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Abstract. In recent publications, the author and his coworkers have proposed a multigrid
method for solving linear systems arizing from the discretization of partial differential equa-
tions in isogeometric analysis and have proven that the convergence rates are robust in both
the grid size and the polynomial degree. So far the method has only been discussed for the
Poisson problem. In the present paper, we discuss the extension the of these results to the
Stokes equations.
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1 Introduction

Isogeometric analysis (IgA) was introduced in [12], aiming to improve the connection
between computer aided design (CAD) and finite element (FEM) simulation. In
IgA, as in CAD software, B-splines and non-uniform rational B-splines (NURBS)
are used for representing both the geometrical objects of interest and the solution
of the partial differential equation (PDE) to be solved.

In IgA, mostly B-splines or NURBS of maximum smoothness are used, i.e., having
a spline degree of p, the functions are p− 1 times continuously differentiable. Using
such a function space, one obtains on the one hand the approximation power of high
order functions, while on the other hand, unlike in standard high-order FEM, one
does not suffer from a growth of the number of degrees of freedom.

From the computational point of view, the treatment of the linear systems arizing
from the discretization with high spline degrees is still challenging as the condition
number both of mass and stiffness matrices grows exponentially with the spline
degree. In the early IgA literature, finite element solvers have often been transferred
to IgA with only minimal adaptations. Numerical experiments indicate that such
approaches result in methods that work well for small spline degrees, but their
performance deteriorates as the degree is increased, often dramatically. In [11,10],
the author and his coworkers have proposed multigrid methods which are provable
robust in the polynomial degree and the grid size. Numerical experiments indicated
that the proposed approach of subspace corrected mass smoothers seems to pay
off (compared to multigrid methods with a standard Gauss-Seidel smoother) for
polynomial degrees of four or five.

In the present paper, we discuss the extension of the subspace corrected mass
smoothers beyond the case of the Poisson problem to the Stokes flow problem.
Unlike for the Poisson problem, for the Stokes problem already the setup of a stable
isogeometric discretization is non standard. As there have already been results in the
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literature, we refer to [1], which serves as a basis of the present paper. Alternative
approaches can be found in [8,3,6] and others. After introducing discretizations, we
discuss the setup of the preconditioner.

For the Poisson problem, the multigrid solver has been applied directly and as
a preconditioner for the conjugate gradient method. For the case of a non-trivial
geometry transformation, in [10] a conjugate gradient method, preconditioned with
the multigrid method for the parameter domain, has been used. It has been shown
that in this case the resulting method is robust both with respect to the grid size
and the polynomial degree, but not in the geometry transformation.

There are a few approaches how to carry this over to the Stokes equations. The first
possibility is to apply the multigrid method directly to the problem of interest (all-
at-once multigrid method), cf. [16] for a particularly popular method in standard
FEM or [13] for a survey. As the results for the Poisson problem have indicated
that a direct application of the multigrid method in the presence of a non-trivial
geometry transformation is not optimal, we do not concentrate on that case.

We therefore consider a Krylov space method with an appropriate preconditioner,
living on the parameter domain. In principle, this could be the Stokes problem on
the physical domain, but such a choice (an indefinite preconditioner for an indefinite
problem) typically requires the use of a GMRES method, the convergence of which
is less well understood than that of the minimal residual algorithm, cf. [9]. So, we
consider elliptic preconditioners, particularly block-diagonal preconditioners. As the
Stokes equations are well-posed in H1 (velocity) and L2 (pressure), we just setup
preconditioners for those spaces (operator preconditioning). Since the subspace cor-
rected mass smoothers suffer significantly from the geometry transformation, we
propose a variant (by incorporating an approximation to the geometry transforma-
tion) which led to a significant speedup in several experiments.

As alternative Stokes solvers in IgA, we want to mention overlapping Schwarz ap-
proaches, cf. [2], and BDDC approaches, cf. [15], which also yield robustness in the
spline degree for certain configurations (like generous overlap or the choice of C0

regularity across the subdomain interfaces).

This paper is organized as follows. We will introduce the particular model problem in
section 2 and discuss three kinds of discretizations for the mixed system in section 3.
As a next step, in section 4, we propose a preconditioner. Finally, in section 5, we
give the results of the numerical examples and draw some conclusions.

