the values of y, ya, yb, u, ua, ub at the j-th finite element node. The
vector λλλ is the discrete adjoint variable, enforcing the PDE constraint (which in
discretized form is given by Ky−Mu = f). The matrix M is the well known finite
element mass matrix, with entries defined by [M]i j =

∫
Ω

φiφ j dΩ , where φi denote
the finite element basis functions used. The matrix K relates to the weak form of the
PDE operator D . The vectors yd and f correspond to the functions ŷ and f on the
discrete level, and contain entries of the form

∫
Ω

ŷφi dΩ and
∫

Ω
f φi dΩ respectively.

The (positive) barrier parameter µ precedes a sum of logarithmic terms which help
to enforce the bound constraints on the state and control variables.

The essence of our interior point method is that at each step we wish to find the
stationary point of the Lagrangian L , with y j and u j updated to take account of the
previous iterate, and with µ reduced at each iteration by a factor which is chosen
in advance. The algorithm applied is stated in [13]—it is then shown that the main
computational bottleneck is the solution of the Newton systemM+Dy 0 KT

0 βM+Du −M
K −M 0

 δδδy
δδδu
δδδλλλ

 (1)

=

 µ(Y −Ya)
−1e−µ(Yb−Y )−1e+yd−My∗−KT λλλ

∗

µ(U−Ua)
−1e−µ(Ub−U)−1e−βMu∗+Mλλλ

∗

f−Ky∗+Mu∗


at each interior point step. The (diagonal) matrices Dy and Du are given by

Dy = (Y −Ya)
−1Zy,a +(Yb−Y )−1Zy,b,

Du = (U−Ua)
−1Zu,a +(Ub−U)−1Zu,b.

Here, Y , U , Ya, Yb, Ua, Ub are diagonal matrices containing the entries of y, u (at the
previous Newton step), ya, yb, ua, ub; further, Zy,a, Zy,b, Zu,a, Zu,b denote diagonal
matrices with entries defined by Lagrange multipliers associated with bounds ya,
yb, ua, ub, respectively. At each iteration, an interior point algorithm attempts to
approximately satisfy the following centrality condition:



4 John W. Pearson and Jacek Gondzio

(Zy,a) j j =
µ

y j− ya, j
,

(
Zy,b
)

j j =
µ

yb, j− y j
,

(Zu,a) j j =
µ

u j−ua, j
,
(
Zu,b
)

j j =
µ

ub, j−u j
.

The vector e contains a one at each entry, and the vectors y∗, u∗, λλλ
∗ contain the

previous iterates for y, u, λλλ . We wish to solve the matrix system (1) for δδδy, δδδu, δδδλλλ ,
the Newton updates of y, u, λλλ , at each interior point iteration.

3 Bramble–Pasciak Conjugate Gradients and Preconditioning

We now wish to approach the main computational challenge within the interior point
algorithm, namely the fast and efficient solution of the matrix system (1). This is
an example of a saddle point system, which is defined in general as a system of
equations of the form [

A BT

B 0

]
︸ ︷︷ ︸

A

[
x(1)

x(2)

]
︸ ︷︷ ︸

x

=

[
b(1)

b(2)

]
︸ ︷︷ ︸

b

.

There has been a great deal of research on the subject of the numerical solution
of such systems, and we refer to [2] for a comprehensive survey. However, in the
setting of interior point methods, we face the additional challenge that the (1,1)-
block A is severely ill-conditioned, due to the presence of diagonal scaling matrices
(defined as Dy and Du in Section 2 for our problem).

In [13], a block diagonal preconditioner was presented, involving approximations
Â and Ŝ for the (1,1)-block and the (negative) Schur complement S := BA−1BT ,
respectively. These approximations were carefully chosen such that the precondi-
tioned system P−1A had clustered eigenvalues, and also such that Â−1 and Ŝ−1

could be applied cheaply. In this work, we wish to apply a suitable block triangular
preconditioner

P =

[
Â 0
B −Ŝ

]
within a non-standard Conjugate Gradient method. By doing so, we are able to ex-
ploit the often superior convergence properties of block triangular preconditioners,
alongside the theoretical guarantees of convergence that Conjugate Gradient type
methods provide. In particular, we may predict a certain rate of convergence of the
iterative method by examining the eigenvalues of the preconditioned system.

