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Abstract. The proposed algorithm called the Hybrid Total Finite Ele-
ment Tearing and Interconnecting method (HTFETI) is a variant of the
TFETI domain decomposition method suitable for large-scale problems
with hundreds of thousands of subdomains. The floating subdomains are
gathered into several groups belonging to individual clusters. We use
the new idea consisting in gluing the cluster subdomains using kernel
matrices defined by the rigid body motions. This technique reduces the
size of the coarse problem. While the size of the coarse problem depends
linearly on the number of subdomains in the classical TFETI method,
it depends linearly on the number of clusters in the HTFETI method.
The zero weighted averages across the interfaces of neighbouring subdo-
mains (an alternative to the constraints enforcing the continuity across
the corners used, e.g., in the FETI-DP method) improve conditioning of
the resulting system of linear equations.

1 Introduction

The history of the FETI (Finite Element Tearing and Interconnecting) method
[6] is longer than twenty years and over the years, numerous variants have been
developed (FETI-DP method [2, 5], T(otal)FETI method [4] etc). The important
impulse for development of new FETI variants was given by the implementa-
tion on more sophisticated computer architectures, where parallel processors are
grouped into clusters. From the point of view of minimal communications, it is
reasonable to copy the computer architecture into the FETI method that lead
to the hybrid (two-level) FETI methods. The FETI–FETI-DP method proposed
in [7, 8] combines the classical FETI method used on the global level with the
FETI-DP method used on the clusters. In this paper, we deal with the TFETI–
TFETI method that uses the TFETI method on both levels [3, 10]. It will be
denoted as the H(ybrid)TFETI method. The new approach presented in this
paper is called HTFETIker. In this method the gluing of subdomains (belonging
to one cluster) is done using kernels of the local subdomains. This technique ac-
celerates iterations like in the case of the transformation of basis discussed in [7].
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In the numerical experiments we compare HTFETIker with HTFETIcor method
where the subdomains belonging to one cluster are glued by the Lagrange mul-
tipliers (LMs) corresponding to the corner nodes. Such method is similar to
the FETI–FETI-DP method. The basic idea of the two-level FETI method is
graphically explained in the following benchmark, in which we introduce also
respective notation.

In order to simplify the presentation of the method, we use a simple cube
benchmark with a hierarchical decomposition and discretization depicted in Fig.
1.
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Fig. 1. Two levels of decomposition: 2 clusters (C = 2), 2 subdomains (N = 2), 3
elements (n = 3) in each space dimension

This hierarchical decomposition and discretization consists of three levels:

– Level 1 - decomposition into clusters is controlled by parameters Cx, Cy, and
Cz (numbers of clusters in x, y, and z direction). Each cluster occupies one
computational node.

– Level 2 - each cluster is decomposed into the subdomains controlled by pa-
rameters Nx, Ny, and Nz (numbers of subdomains in x, y, and z direction).

– Level 3 - each subdomain is discretized uniformly by hexahedral finite ele-
ments handled by parameters nx, ny, nz (numbers of elements in x, y, and
z direction).

If, for example, the number of clusters in all directions is the same Cx = Cy =
Cz = 2, the description in the text is simplified to C = 2. This simplified notation
is also applied to subdomains N and elements n.

2 Cluster constraints

2.1 Types of subdomains-gluing

In the following part we are going to focus on the constraints among subdomains
in the cluster. All the details of the HTFETI method and also the derivation of
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the algorithm can be found in [10]. The notation used in this section relates to
the same paper.

Compared to the FETI method, in the described hybrid variant the neighbor-
ing subdomains are grouped into clusters using additional constraints. Together,
with the commonly used joining of subdomains via corner nodes known in the
FETI-DP method, we present a new technique based on the kernels of stiffness
matrices. Such an approach requires a robust algorithm for factorizing singular
matrices but, on the other hand, it simplifies implementation of the HTFETI
method. Implicitly, it enforces zero averages across the faces between the neigh-
bouring subdomain.

For simplification, let us use the cluster consisting of two subdomains Ωj and
Ωk (see Fig. 2). The stiffness matrix of I-th cluster then will be

K̃I =

(
Kj:k B>c,j:k
Bc,j:k O

)
=

Kj O B>c,j
O Kk B>c,k
Bc,j Bc,k O

 (1)

which corresponds to Eq. (14) in [10] if interval j : k consists of j and k only.
Here, Kj and Kk are stiffness matrices, Bc,j , Bc,k are linear constraints keeping
both subdomains together, and O is a zero matrix with the appropriate size. In
the next subsections, let us explain how to choose the blocks Bc,j , Bc,k.

Corner gluing                             Kernel based gluing

3

3

3

3

6

Fig. 2. Two-subdomain bonding, corners versus kernels: 3 forces per corner node (12
LM in total) / 3 forces and 3 moments per interface (6 LM in total).

Corner strategy - HTFETIcor method Using this method, Bc,j , Bc,k are
signed booleans matrices that enforce the connectivity across the corner nodes
(see Fig. 2 left). The structure is similar as matrix of constraints in the FETI
method (commonly denoted as B).