2 Model problem

Let Ω ⊆ R2 be a simply connected domain with Lipschitz boundary ∂Ω and assume
a force field f given on Ω and boundary data given on ∂Ω. The Stokes flow model
problem reads as follows. Find the velocity field u and the pressure p such that

−∆u+∇p = f and ∇ · u = 0 (1)

hold on Ω and Dirichlet boundary conditions hold on ∂Ω. After homogenization,
we obtain a mixed variational form, which reads as follows. Find u ∈ V := H1

0 (Ω)
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and p ∈ Q := L2(Ω) such that

(∇u,∇v)︸ ︷︷ ︸
a(u, v)

+ (∇ · v, p)︸ ︷︷ ︸
b(v, p)

= (f, v) ∀v ∈ V, (∇ · u, q)︸ ︷︷ ︸
b(u, q)

= 0 ∀q ∈ Q.

Here, and in what follows L2(Ω), H1(Ω) and H1
0 (Ω) are the standard Lebesgue and

Sobolev spaces, and (·, ·) is the standard norm on L2(Ω).

Existence and uniqueness of the solution and its dependence of the data follows from
Brezzi’s theorem [4], which requires besides boundedness and H1-coercivity of a the
inf-sup stability

inf
q∈L2(Ω)

sup
v∈H1(Ω)

(∇ · v, q)
‖v‖H1(Ω)‖q‖L2(Ω)

≥ C,

which is known to be satisfied for the Stokes problem, cf. [5].

3 Discretization

The discretization is done using a standard Galerkin approach, i.e., we replace the
spaces V and Q by finite-dimensional subspaces Vh and Qh. As for the continuous
problem, existence and uniqueness of the solution can be shown by Brezzi’s theorem.
Boundedness and H1-coercivity of a follow directly from the continuous problem,
but the inf-sup stability for the discrete problem does not. Therefore, we have to
guarantee that the discrete inf-sup condition

inf
qh∈Qh

sup
vh∈Vh

(∇ · vh, qh)
‖vh‖H1(Ω)‖qh‖L2(Ω)

≥ C

is satisfied, which is actually a condition on the discretization. In the subsection 3.2,
we will discuss discretizations satisfying this condition.

Assuming a particular discretization and a basis for the chosen space, one ends up
with a linear system to be solved: For a given f

h
, find xh such that

Ah xh = f
h
, where Ah =

(
Kh D

T
h

Dh 0

)
and xh =

(
uh
p
h

)
(2)

andKh is a standard stiffness matrix and Dh is a matrix representing the divergence.

3.1 Discretization in isogeometric analysis

Let Sqp,h be the space of all q times continuously differentiable functions on (0, 1),
which are piecewise polynomials of degree p on a (uniform) grid of size h = 1/n. As
a basis for Sqp,h we choose the classical basis of B-splines, see, e.g., [7].

For the computational domains Ω ⊂ R2, we first define the spline spaces for the
parameter domain Ω̂ = (0, 1)2. On the parameter domain, we introduce the space
of tensor-product splines, Sq1,q2p1,p2,h

:= Sq1p1,h ⊗ S
q2
p2,h

, where A ⊗ B denotes the linear
span of all functions (x, y) 7→ u(x)v(y), where u ∈ A and v ∈ B. Note that the
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restriction to two dimensions and to a uniform grid is only for ease of notation.
The extension to three and more dimensions or to non-uniform grids is completely
straight-forward. Assuming that physical domain Ω is the image of a B-spline or
NURBS mapping

G : Ω̂ = (0, 1)2 → Ω,

we define the spline spaces on the physical domain typically using a classical pull-
back principle. More complicated domains are represented patch-wise, where for
each patch a separate geometry transformation G exists. For simplicity, we do not
discuss that in the present paper.

