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Abstract An analysis of the convergence properties of Optimized Schwarz methods
applied as solvers for Poisson’s Equation in a bounded rectangular domain with
Dirichlet (physical) boundary conditions and Robin transmission conditions on the
artificial boundaries is presented. To our knowledge this is the first time that this is
done for multiple subdomains forming a 2D array in a bounded domain.

1 Introduction

Classical Schwarz methods are Domain Decomposition (DD) methods in which
the transmission conditions between subdomains are Dirichlet boundary conditions.
Optimized Schwarz methods are DD methods in which the transmission conditions
are chosen in such a way as to improve the convergence rate with respect to the
classical method [2, 3, 5]. These transmission conditions are optimized approxima-
tions of the optimal transmission conditions, which are obtained by approximating
the global Poincaré-Steklov operator by local differential operators. There is more
than one family of transmission conditions that can be used for a given PDE , each
of these families consisting of a particular approximation of the optimal transmis-
sion conditions. For example, for the problem involving Poisson’s equation, we have
OO0 and OO2 family of transmission conditions. The OO0 family of transmission

José C. Garay
Temple University, Philadelphia, USA , e-mail: jose.garay@temple.edu. Corresponding author.
Supported in part by the U.S. Department of Energy under grant DE-SC0016578.

Frédéric Magoulès
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2 José C. Garay, Frédéric Magoulès and Daniel B. Szyld

conditions is obtained by using the zero-th order approximation of the Poincaré-
Steklov operator, i.e., it is approximated by a constant α , which leads to have Robin
boundary conditions on the artificial boundaries. The OO2 family of boundary con-
ditions involves the use of a differential operator that is a linear combination of the
normal derivative and tangential second derivatives.

Optimized Schwarz methods (OSM) are fast methods in terms of iteration count
when they are used as outer solvers. In [1] it is shown that OSM (as outer solvers) are
faster than GMRES preconditioned with a classical Schwarz preconditioner. Also,
in parallel computations, OSM requires much less communications between pro-
cesses in comparison to Krylov methods. Given that communication dominates the
execution time of solvers in current supercomputer architectures and will also do so
in the upcoming exascale supercomputers, OSM has the potential to be a very good
method for solving problems arising from the discretization of PDEs.

In this paper we analyze the convergence properties of OSM applied as solvers
for Poisson’s Equation in a bounded rectangular domain with Dirichlet (physical)
boundary conditions and Robin transmission conditions. To our knowledge, this is
the first time an analysis of convergence of Optimized Schwarz applied to a problem
defined in a bounded domain and with arbitrary number of subdomains forming a
2D array (i.e., containing cross points) is presented.

2 Equations of OSM for Poisson’s in rectangular domain for the
OO0 case

We want to solve Poisson’s equation in a rectangular domain subject to nonhomo-
geneous Dirichlet boundary conditions, i.e,{

−∆u = f in Ω ,
u = g on ∂Ω .

(1)

where Ω = [0,L1]× [0,L2].
We divide the physical domain into p× q overlapping rectangular subdomains.

To simplify the presentation, we consider square subdomains where each side is of
length H and the same overlap on each side, but the analysis presented here is also
valid for arbitrary rectangles and arbitrary ovelaps. Each of these subdomains is
represented by a pair of indexes, (s,r), with s∈ {1, ..., p} and r ∈ {1, ...,q}. Let h be
the length of the side of each subdomain as if it were a partition with no overlap. Let
us now displace (outward) each of the boundaries of the nonoverlapping subdomains
by a γ amount. We have then overlapping square subdomains with side H = h+2γ

and can use γ as a parameter to quantify the amount of overlap between subdomains.
The Optimized Schwarz iteration process associated with problem (1) and with OO0
transmission conditions is defined, for an interior subdomain (i.e., for 1 < s < p,
1 < r < q ), by
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∆u(s,r)n+1 = f in Ω (s,r)

