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1 Introduction

Coarse spaces are at the heart of many domain decomposition algorithms. Building
on the foundation laid in [10], we have an ongoing interest in the development of
coarse spaces based on energy minimization concepts; see [2, 4, 5, 6].

This paper is a short report on a project which substantially extends results in
a DD21 conference paper, [7], and which now has resulted in an archival publica-
tion [8]. Our work primarily concerns two-level overlapping Schwarz methods and
is exclusively for low order, conforming finite element approximations of three–
dimensional elliptic problems. What is new in this paper are some variants of the
algorithms reported in [8]. The focus of this study is the development of smaller
coarse spaces which, to the extent possible, will give us similar rates of convergence
as for those developed in the past. Extensive large scale experiments show that this
is possible and important; see e.g. [11] in these proceedings.

The domain of a scalar elliptic or elasticity operator is partitioned into non-
overlapping subdomains Ωi each of which is the union of elements. We use nodal
equivalence classes of finite element nodes on the interface, i.e., the nodes that be-
long to more than one subdomain boundary, in the construction of our coarse spaces.
Two such nodes belong to the same equivalence class if they belong to the same set
of subdomain boundaries. The coarse nodes are associated with those equivalence
classes which are maximal in the sense that they are not subsets of any other. In
many cases, the coarse nodes are simply the vertices of the subdomains but there
are also other cases which are identified automatically by our algorithm. Each in-
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terface node n is thereby associated with a set of coarse nodes Cn. A coarse node
c is included in Cn if the equivalence class of n is a subset of that of c. For each
coarse node, we will construct one coarse basis function for scalar elliptic and six
for elasticity problems, which span the coarse space.

2 Elliptic Problems and the Coarse Basis Functions

In our study, we consider scalar elliptic problems defined in terms of a bilinear form∫
Ω

ρ∇u ·∇v dx

where ρ(x)> 0 and constant = ρi in each subdomain Ωi into which Ω has been par-
titioned. The functions u and v belong to a subspace of H1(Ω) subject to a Dirichlet
condition on ∂Ω or a subset thereof. We also consider linear, compressible elasticity
defined by a bilinear form

2
∫

Ω

µ ε(u) : ε(v) dx+
∫

Ω

λ div uuu div vvv dx,

where µ(x) and λ (x) are the positive Lamé parameters, εi j(u) = 1
2 (

∂ui
∂x j

+
∂u j
∂xi

), and

ε(u) : ε(v) := ∑
3
i=1 ∑

3
j=1 εi j(u)εi j(v). The Lamé parameters are also assumed con-

stant, µi and λi = (2µiνi)/(1− 2νi), in Ωi, with 0 < νi < 1/2. This variational
problem is posed in a subspace of (H1(Ω))3 determined by a Dirichlet condition.
The energy of these systems are defined by these bilinear forms.

Three recipes for the construction of coarse space elements have been developed
in [8], each defined in terms of a partition of unity for each interface node. The
simplest one, referred to as Option 1, is given by

pnc := 1/Nc, (1)

where Nc := |Cn|. Of the two other recipes, the one relevant for this paper is the
third defined in terms of di(n), i = 1, . . . ,Nc, the distances between an interface node
n and the ci ∈ Cn, and given by

pnci :=
1/di(n)

1/d1(n)+1/d2(n)+ . . .+1/dNc(n)
. (2)

This Option 2 is the only one used in the experiments reported in this paper.
The values of these functions are used as Dirichlet data and extended into the in-

terior of the subdomains, minimizing the energy, and resulting in continuous coarse
basis functions for scalar elliptic problems. The support of a coarse basis function
associated with the coarse node c is the union of the closure of all Ω j with c on their
boundaries. For elasticity, we multiply the scalar function pnc by a 3×6 matrix with
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columns forming a basis for the space of rigid body modes prior to extending the
resulting values on the interface into the interiors of the subdomains. We note that
the resulting finite element functions will all be continuous given that there are no
jumps in the Dirichlet data across the interface.