3.2 Stable discretizations for the Stokes problem

As mentioned above, we are required to set up the discretization such that the
discrete inf-sup condition holds. We discuss this first for the parameter domain.
Here, we follow the outline of the paper [1], where three spline space configurations
have been proposed, which are variants of known stable spaces from standard finite
elements: Taylor-Hood like splines X̂(TH)

h , Nédélec like splines X̂(NE)
h and Raviart-

Thomas like splines X̂(RT)
h . All of them utilize the same grid for both the velocity

and the pressure, which makes the implementation significantly easier compared to
approaches that are based on setting up two different grids (like IgA-variants of the
macro elements as proposed in [3]). All of these discretizations follow the spirit of
IgA, allowing to freely choose the underlying polynomial degree p. For all of them,
the smoothness is on the order of the polynomial degree, which preserves the feature
that the number of degrees of freedom is basically not increased when the polynomial
degree is increased. For the case of two dimensions, the spaces are given by

X̂
(TH)
h := V̂

(TH)
h × Q̂h, V̂

(TH)
h := Sp−1,p−1p+1,p+1 × S

p−1,p−1
p+1,p+1 ,

X̂
(NE)
h := V̂

(NE)
h × Q̂h, V̂

(NE)
h := Sp,p−1p+1,p+1 × S

p−1,p
p+1,p+1,

X̂
(RT)
h := V̂

(RT)
h × Q̂h, V̂

(RT)
h := Sp,p−1p+1,p × S

p−1,p
p,p+1 , Q̂h := Sp−1,p−1p,p ,

where A×B := {(a, b) : a ∈ A, b ∈ B}. Observe that these spline spaces are nested,
i.e., we have V̂ (RT)

h ⊂ V̂
(NE)
h ⊂ V̂

(TH)
h and (for n >> p) a ratio of 9 : 5 : 3 for the

number of degrees of freedom. The extension of these definitions to three dimensions
is straight-forward, cf. [1].

For all of these settings, the discrete inf-sup condition has been shown in [1]. For
the Raviart-Thomas like splines, the discrete inf-sup condition has not been proven
if Dirichlet boundary conditions are present. As the method still seems to work well
in practice, we include also the Raviart-Thomas discretization in our experiments.

The next step is to introduce the discretization on the physical domain. As outlined
in the beginning of this section, the discretization, once introduced on the parameter
domain, is typically defined on the physical domain just by direct composition:

V
(X,D)
h := {vh | vh ◦G ∈ V̂ (X)

h }, X ∈ {TH,NE,RT}.

For the Stokes problem, as an alternative, the divergence preserving Piola transform
has been proposed:

V
(X,P)
h :=

{
vh

∣∣∣∣ 1

det JG
JG vh ◦G ∈ V̂ (X)

h

}
, X ∈ {TH,NE,RT},
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where JG is the Jacobi matrix of G. The pressure distribution, which is a scalar
quantity, is always mapped directly, i.e., in all cases we choose the direct composition

Qh := {qh | qh ◦G ∈ Q̂h}.

In [1], the inf-sup stability has been shown if the Piola transform is used and for the
Taylor-Hood like splines also if the direct composition is used. Again, we report also
on the numerical results for the cases that are not covered by the convergence theory
(direct composition for the Nédélec like and the Raviart-Thomas like splines).

4 Robust multigrid solvers

As outlined in the introduction, the multigrid preconditioner aims to represent the
theoretical block-diagonal preconditioner Qh := diag(Kh, β

−1Mh) where Kh is the
stiffness matrix, Mh is the mass matrix and β > 0 is an scaling parameter, ac-
cordingly chosen. As mentioned above and as discussed in detail in [10], we use as
preconditioner for the problem on the physical domain the corresponding precon-
ditioner, say Q̂h, on the parameter domain. There, the matrices Mh and Kh are
replaced by M̂h and K̂h, their counterparts on the parameter domain. Note that the
stiffness matrix acts on the velocity variable, a vector-valued quantity, and that this
matrix is block-diagonal on the parameter domain and, iff the direct composition is
used, on the physical domain. In all cases, Kh and K̂h are spectrally equivalent.

Instead of an exact inverse of the matrix Q̂h, we only need to realize an approxima-
tion to the application of K̂−1h and M̂−1

h to any given vector. The approximation of
K̂−1h is realized using one multigrid V-cycle with one pre- and one post-smoothing
step of the subspace corrected mass smoother, as proposed in [10]. There, the algo-
rithm was analyzed only for the case of splines of maximum smoothness, however it
can be applied for any spline space and robustness in the polynomial degree can be
guaranteed by a slight extension of the presented theory as long as the smoothness
is on the order of the polynomial degree. As in the previous publications [11,10], the
grid hierarchy is set up for a fixed polynomial degree and a fixed smoothness by just
uniformly refining the grid. Using this approach, one obtains nested spaces, so the
setup of the coarse-grid correction is trivial.