− ∂u(s,r)n+1
∂x +αu(s,r)n+1 =− ∂u(s−1,r)

n
∂x +αu(s−1,r)

n for x = (s−1)h− γ

∂u(s,r)n+1
∂x +αu(s,r)n+1 = ∂u(s+1,r)

n
∂x +αu(s+1,r)

n for x = sh+ γ

− ∂u(s,r)n+1
∂y +αu(s,r)n+1 =− ∂u(s,r−1)

n
∂y +αu(s,r−1)

n for y = (r−1)h− γ

∂u(s,r)n+1
∂y +αu(s,r)n+1 = ∂u(s,r+1)

n
∂y +αu(s,r+1)

n for x = rh+ γ.

(2)

where ∂

∂x and ∂

∂y are, in this instance, normal derivatives and u(s,r)n+1 is the solution of

the local problem (2) at the (n+ 1) iteration in Ω (s,r). The parameter α is the one
which we want to tune to optimize the convergence rate of the method. Note that
α = 0 would reduce the problem to pure Neuman boundary conditions and therefore
this case is not allowed. The subdomains touching the boundary have one or two
boundaries that are actually physical (not artificial) boundaries. The equations for
the subdomains touching the boundary are similar to (2) with the exception that one
or two of the boundary conditions are Dirichlet, namely, the ones associated to the
physical boundaries.

3 Recasting equations as an equivalent fixed point iteration

By linearity, we can see that the local error (of interior subdomains) of the iteration
process is described by (2) with f = 0. Similar equations can be obtained for subdo-
mains touching the boundary. Using separation of variables, Sturm-Liouville theory
and superposition principle, we can write the local errors in the form of a series [4].
Then, using the non-homogeneous boundary conditions in each local problem, we
obtain a relationship between the error series coefficients at iteration (n+1) and the
ones at iteration n.

Fourier Analysis of solution of PDEs defining the local error

We analyze the local error of an interior subdomain, but the same analysis holds
for subdomains touching the boundary. Let η

(s,r)
n be the local error in Ω (s,r) at the

iteration n. By superposition principle, we can write η
(s,r)
n = η

(s,r)
n,1 +η

(s,r)
n,2 +η

(s,r)
n,3 +

η
(s,r)
n,4 , where η

(s,r)
n,i , i = 1, ...,4, is the solution of (2) with f = 0, and with one non-

homogeneous boundary condition and the rest homogeneous. Then, each part of the
local error η

(s,r)
n can be written as:

η
(s,r)
n,1 (x`,y`) =

∞

∑
m=1

A(s,r)
n,m,1φm(x`)ψm(H− y`) (3)

η
(s,r)
n,2 (x`,y`) =

∞

∑
m=1

A(s,r)
n,m,2φm(y`)ψm(x`) (4)
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η
(s,r)
n,3 (x`,y`) =

∞

∑
m=1

A(s,r)
n,m,3φm(x`)ψm(y`) (5)

η
(s,r)
n,4 (x`,y`) =

∞

∑
m=1

A(s,r)
n,m,4φm(y`)ψm(H− x`), (6)

where φm(x`) = ᾱ

zm
sin
( zmx`

H

)
+cos

( zmx`
H

)
and ψm(x`) = ᾱ

zm
sinh

( zmx`
H

)
+cosh

( zmx`
H

)
with zm satisfying the transcendental equation

tan(z) =
2zᾱ

ᾱ2− z2 ,

ᾱ = αH, and x` and y` are local coordinates related to the global coordinates x and
y by

x` = x− (s−1)h+ γ

y` = y− (r−1)h+ γ. (7)

Note that {φm}m∈N is a complete orthogonal set in [0,H]. Therefore, equations (3)
and (5) can be seen as Generalized Fourier series in x` and equations (4) and (6) as
Generalized Fourier series in y`. Then, we have that

A(s,r)
n,m,1 =

∫ H
0 η

(s,r)
n,1 (x`,yl)

[
ᾱ

zm
sin
( zmx`

H

)
+ cos

( zmx`
H

)]
dx`[

−ᾱ

zm
sinh

(
zm(y`−H)