Kernel strategy - HTFETIker method The kernel strategy glues the do-
mains Ωj and Ωk in a weaker sense using the kernel Rj of matrix Kj . Instead of
enforcing relative zero displacements in particular nodes belonging to the inter-
face Γjk = Ωj ∩Ωk, we prescribe constraints acting onto all DOFs belonging to
the face Γjk. The number of these constraints is determined by the defect d of
Kj (and Kk) that is d = 6 for the three-dimensional linear elasticity problems.
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Let Qj be an appropriate permutation matrix separating Rj into two parts:

QjRj =

(
Rj,Ωj\Γjk
Rj,Γjk

)
,

where Rj,Γjk is given by the rows of Rj belonging to the interface Γjk = Ωj∩Ωk
and Rj,Ωj\Γjk contains by the remaining rows. It is required that Rj,Γjk ∈ Rm×d,
where m ≥ d. In the case of a three-dimensional linear elasticity problem, this
requirement is always satisfied if the common interface between two neighboring
subdomains is given by at least three nodes not lying in one line. The parameter
m is then equal to 9 (number of all degrees of freedom belonging to this set of
nodes). Then we define Bc,j and Bc,k as follows:

B>c,j = Q>j

(
O

Rj,Γjk

)
, B>c,k = Q>k

(
O

−Rj,Γjk

)
, (2)

where the permutation matrix Qk maps the rows of −Rj,Γjk (in Ωk) onto the
corresponding rows of Rj,Γjk (in Ωj). The non-sigularity of the matrices Bc,jRj

and Bc,kRk guarantees that the subdomains Ωj and Ωk are properly glued
together [9]. The gluing condition is schematically depicted in the right Fig. 2.
The presented idea can be simply extended to the clusters with more than two
subdomains. The approach is also applicable to non-singular matrices (transient
problems).

Fig. 3. Domain decomposition of Ω body into 2 subdomains Ωi and Ωj .

Example: Constraints assembled from the analytically computed ker-
nel. Let us explain some general ideas regarding the analytical form available for
kernels in linear elasticity . Let the nodes shared by Ωi and Ωj lying on the inter-
face Γi,j = Ωi∩Ωj depicted in Fig. 3 be indexed by the set G = {1, 2, · · · , nΓi,j}.
Let the displacement vector of the g-th node xg = (xg, yg, zg) ∈ Γi,j be denoted
ui,g = (ui,g, vi,g, wi,g) with respect to Ωi and uj,g = (uj,g, vj,g, wj,g) with re-
spect to Ωj . It follows from the mechanical arguments that two subdomains are
kept together by 3 forces and 3 moments acting across the whole interface Γij
that avoids mutual movements and rotations. It can be achieved by zero averages
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of displacements

nΓ∑
g=1

(ui,g − uj,g) = 0,

nΓ∑
g=1

(vi,g − vj,g) = 0,

nΓ∑
g=1

(wi,g − wj,g) = 0,

and rotations

nΓ∑
g=1

((ui,g − uj,g) · yg − (vi,g − vj,g) · xg) = 0,

nΓ∑
g=1

((ui,g − uj,g) · zg − (wi,g − wj,g) · xg) = 0,

nΓ∑
g=1

((vi,g − vj,g) · zg − (wi,g − wj,g) · yg) = 0

across Γi,j . It also guarantees that the subdomains are sufficiently and optimally
bonded together with the minimal number of constraints.

Apart from the natural accelerating property, there is also another significant
feature of kernel-based Bc,i. Since its constraints enforce the equality across the
interface on average, the Dirichlet preconditioner acts on the whole interface as
well and it is completely adopted from (T)FETI method in an unchanged form.

2.2 Rank of the cluster constraint matrix Bc,j:k

Sufficient mutual gluing of all cluster subdomains realized by kernels requires 6
constraints per interface between two neighboring subdomains. The comparison
with the corner strategy will be shown on the cube problem. Since the matrix
Bc,j:k is always assembled without linearly dependent constraints, the rank and
number of rows are equal.

Academic problem For the sake of clarity, the cube problem is uniformly
decomposed into subdomains by setting: C = 1 and N = 2, 3, · · · , 10. Thanks
to a simple cube geometry and the uniform discretization and decomposition,
we can derive the dependency between the number of subdomains N and the
rank of the cluster matrix Bc,j:k. If the corner strategy is used, three following
situations can occur. The node is shared by two subdomains (then it produces
3 · 1 LM), by four subdomains (3 · 3 LM) or by eight subdomains (3 · 7 LM).
In the first case, the subdomains are glued using corner nodes, the dimension of
Bc,j:k is

rank
(
Bcor
c,j:k

)
= 21(N − 1)3 + 54(N − 1)2 + 36(N − 1). (3)

In the case Bc,j:k is assembled via parts of the kernels, each common interface
generates 6 LM and the dimension is

rank
(
Bker
c,j:k

)
= 18N2(N − 1). (4)
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The ratio between “corner” and “kernel” case for N →∞ is

lim
N→∞

rank
(
Bcor
c,j:k

)
rank

(
Bker
c,j:k

) =
7

6
≈ 1.1667. (5)

In the numerical tests presented later we have used a variant with 1000 sub-
domains (N = 10) for each cluster. The kernel strategy exhibits an interesting
property because it provides fewer iterations, although in the corner strategy (in
this particular case) the matrix Bcor

c,j:k contains 23.5% more constraints.