One of the key observations which was leading to the results in [11,10] was that the
spectral equivalence of the mass matrix and its diagonal deteriorates if p is increased.
This has also to be taken into account when constructing the preconditioner for the
pressure variable. Analogously to the smoother, we realize the application of M̂−1

h

exactly, based on the tensor-product structure of the mass matrix.

The preconditioner is symmetric and positive definite and can therefore be applied
in the framework of a MINRES iteration.

5 Numerical results

The numerical experiments have been performed using the C++ library G+SMO,
see [14], both for the unit square, i.e., for a problem without geometry transfor-
mation, and for a quarter annulus {(x, y) ∈ R2

+ : 1 < x2 + y2 < 4}. For both
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problems, the problem has been constructed (with inhomogeneous right-hand-side
and inhomogeneous Dirichlet boundary conditions) such that the exact solution is

uh(x, y) =

(
cos(5x+ 5y) + sin(5x− 5y)

−1− cos(5x+ 5y) + sin(5x− 5y)

)
,

and ph(x, y) = −(1 + x)(1 + y) + c, where c is chosen such that
∫
Ω
ph dx = 0.

In Table 1, we report on the number of MINRES steps required for reducing the
initial error (measured in the `2-norm of the solution vector) by a factor of 10−6;
cases where the memory was not enough are indicated with OoM. We report on
all discretization schemes proposed. The need of the discussion of p-robust methods
is easily observed when looking at the results for a standard preconditioner: We
display the results if one multigrid V-cycle with Gauss-Seidel smoother is used for
the velocity and one symmetric Gauss-Seidel sweep is used for the pressure (GS-
MG). There, the number of iterations increases drastically if p is increased. As
the approach is perfectly robust in the grid size h = 2`, we omit the numbers for
finer grids. Compared to that approach, the preconditioner proposed in Section 4
(SCMS-MG) led to results which are robust both in the grid size and the polynomial
degree and which works well for all discretizations. Although the iteration numbers
are smaller than for the GS-MG preconditioner, one has to consider that the costs
of the SCMS-MG preconditioner are significantly higher than those of the GS-MG
preconditioner, so the proposed method only pays off if higher polynomial degrees
(starting from 4 or 5) are considered. We have chosen β = 0.05 and as damping
parameter σ of the underlying smoother, cf. [10], either σ−1 = 0.04 ĥ2 (for Taylor-
Hood and Nédélec) or 0.16 ĥ2 (for Raviart-Thomas), where ĥ is the grid size on the
parameter domain. While some of the numbers might be improved by fine-tuning
the parameters, the given tables for reasonable uniform choices show what one can
expect for each of the methods.

In Table 2 we see how well the computed solution approximates the exact solution
in the L2-norm. Here, we have used the abovementioned solver, where the stopping
criterion has been chosen to reach either a relative error of 10−10 or 100 iterations.
We present the error between the computed solution and the known exact solution
(for the pressure after projecting into the space of functions with vanishing mean).
We observe that, for the same choice of the polynomial order p and the same grid
size, the Taylor-Hood discretization yields the smallest errors, at the cost of the
largest number of degrees of freedom. For the Raviart-Thomas discretization (where
the inf-sup condition cannot be shown for the chosen Dirichlet boundary conditions),
we observe that the error for the velocity converges, while the error of the pressure
stagnates at around 10−2. Observe moreover that for p = 5, the approximation on
the coarsest grid was fine enough such that the approximation error could not be
improved by refinement.