H

)
+ cosh

(
zm(y`−H)

H

)]∫ H
0

[
ᾱ

zm
sin
( zmx`

H

)
+ cos

( zmx`
H

)]2
dx`

(8)
Let β : N×R→{−1}∪ [0,1] such that

β (m, ᾱ) =

{
−1, if zm < 1
1
2 , if zm ≥ 1

·

Then, with y` = 0 and using integration by parts in (8) we can write

A(s,r)
n,m,1 =

B(s,r)
n,m,1

z1+β (m,ᾱ)
m

[
ᾱ

zm
sinh

( zm
H

)
+ cosh

( zm
H

)] ,
where B(s,r)

n,m,1 is uniformly bounded for all m ∈ N. The same relationship holds be-

tween A(s,r)
n,m,i and uniformly bounded quantities B(s,r)

n,m,i for i∈ {2,3,4}. Plugging these
equalities in (3)-(6) and applying the nonhomogeneous boundary conditions, we ob-
tain the expression of the coefficients at iteration (n+1) in terms of those at iteration
n. For example, with a normalized overlap γ̄ = γ/H, we have for a specific index k,
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B(s,r)
n+1,k,1 =

(
zk +

ᾱ2

zk

)
sinh(2γ̄zk)+2ᾱ cosh(2γ̄zk)(

zk +
ᾱ2

zk

)
sinh(zk)+2ᾱ cosh(zk)

B(s,r−1)
n,k,1

+
∞

∑
m=1

4z4+β (k,ᾱ)
k

[
ᾱ

zk
tanh(zk)+1

](
zm + ᾱ2

zm

)
sin((1−2γ̄)zm)[(

zk +
ᾱ2

zk

)
tanh(zk)+2ᾱ

]
z1+β (m,ᾱ)

m
(
zmz3

k + zkz3
m
)

{
tanh(zm)

[
ᾱ(z2

k + z2
m)sin(zk)− zk(ᾱ

2− z2
m)cos(zk)

]
+ zm(ᾱ

2 + z2
k)sin(zk)

}[
ᾱ

zm
tanh(zm)+1

][
(z2

k − ᾱ)2 sin(2zk)+2zk(ᾱ2 + z2
k + ᾱ)−2ᾱzk cos(2zk)

] B(s,r−1)
n,m,2


+

(
−zk +

ᾱ2

zk

)
sinh((1−2γ̄)zk)(

zk +
ᾱ2

zk

)
sinh(zk)+2ᾱ cosh(zk)

B(s,r−1)
n,k,3

+
∞

∑
m=1

4z4+β (k,ᾱ)
k

[
ᾱ

zk
tanh(zk)+1

](
zm + ᾱ2

zm

)
sin((1−2γ̄)zm)[(

zk +
ᾱ2

zk

)
tanh(zk)+2ᾱ

]
z1+β (m,ᾱ)

m
(
zmz3

k + zkz3
m
) (9)

{
tanh(zm)zk(ᾱ

2 + z2
m)− zm

[
−2ᾱzk +

(ᾱ2−z2
k )sin(zk)+2ᾱzk cos(zk)

cosh(zm)

]}
[

ᾱ

zm
tanh(zm)+1

][
(z2

k − ᾱ)2 sin(2zk)+2zk(ᾱ2 + z2
k + ᾱ)−2ᾱzk cos(2zk)

]B(s,r−1)
n,m,4

 .

Let Bn be the infinite vector containing all the error series coefficients at iteration n,
i.e., Bn = (bn1 ,bn2 , . . .) with bn j ∈

{
B(s,r)

n,k,i : s ∈ {1, . . . , p}, r ∈ {1, . . . ,q}, k ∈ N,
i ∈ {1, . . . ,4}}. Then the relation between coefficients can be written as Bn+1 = T̂ Bn,
where T̂ :R∞→R∞ is an infinite matrix. Note that T̂ = (T̂ 1,1, . . . , T̂ p,q), where T̂ (s,r)

is a local operator such that B(s,r)
n+1 = T̂ (s,r)Bn with B(s,r)

n+1 being a vector containing all
the error coefficients of the local problem (s,r) at iteration (n+1).