3 Numerical test

The described algorithms were implemented into our ESPRESO (ExaScale PaR-
allel FETI SOlver) package developed at IT4Innovations National Supercomput-
ing Center in Ostrava, the Czech Republic [11, 1].

For these computations we used facilities of IT4Innovations Czech national
supercomputing center (www.it4i.cz), namely Salomon cluster. The Salomon
cluster consists of 1008 compute nodes. Each node contains 24 core Intel Xeon
E5-2680v3 processors and 128 GB RAM. The interconnect is a 7D Enhanced
hypercube InfiniBand.

We varied the decomposition and discretization parameters on a cube bench-
mark test in order to demonstrate the scalability of our method. The cube (30
mm) is made of steel with the following parameters: Young’s modulus E =

2.1 · 105 MPa, Poisson’s ratio µ = 0.3, density ρ = 7850 kg/m
3
, and gravity

constant gx1 = 9.81 m/s
2
. The cube is fixed on the plane x = 0, and loaded by

its own weight in the x direction.
The problem is solved by the projected preconditioned conjugate gradient

method. The iterations are stopped after the relative preconditioned residual is
reduced by stopping criterion to preconditioned residual ε = 1 · 10−4. The first
test shows weak scalability for the benchmark depicted in Fig. 1 with one cluster,
a fixed number of DOFs on each subdomain, and a variable number of subdo-
mains. The considered parameters are: C = 1, N = 2, 3, · · · , 12 and n = 10.
The initial and last variant contain 27, 783 DOFs and 5, 314, 683 DOFs, respec-
tively. The linear system is preconditioned by the Dirichlet preconditioner. In
Fig. 4 left, the problem is decomposed uniformly. Naturally, the TFETI method
provides the best results. For the HTFETIker method, the number of iterations
slightly increases with the increasing number of subdomains N3. The hybrid
variant with corners (the HTFETIcor method) exhibits the worst results of all
three methods. On the other hand when METIS is used as the decomposer (Fig.
4 right), the TFETI method can lose the scalability due to the irregular inter-
face. The HTFETIcor method is also influenced by the decomposition, but the
HTFETIker method keeps the relatively same performance (a slightly increasing
number of iterations) as in the uniform decomposition case.

Result of similar tests with a larger number of DOFs per subdomain (pa-
rameters: C = 1, N = 2, 3, · · · , 6, n = 20, DOFs ranging from 206, 763 to
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Fig. 4. Decomposition: uniform-left, METIS-right; C = 1, N = 2, 3, · · · , 12, n = 10.
Number of unknowns ranges from 27, 783 to 5, 314, 683.

5, 314, 683) are displayed in Fig. 5. For a uniform decomposition, the TFETI and
HTFETIker method exhibit an equal number of iterations. It implies that if the
interface is large enough (in this case 20× 20 nodes versus 10× 10), the TFETI
method can be replaced by the HTFETIker method containing one cluster. How-
ever, the HTFETIker method is more expensive in preprocessing and partially
also during the iterations. On the other hand, as it was already observed, when
METIS is used, the TFETI method loses scalability faster, and therefore the
utilization of the HTFETI method can be meaningful.
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Fig. 5. Decomposition: uniform-left, METIS-right; C = 1, N = 2, 3, · · · , 6, n = 20.
Number of unknowns from 206, 763 to 5, 314, 683.

The next set of numerical experiments in Fig. 6 shows weak scalability with
the lumped preconditioner (the number of iterations on the left, solver time on
the right) up to 1, 259, 712 subdomains and 10.4 billion unknowns. Because of
the very large number of subdomains, the TFETI method cannot be used for all
the settings, and for this reason, it is not included in this comparison. However,
both diagrams show weak scalability of the HTFETI method. It is also seen that
the variant based on kernels requires three times fewer iterations compared to
the case with corners.
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Fig. 6. HTFETI, uniform decomposition; C = 2,3,...,12, N = 9, n = 14. Number of
unknowns from 4, 858, 2831 to 10, 390, 538, 091.

4 Conclusion

This work presents the Hybrid variant of the Total FETI method.The main idea
stems from the work published in [7], where the FETI and FETI-DP method are
combined. Here, the presented version is the TFETI-TFETI method that uses
the TFETI method on both levels. In the newly proposed variant, the subdo-
mains are not glued together by corners but through the whole interface between
each neighboring pair of subdomains via the kernels of the stiffness matrices. The
numerical tests show efficiency of our algorithm. The very promising results were
obtained for non-uniform decompositions. The Hybrid TFETI method based on
kernels exhibits better weak scalability compared to the TFETI method.
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