The choice of minimal energy extensions results in coarse basis functions which
sum to 1, in any subdomain that does not touch the Dirichlet boundary, for the scalar
elliptic problems and rigid body modes for elasticity. This fact shows that the null
space condition will be satisfied, a condition necessary to obtain a convergence rate
bounded independently of the number of subdomains for any domain decomposition
algorithm. This approach works well even for subdomains with irregular boundaries
such as those obtained from mesh partitioners. The crucial part of the analysis of an
overlapping Schwarz algorithm requires a bound on the sum of the energy of the
components of the coarse space and of the local spaces of finite element functions,
supported in the overlapping subdomains chosen to define the local problems, in
terms of the energy of the sum of these functions; see, e.g., [15, Chapter 2]. The
choice of minimal energy extensions therefore makes sense also for this reason.

The development of domain decomposition theory has often focused on the ef-
fect of large discontinuities of the coefficient. Thus, for iterative substructuring algo-
rithms, based on non-overlapping subdomains, a number of strong results have been
developed for elliptic problems where the coefficients are constant or vary slowly
inside the subdomains but without any restrictions on their variation across the inter-
face between the subdomains; see, e.g., [15, Chapters 4–6] and [14]. Many of these
algorithms are well-defined for arbitrary subdomains although the theory has been
fully developed mostly for subdomains that are tetrahedral or unions of a few large
tetrahedra; we note that some of the standard tools now have been extended to Lip-
schitz subdomains, see [8]. In contrast, the theory for two–level additive Schwarz
methods is developed only for constant coefficients in [15, Section 3.2]. However,
the classical coarse spaces for these Schwarz algorithms have been shown to be sta-
ble for quasi–monotone coefficients in [9]; for a related condition, see Assumption 1
of this paper. The results in [9] considerably expanded the class of subdomain co-
efficients for which results quite similar to those for constant coefficients became
possible.

To derive the final bounds for our overlapping Schwarz algorithms, we also need
to consider the components associated with local problems on overlapping subdo-
mains, which are often constructed by extending the nonoverlapping subdomains,
Ωi, into which the given domain Ω has been decomposed, by adding one or a few
layers of elements. Observing that we need solvers for Dirichlet problems on the
original subdomains Ωi to construct the coarse basis functions, we will in some of
our numerical experiments instead use the Ωi as part of the covering. In addition, to
cover all of the domain Ω , we can then use boundary layers, which are unions of
elements which include all points within a minimal distance δi to the boundary of
an individual Ωi. As an alternative, we also use sets created by adding one or more
element layers to the closure of the individual subdomain faces.

We note that no new ideas are required to complete the part of the analysis re-
lated to these locally supported subspaces; cf. [15, Subsection 3.2] and the discus-
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sion in [6, Section 3]. Therefore, we have been able to focus on developing the
coarse spaces and bounds for the coarse component, which are always required in
the analysis of any Schwarz algorithm; see [15, Subsection 2.3].

The subdomains, Ωi, are unions of elements, that form quasi–uniform meshes
for each subdomain, and often have irregular boundaries, in particular, if they have
been generated by a mesh partitioner. Some of the tools used in our analysis, such as
a trace theorem, will require that the subdomains are Lipschitz. We note that in our
previous studies of two-dimensional problems, [3, 6], we have been able to extend
our analysis even to subdomains with fractal boundaries assuming only that they are
uniform in the sense of Jones [12].

We note from formula (1) that pnc is the same for all n in a nodal equivalence class
and for a particular c∈Cn; in the case of tetrahedral subdomains, the basis functions
constructed will be built from the face and edge functions, θF and θE , used exten-
sively in the development of iterative substructuring algorithms as in [15, Chapters
4-6]. The fact that these functions are piecewise constant causes large changes in
the coarse basis functions across boundaries between equivalence classes, resulting
in logarithmic factors, (1+ log(Hi/hi)), in our estimate of the energy of the coarse
basis functions; cf. [15, Lemma 4.25] for a bound on the energy of the classical face
function θF . Here, Hi is the diameter of Ωi and hi the diameter of its smallest ele-
ment. In [8], we have obtained the same quality bound for Lipschitz subdomains by
generalizing bounds for the face and edge functions for subdomains to the Lipschitz
case. By using the alternative (2), we obtain smoother coarse basis functions and
improved bounds.