For the case of the quarter annulus, we distinguish between the results obtained by
the direct composition (Table 3) and for the Piola transform (Table 4). Again, we
obtain first that GS-MG is robust in h, but that the convergence deteriorates if the
polynomial degree grows. As it leads to better results, we have set up the GS-MG on
the physical domain. For the proposed SCMS-MG preconditioner, observe that the
results behave similar to those for the unit square, however the iteration counts are
much larger, particularly if the Piola transform is used. For the direct composition,
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Taylor-Hood Nédélec Raviart-Thomas
`� p 2 3 5 8 2 3 5 8 2 3 5 8

MINRES, preconditioned with SCMS-MG

5 55 54 49 46 80 74 68 55 44 36 35 29
6 54 58 53 51 76 76 70 63 44 37 36 32
7 54 54 54 53 76 76 71 65 45 37 33 29
8 50 51 55 OoM 71 71 67 65 41 37 33 29

MINRES, preconditioned with standard GS-MG

5 64 167 >1k >1k 84 213 >1k >1k 124 219 >1k >1k

Table 1: Iteration counts for the unit square

Taylor-Hood Nédélec Raviart-Thomas
p ` dof v p dof v p dof v p

2 4 2372 2e-5 1e-5 1637 2e-5 4e-5 869 3e-4 3e-2
5 9348 1e-6 6e-7 6341 1e-6 4e-5 3269 3e-5 2e-2
6 37124 7e-8 4e-6 24965 7e-7 9e-5 12677 7e-6 2e-2
7 147972 2e-8 7e-7 99077 8e-7 1e-4 49925 3e-6 2e-2

5 4 2891 2e-9 4e-8 2066 6e-8 2e-6 1202 9e-7 6e-3
5 10347 2e-9 1e-7 7154 8e-8 5e-6 3890 1e-6 3e-3
6 39083 3e-9 2e-7 26546 9e-7 2e-4 13876 6e-7 3e-3
7 151951 7e-9 4e-7 102194 2e-6 3e-4 52274 6e-7 4e-3

Table 2: Problem size and L2-errors for the unit square

Taylor-Hood Nédélec Raviart-Thomas
`� p 2 3 5 8 2 3 5 8 2 3 5 8

MINRES, preconditioned with SCMS-MG

5 195 190 185 172 257 246 244 206 244 139 128 116
6 208 217 213 199 295 296 280 241 192 170 142 129
7 220 222 232 219 329 330 314 281 213 195 158 140
8 231 239 244 OoM 333 342 333 306 223 200 168 149

MINRES, preconditioned with SCMS-MG-geo

5 72 69 68 72 69 69 65 63 73 62 53 56
6 77 75 73 79 76 74 64 70 71 69 59 63
7 72 71 70 84 79 70 68 74 75 74 64 69
8 74 73 72 OoM 73 73 71 78 71 70 68 74

MINRES, preconditioned with standard GS-MG

5 70 173 >1k >1k 110 225 >1k >1k 182 220 >1k >1k

Table 3: Iteration counts for the quarter annulus (direct composition)

Taylor-Hood Nédélec Raviart-Thomas
`� p 2 3 5 8 2 3 5 8 2 3 5 8

MINRES, preconditioned with SCMS-MG

5 331 331 338 317 288 313 332 305 480 309 295 300
6 407 400 402 371 361 387 405 374 368 344 323 299
7 452 455 455 450 413 450 476 476 418 395 367 341
8 487 485 500 OoM 458 494 556 568 441 438 411 361

MINRES, preconditioned with standard GS-MG

5 70 165 >1k >1k 69 164 >1k >1k 206 199 >1k >1k

Table 4: Iteration counts for the quarter annulus (Piola transform)
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it is possible to improve the convergence significantly by replacing the mass and
stiffness matrix on the parameter domain by a simple tensor-rank-one approximation
of those matrices on the physical domain (SCMS-MG-geo). Note that the tensor-
rank-one approximation does not lead to any additional computational costs after
the assembling phase. The extension of such a rank-one geometry approximation to
the Piola transform is not yet known. For the original SCMS-MG preconditioner,
we have chosen β and σ as for the first model problem. Just for the Raviart-Thomas
smoother for the case with Piola transformation, we have chosen β = 0.0025. For
the rank-one corrected version, we have chosen β = 0.01; the damping has been
chosen based on approximations of constants of the inverse inequality.

As in the case of standard finite elements, there are several possibilities to discretize
the mixed formulation of the Stokes equations. Our experiments indicate that it
might pay off to use the (in terms of degrees of freedom) more expensive variant of
Taylor Hood discretizations than the other variants, particularly because it is known
that that discretization also works for direct composition. The p-robust smoothers
which we have proposed for the Poisson problem can be carried over also to the
Stokes flow problem, however it seems that a further study is necessary concerning
its application in the framework of non-trivial geometry transformations.
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