The idea of the Bramble–Pasciak Conjugate Gradient method [4] is that we apply
this method using an inner product within which the preconditioned system is self-
adjoint and positive definite. A suitable inner product is given by 〈·, ·〉H , with
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H =

[
A− Â 0

0 Ŝ

]
.

The structure of the algorithm is presented below, and we refer to [4, 17, 18] for
further details.

Algorithm: Bramble–Pasciak Method for A x = b with Preconditioner P

Initial vectors

Given x0, set r0 = P−1(b−A x0), p0 = r0

Conjugate Gradient loop
for k = 0,1, ...

αk =
〈rk,rk〉H

〈P−1A pk,pk〉H
xk+1 = xk +αkpk

rk+1 = rk−αkP
−1A pk

βk =
〈rk+1,rk+1〉H
〈rk,rk〉H

pk+1 = rk+1 +βkpk

end

The key components within the algorithm involve computing terms of the form
P−1v and H P−1v, where we write v =

[
vT

1 , vT
2
]T . The first of these tasks may

be accomplished by applying Â−1 and Ŝ−1 efficiently, whenever the inverse of the
preconditioner is required. For the application of H P−1v, which is needed to com-
pute terms of the form 〈P−1A pk,pk〉H and 〈rk,rk〉H within the Bramble–Pasciak
algorithm, we observe that

H P−1v =

[
A− Â 0

0 Ŝ

][
Â−1v1

Ŝ−1BÂ−1v1− Ŝ−1v2

]
=

[
AÂ−1v1−v1

BÂ−1v1−v2

]
.

Therefore, we are only required to apply Â−1 once in order to compute this term.
We therefore require efficient approximations for the (1,1)-block and Schur com-

plement of the matrix system (1) under consideration. For this matrix,

A =

[
M+Dy 0

0 βM+Du

]
, B =

[
K −M

]
,

S = BA−1BT = K(M+Dy)
−1KT +M(βM+Du)

−1M.

To approximate the (1,1)-block, we apply a Chebyshev semi-iteration method [6, 7]
to the diagonally dominant matrices M +Dy and βM +Du. As it is necessary to
ensure that A− Â is positive definite, in turn to guarantee that the inner product
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matrix H is positive definite, we pre-multiply this approximation by a constant
0� γ < 1, which is chosen a priori such that this property holds (see [17]).

In order to approximate the Schur complement, we employ a ‘matching strategy’,
which was derived in [14, 15, 16], and was demonstrated to be highly effective in
the context of interior point methods in [13]. We write

Ŝ =
(
K + M̂

)
(M+Dy)

−1(K + M̂
)T

,

where M̂ = M
[
diag(βM +Du)

]−1/2[diag(M +Dy)
]1/2, with the aim of capturing

both terms of the exact Schur complement S within our approximation. The inverses
of K+M̂ and its transpose may be efficiently approximated using multigrid, domain
decomposition, or other methods.

Making use of our approximations of A and S, we may then compile our precon-
ditioner

P =

 γ(M+Dy)Cheb 0 0
0 γ(βM+Du)Cheb 0
K −M −Ŝ

 ,
which may be readily inverted, giving rise to a computationally efficient algo-
rithm within the inner product 〈·, ·〉H . Eigenvalue estimates for Â−1A and Ŝ−1S
are discussed in detail in [13]; applying these estimates within the Bramble–Pasciak
method leads to robust estimates of convergence rates for the iterative solver, us-
ing previous research on this method for PDE-constrained optimization problems
without additional bound constraints [17].