Our main result is the following.

Theorem 1. For any positive value of the normalized overlap γ̄ there exist a com-
putable range of values of the normalized boundary parameter ᾱ for which the OSM
iteration given by (2) converges.

For its proof it suffices to show that each of the series in (3)-(6) converge uniformly
and that the error series coefficients tend to zero as the number of iteration goes to
infinity.

4 Approximation of the infinite operator T̂ by a matrix of finite
dimensions

Note that the following statements hold

1. In the r.h.s. of (9), the terms containing the coefficients B(s,r−1)
n,k,i , i = 1,3, decrease

with k.
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2. For a given n ∈ N0, B(s,r−1)
n,m,i is uniformly bounded in m ∈ N and i = 1, ...,4.

Moreover, B(s,r−1)
n,m,i ≤M/zm for all m ∈ N and some M > 0.

3. For any number δ > 0 there exists a number kδ , such that for k > kδ , the sum of
the absolute values of the terms in the r.h.s. of (9) is less than δ .

4. For any number δ > 0 there exists a number mδ , such that for every k ∈ N the
sum of the absolute values of the terms in the r.h.s. of (9) corresponding to for
m > mδ is less than δ .

Let (Bn)|k≤k
δ

denote the vector resulting after discarding all the entries of Bn corre-
sponding to k > kδ . Then, based on the above three facts, we can write

(Bn+1)|k≤k
δ

=
(
T̂ (Bn)

)
|k≤k

δ

= T̂δ

(
(Bn)|k≤k

δ

)
+ξn+1,kδ

((Bn)|k>k
δ

), (10)

where T̂δ is a finite matrix obtained by discarding the rows and columns of T̂ related
to the coefficients pertaining to k > kδ , and ξn+1,kδ

((Bn)|k>k
δ

) is the error obtained

by approximating (Bn+1)|k≤k
δ

by T̂δ

(
(Bn)|k≤k

δ

)
.

We will discuss in the next section situations in which ρ(T̂δ )< 1, i.e., the spectral
radius of T̂δ is less than one. In the rest of this section we show that in addition the
error ξn+1,kδ

((Bn)|k>k
δ

) tends to zero as n→∞, and consequently Bn→ 0 as n→∞.
A necessary condition for convergence of Optimized Schwarz is that Bn→ 0 as

n→ ∞. Note that each entry of ξn+1,kδ
((Bn)|k>k

δ

) is the truncation error that results

after truncating the series in the formulas of the coefficients B(s,r)
n+1,k,i, by keeping

only the terms corresponding to k ≤ kδ . Thus, as it can be seen in (9), each entry of
ξn+1,kδ

((Bn)|k>k
δ

) is just a linear combination of the entries of (Bn)|k>k
δ

. Note also
that the entries of (Bn)|k>k

δ

are linear combinations of the entries of Bn−1. Hence,
based on the four facts from above, we can choose a large enough kδ so that the
entries of (Bn+1)|k>k

δ

and ξn+1,kδ
((Bn)|k>k

δ

) are as small as desired.
Using equation (10) recursively, we obtain the following equation

(Bn+1)|k≤k
δ

= T̂ n+1
δ

((B0)|k≤k
δ

)+
n+1

∑
j=1

T̂ n+1− j
δ

(ξ j,kδ
((B j−1)|k>k

δ

)). (11)

Using (11), the four facts from above, and assuming that the spectral radius of T̂δ

is less than one and that remains practically constant for large values of kδ , it can
be shown that given a 0 < ε < 1 there exists a nε such that ||Bn||∞ ≤ ε||B0||∞ for all
n ≥ nε . Repeating this argument, we can then show that limn→∞ Bn = 0. Hence in
order to prove that Bn→ 0 as n→ ∞, it suffices to show that ρ(T̂δ ) < 1 and that it
remains practically constant for large values of kδ . We show this in the next section.