3 Assumptions and Major Results

We will now consider two different assumptions on the coefficient µ of the elasticity
problem. The same assumptions are also used for the coefficient, ρ, of the scalar
elliptic problems.

Assumption 1 (Quasi-monotone face-connected paths) Let c be any coarse node
of Ωi and Sc be the index set of all subdomains containing c on their boundaries.
Select jc ∈Sc such that µ jc ≥ µ j for all j ∈Sc. Assume that there exists a constant
C and for any i ∈Sc a sequence {i = j0

c , j1
c , ..., jp

c = jc}, all in Sc, such that µi ≤
Cµ j`c

and that Ω j`−1
c

and Ω j`c
have a subdomain face F j`−1

c , j`c
in common for all `=

1, . . . , p and i = 1, . . . ,N. In the case that c ∈ ∂Ω , we also assume that ∂Ω jc ∩∂Ω

contains at least one subdomain face.

In other words, Assumption 1 means that there is a face connected path between
Ωi and Ω jc such that the Lamé parameter µi is no greater than a constant times
the Lamé parameter of any subdomain along the path. This assumption is similar
to the quasi-monotonicity assumption of [9]. We will also work with an additional
assumption.
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Assumption 2 (Quasi-monotone edge-connected paths) Using the same notation
as in Assumption 1, assume that there exists a sequence {i = j0

c , j1
c , ..., jp

c = jc}, all
in Sc, such that ρi ≤ Cρ j`c

and Ω j`−1
c

and Ω j`c
have at least a subdomain edge in

common for all ` = 1, . . . , p and i = 1, . . . ,N. In the case that c ∈ ∂Ωi also assume
that ∂Ω jc ∩∂Ω contains at least one subdomain edge.

We note that Assumption 2 is weaker than Assumption 1 since we have more
options of continuing at every step in the construction of a path. We note that in our
proof for linear elasticity, we have had to use the more restricted Assumption 1. The
need for this has also been demonstrated by experiments reported in [8].

Our analysis can closely follow the theory as developed in [15, Section 2.3]; a
main effort is directed to constructing a coarse component u0, for any u, with a good
bound on the energy E(u0) in terms of E(u), the energy of the function u..

With estimates for our coarse interpolants in hand, we can then perform a local
analysis for an overlapping additive Schwarz algorithm using basically the same
approach as in [3] or [6]. This involves a set of partition of unity functions {ϑ j}N

j=1
with 0≤ ϑ j ≤ 1, |∇ϑ j| ≤C/δi, and with ϑ j supported in the closure of a subdomain
which is part of the covering of Ω . Here, δ j is the thickness of the part of subdomain
which is common to its neighbors. Given an estimate of the form

E(u0)≤CΘ(H/h)E(u),

where H/h := maxi Hi/hi, the resulting condition number estimate for the precon-
ditioned operator is given by

κ(M−1A)≤CΘ(H/h)(1+H/δ ), (3)

where H/δ := maxi Hi/δi. For Option 2, we can prove a uniform bound of Θ(H/h)
if Assumption 1 is satisfied. In addition, we have a bound Θ(H/h)≤ (1+ log(H/h))
for the scalar case if Assumption 2 holds.

We note that our coarse spaces could alternatively be combined with local spaces
previously developed for iterative substructuring algorithms such as those of [10];
see also [15, Chapter 5].

4 Numerical Results

Numerical results are presented in this section to help confirm the theory and to
demonstrate some advantages of the face-based local spaces. We note that large-
scale experiments with closely related algorithms are also reported in [11]. Our
results are for a unit cube domain with homogeneous essential boundary conditions
applied to one of its faces. Condition numbers (cond) of the preconditioned operator
and the number of iterations (iter) needed to achieve a relative residual tolerance of
10−8 for the solution of the linear system of equations, Ax = b, with random right-
hand-side vectors b are reported. The domain is decomposed into smaller cubic
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subdomains, and formula (2) is used to construct the coarse space. We note that
the interface preconditioner is of a hybrid type which employs overlapping Schwarz
local spaces as in [5]. We also note that at the end of each step of the iteration, the
residual will vanish at all interior nodes of the subdomains. We use the lowest order
hexahedral nodal elements and Matlab.