4 Numerical Experiments

To test the practical effectiveness of our method we implement an interior point
scheme, within which we apply the Bramble–Pasciak Conjugate Gradient method
with the preconditioner stated in Section 3. For each problem, we discretize the
state, control and adjoint variables using Q1 finite elements. The Bramble–Pasciak
method is run to a tolerance of 10−8 at each interior point step, with the outer (in-
terior point) solver run to a tolerance of 10−6. We measure the average number of
Bramble–Pasciak iterations required per outer iteration, until convergence of the
interior point method is achieved. The (1,1)-block of the matrix system (1) is ap-
proximated using 20 steps of Chebyshev semi-iteration, with parameter γ = 0.95
chosen to ensure positive definiteness of H ; the matrices K + M̂ and its transpose,
within the Schur complement approximation, are approximately inverted using the
Aggregation-based Algebraic Multigrid (AGMG) software [9, 10, 11, 12]. All tests
are carried out using MATLAB R2017b, on a quad-core 3.2 GHz processor.

For our first test problem, we consider the Poisson operator D = −∇2, take
ŷ = sin(πx1) sin(πx2), where x = [x1,x2]

T ∈Ω = [0,1]2, and set y = 0 on the bound-
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Table 1 Results for the Poisson control example with state constraints, for a range of values of
h and β . Presented are the average number of Bramble–Pasciak Conjugate Gradient iterations
required, per interior point step.

β = 1 β = 10−1 β = 10−2 β = 10−3 β = 10−4 β = 10−5

0≤ y≤ 0.002 0≤ y≤ 0.02 0≤ y≤ 0.15 0≤ y≤ 0.5 0≤ y≤ 0.8 0≤ y≤ 0.9

h

2−2 8.5 8.4 7.7 7.4 7.9 8.1
2−3 12.4 12.6 11.3 13.1 14.0 18.3
2−4 14.6 14.5 14.2 16.2 18.1 19.9
2−5 15.8 15.9 16.2 18.3 20.3 22.7
2−6 16.6 17.1 17.4 20.7 30.0 25.9
2−7 17.3 17.8 18.5 30.2 26.2 27.8

Table 2 Results for the convection–diffusion control example with control constraints, for a range
of values of h and β . Presented are the average number of Bramble–Pasciak Conjugate Gradient
iterations required, per interior point step.

β = 1 β = 10−1 β = 10−2 β = 10−3 β = 10−4 β = 10−5

0≤ u≤ 0.1 0≤ u≤ 0.5 0≤ u≤ 2 0≤ u≤ 5 0≤ u≤ 6 0≤ u≤ 6

h

2−2 8.3 9.8 11.8 14.3 15.4 16.0
2−3 8.4 10.9 14.8 16.9 20.6 24.4
2−4 8.2 10.4 13.6 26.6 33.8 35.2
2−5 8.1 10.1 12.4 16.9 29.9 33.5
2−6 8.1 9.9 12.2 15.3 25.9 24.6
2−7 8.3 9.9 12.1 15.3 18.3 18.9

ary ∂Ω of Ω . We prescribe bound constraints on the state variable y, based on the
physical properties of the problem. We solve the matrix systems for a range of step-
sizes h and values of β , and present the results obtained in Table 1. We observe
very low iteration numbers, considering the complexity of the problem and the ac-
curacy to which we solve the matrix systems, with only moderate increases as h
is decreased (i.e. as the dimensions of the matrix systems are increased). We also
observe a benign increase in Bramble–Pasciak iterations as β is decreased.

Our second test problem involves a convection–diffusion operator D =−0.01∇2+[
− 1√

2
, 1√

2

]T ·∇, a desired state ŷ = e−64((x1−0.5)2+(x2−0.5)2), and the boundary
condition y = ŷ. On this occasion we provide bound constraints for the control vari-
able u, as stated in Table 2. Once again, strong robustness of the Bramble–Pasciak
method is observed when either h or β is altered, illustrating that our strategy may
be applied to more varied differential operators and types of bound constraints.

We thus establish that the new Bramble–Pasciak Conjugate Gradient algorithm
presented for this class of problems provides both enjoyable theoretical properties,
and the fast, robust numerical solution of a range of practical examples. It may be
concluded that this is therefore a suitable and effective technique for the interior
point solution of a number of PDE-constrained optimization problems.
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