It can be shown that the series describing the local errors converge uniformly in
Ω (s,r). This implies that if each term of the error series goes to zero as n goes to in-
finity, so will do the series. Thus, given that Bn→ 0 as n→∞, i.e., the coefficients of
the error series go to zero as n goes to infinity, the error of the iterative process con-
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verges to zero as n goes to infinity, which means that Optimized Schwarz converges
for the given Poisson’s problem for any initial error.

5 Spectral Radius of T̂δ

The spectral radius of T̂δ describes the convergence rate of the Optimized Schwarz
method. Thus, we define the optimal normalized boundary parameter ᾱ =αH as the
one which minimizes the spectral radius of T̂δ and thus gives the optimal asymptotic
convergence rate.

The values of the entries of the matrix T̂δ depend on the normalized overlap γ̄ ,
ᾱ and the truncation parameter kδ . The structure of the matrix depends on kδ , p, q
and the way we order the entries of Bn, i.e., the way we order each coefficient B(s,r)

n,k,i
based on its values of s, r, k and i. For the ordering we have chosen, we computed
the spectral radius of the resulting matrix T̂δ , for γ̄ ∈ {0,0.001,0.01,0.04,0.08},
a set of values of ᾱ in the range [0.1,500], kδ ∈ {3,5,10,20,50,100}, and p,q ∈
{4,5,10,20,30}. In these computations we have observed the following.

1. There exist values of ᾱ for which the spectral radius of T̂δ is less than one.
2. For a given γ̄ and the range of ᾱ considered in the experiments, ρ(T̂δ ) has a local

minimum, and it approaches a constant less than one for large values of ᾱ .
3. Given γ̄ , ᾱ , p and q, the value of ρ(T̂δ ) remains practically constant for large

enough kδ (see Figure 2).
4. For a given γ̄ , the optimal spectral radius of T̂δ remains practically constant as p

and q increase.

In Figure 1, the results for the cases γ̄ = 0.001 and γ̄ = 0.01, with p,q = 10,
kδ = 20, ᾱ ∈ [1,100], are shown.

Fig. 1 (a) Spectral Radius of T̂δ vs. ᾱ for γ̄ = 0.001, p,q = 10, kδ = 20 and ᾱ ∈ [0.1,100]. (b)
Spectral radius of T̂δ vs. ᾱ for p,q = 10, kδ = 20, γ̄ = 0.01 and ᾱ ∈ [0.1,100]



8 José C. Garay, Frédéric Magoulès and Daniel B. Szyld

Fig. 2 Spectral radius of T̂δ vs. kδ for p,q = 10, γ̄ = 0.01 and ᾱ = 3.9697

6 Further comments and conclusion

In the case of elliptic problems with varying coefficients, the same procedure can
be applied to obtain an operator T̂ such that Bn+1 = T̂ Bn as long as the coefficients
are separable as products of one-variable functions. In this case, as well as in the
constant coefficients case, the entries of the operator T̂ depend on values and first
derivatives of φm and ψm with m ∈ N at specific points. Note that in the constant
coefficient case an explicit formula can be obtained for φm and ψm. In the varying
coefficients case, an explicit formula for φm and ψm may not always be available.
However, we can still compute values of φm and ψm and their first derivatives at
specific points using numerical methods and then use these values to compute ρ(T̂δ ).

In conclusion, we analyzed the convergence of the Optimized Schwarz method
applied to Poisson’s equation in a bounded rectangular domain subject to nonhomo-
geneous Dirichlet boundary conditions and transmission conditions of the family
OO0. The spectral radius of T̂δ can be less than one for any positive amount of over-
lap. One can obtain the optimal boundary parameter that minimizes this spectral
radius. We outlined a proof showing that this bound on the spectral radius, together
with other results, can guarantee convergence of OSM for the problem studied.
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