Three different local spaces are considered. The standard one starts with all the
nodes of a non-overlapping subdomain and adds to them nodes from an integer
number of layers of elements adjacent to the original nodes. The boundary layer
local spaces are identical to the standard ones with the exception that the starting
nodes only include those on the subdomain interfaces. We note these local spaces
were considered previously in [5]. Finally, the face local spaces of this study start
with nodes in the closure of each subdomain face and add layers of elements just
as for the other two local spaces. These spaces locally precondition an interface
problem.

Our example has the overlap parameter H/δ = 3 fixed while the number of ele-
ments (H/h) in each subdomain direction increases. In addition to condition num-
bers and iteration counts, we also report in Table 1 the number of non-zeros in the
sparse Cholesky factorizations for the local spaces. Specifically, rnnz denotes these
numbers normalized by the number for the standard local space. Further, we report
estimates of the maximum eigenvalue λmax of the preconditioned operator.

Consistent with the theory, condition numbers for the face local spaces exhibit
sub-linear growth with respect to H/h. Although the number of iterations and con-
dition numbers are noticeably larger compared with the standard and boundary layer
spaces, the number of non-zeros in the local factorizations are considerably smaller
for the face spaces. One reason for the larger condition numbers of the face spaces
are the larger values of λmax shown in Table 1. The larger values can be explained
using a coloring argument. For instance, there are 12 different faces which include
each subdomain vertex in their closures. In contrast, each subdomain vertex is in-
cluded in only 8 of the standard or boundary layer spaces.

Table 1 Results for a unit cube decomposed into 64 smaller cubic subdomains with overlap
H/δ = 3 for three different local spaces. The material properties are constant with ρ = 1 for scalar
problems and µ = .385, λ = 1.54 for elasticity problems.

standard boundary layer face
H/h iter cond λmax iter cond rnnz λmax iter cond rnnz λmax

scalar problem results
3 26 14.1 8.2 27 14.8 0.47 8.2 39 32.7 0.18 12.1
6 28 17.7 8.2 31 18.9 0.77 8.2 50 40.9 0.25 12.0
9 30 19.7 8.2 33 21.1 0.80 8.2 55 45.9 0.28 12.0
12 30 30.0 8.2 33 22.5 0.87 8.2 58 49.6 0.30 12.0

elasticity problem results
3 33 13.6 8.2 34 14.4 0.47 8.2 47 30.9 0.17 12.1
6 36 15.8 8.2 38 16.8 0.69 8.2 59 35.3 0.23 12.0
9 37 17.1 8.2 40 18.2 0.78 8.2 62 38.7 0.26 11.9
12 38 18.0 8.2 41 19.1 0.78 8.2 64 41.2 0.27 11.9
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Normalized solution times for the preconditioned conjugate gradient algorithm
applied to an elasticity problem (see bottom half of Table 1) are shown in Figure 1
for the boundary layer and face local spaces. Notice for all values of H/h that the
normalized times are less than 1 for the boundary layer local spaces. Remarkably,
the smallest times are achieved using the face local spaces for H/h > 5 even though
the number of iterations are larger than those for the other two local spaces. The
improved performance here can be attributed to the much smaller factorization sizes
for the face spaces.

Fig. 1 Elasticity problem solution times for the preconditioned conjugate gradient algorithm nor-
malized with respect to solution times for the standard local space.

As found in [5], the number of iterations can be reduced significantly, for all
three local spaces, by dividing each element in the right-hand-side vectors for the
local solvers by the number of local spaces which share this element. Although this
results in a non-symmetric preconditioner, reduced solution times can be achieved
as for restricted additive Schwarz preconditioners [1]. As a final note, for parallel
computations, it makes sense to assign the work for each face to just one of the
two subdomains, i.e. processors, which contain it. To achieve good load balance, an
assignment algorithm can be used to approximately minimize the maximum work
for any one processor.
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