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This volume contains a selection of 53 papers submitted to the 24th International
Conference on Domain DecompositionMethods, hosted by the University of Bergen
in cooperation with the Western Norway University of Applied Sciences, and held
in Spitsbergen at Svalbard, Norway, February 6–10, 2017.

Background of the Conference Series

With its first meeting in Paris in 1987, the International Conference on Domain
Decomposition Methods has been held in 15 countries in Asia, Europe, and North
America, and now for the first time north of 780 in the kingdom of the Polar Bears.
The conference is held at roughly 18-months intervals. A complete list of 25 meet-
ings appears below.

Domain decomposition is often seen as a form of divide-and-conquer for mathe-
matical problems posed over a physical domain, reducing a large problem into a col-
lection of smaller problems, each of which is much easier to solve computationally
than the undecomposed problem, and most or all of which can be solved indepen-
dently and concurrently, and then solving them iteratively in a consistent way. Much
of the theoretical interest in domain decomposition algorithms lies in ensuring that
the number of iterations required to converge is very small. Domain decomposition
algorithms can be tailored to the properties of the physical system as reflected in
the mathematical operators, to the number of processors available, and even to spe-
cific architectural parameters, such as cache size and the ratio of memory bandwidth
to floating point processing rate, proving it to be an ideal paradigm for large-scale
simulation on advanced architecture computers.

The principle technical content of the conference has always been mathemati-
cal, but the principle motivation has been to make efficient use of distributed mem-
ory computers for complex applications arising in science and engineering. While
research in domain decomposition methods is presented at numerous venues, the
International Conference on Domain Decomposition Methods is the only regularly
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occurring international forum dedicated to interdisciplinary technical interactions
between theoreticians and practitioners working in the development, analysis, soft-
ware implementation, and application of domain decomposition methods.

As we approach the dawn of exascale computing, where we will command 1018
floating point operations per second, clearly efficient and mathematically well-
founded methods for the solution of large-scale systems become more and more
important-as does their sound realization in the framework of modern HPC archi-
tectures. In fact, the massive parallelism, which makes exascale computing possible,
requires the development of new solutions methods, which are capable of efficiently
exploiting this large number of cores as well as the connected hierarchies formemory
access. Ongoing developments such as parallelization in time asynchronous iterative
methods, or nonlinear domain decomposition methods show that this massive par-
allelism does not only demand for new solution and discretization methods, but also
allowsto fosterthe development of new approaches.

Here is a list of the 25 first conferences on Domain Decomposition:

1. Paris, France, January 7-9, 1987
2. Los Angeles, USA, January 14-16, 1988
3. Houston, USA, March 20-22, 1989
4. Moscow, USSR, May 21-25, 1990
5. Norfolk, USA, May 6-8, 1991
6. Como, Italy, June 15-19, 1992
7. University Park, Pennsylvania, USA, October 27-30�, 1993
8. Beijing, China, May 16-19, 1995
9. Ullensvang, Norway, June 3-8, 1996
10. Boulder, USA, August 10-14, 1997
11. Greenwich, UK, July 20-24, 1998
12. Chiba, Japan, October 25-20, 1999
13. Lyon, France, October 9-12, 2000
14. Cocoyoc, Mexico, January 6-11, 2002
15. Berlin, Germany, July 21-25, 2003
16. New York, USA, January 12-15, 2005
17. St. Wolfgang-Strobl, Austria, July 3-7, 2006
18. Jerusalem, Israel, January 12-17, 2008
19. Zhangjiajie, China, August 17-22, 2009
20. San Diego, California, USA, February 7-11, 2011
21. Rennes, France, June 25-29, 2012
22. Lugano, Switzerland, September 16-20, 2013
23. Jeju Island, Korea, July 6-10, 2015
24. Spitsbergen, Svalbard, Norway, February 6-10, 2017
25. St. John’s, Newfoundland, Canada, July 23-27, 2018
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International Scientific Committee on Domain Decomposition Methods

• Petter Bjørstad, University of Bergen, Norway
• Susanne Brenner, Louisiana State University, USA
• Xiao-Chuan Cai, CU Boulder, USA
• Martin Gander, University of Geneva, Switzerland
• Laurence Halpern, University Paris 13, France
• David Keyes, KAUST, Saudi Arabia
• Hyea Hyun Kim, Kyung Hee University, Korea
• Axel Klawonn, Universität zu Köln, Germany
• Ralf Kornhuber, Freie Universität Berlin, Germany
• Ulrich Langer, University of Linz, Austria
• Alfio Quarteroni, EPFL, Switzerland
• Olof Widlund, Courant Institute, USA
• Jinchao Xu, Penn State, USA
• Jun Zou, Chinese University of Hong Kong, Hong Kong

About the 24th. Conference

The twenty-fourth International Conference on Domain Decomposition Methods
had close to 200 participants from about 30 different countries. The conference con-
tained 12 invited presentation selected by the International Scientific Committee,
fostering both experienced and younger scientists, 19 minisymposia around specific
topics, 3 contributed sessions, and a poster session. The present proceedings con-
tain a selection of 53 papers grouped into three separate groups: 8 plenary papers,
41 minisymposia papers, and 4 contributed papers.

Sponsoring Organizations

• Department of Informatics, University of Bergen
• Simula Research Laboratory
• Faculty of Engineering and Science, WNUAS
• SparebankenVest Bergen
• The Research Council of Norway
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• On nonlinear adaptivity with heterogeneity, Jed Brown (University of Colorado
Boulder, USA)

• Overlapping methods for high-contrast multiscale problems, Juan Carlos Galvis-
Arrieta (Universidad Nacional de Colombia)

• Domain Decomposition for high frequency Helmholtz problems, Ivan Graham
(University of Bath, UK)

• PDE based mesh generation: domain decomposition approaches, Ron Haynes
(Memorial University, Canada)

• Robust Preconditioners for Coupled Problems, Xiaozhe Hu (Tufts University,
USA)

• Modeling and discretization of thin inclusions for flow in deformable porous me-
dia, Jan Nordbotten (University of Bergen, Norway)

• Domain decomposition based methods for multiphysics problems, Alfio Quar-
teroni (Ecole polytechnique fédérale de Lausanne, Switzerland)

• Recent advances on adaptive multilevel BDDC methods for div- and curl-
conforming spaces, Stefano Zampini (KAUST, Saudi Arabia)

• Communication avoiding iterative solvers and preconditioners, Laura Grigori
(Inria Paris and Laboratoire J.L. Lions UPMC, France)

• Impact of high abstraction/high performance finite element software in biomedi-
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Robust Block Preconditioners for Biot’s Model

James H. Adler, Francisco J. Gaspar, Xiaozhe Hu, Carmen Rodrigo, and Ludmil
T. Zikatanov

Abstract In this paper, we design robust and efficient block preconditioners for the
two-field formulation of Biot’s consolidation model, where stabilized finite-element
discretizations are used. The proposed block preconditioners are based on the well-
posedness of the discrete linear systems. Block diagonal (norm-equivalent) and
block triangular preconditioners are developed, and we prove that these methods
are robust with respect to both physical and discretization parameters. Numerical
results are presented to support the theoretical results.

1 Introduction

In this work, we study the quasi-static Biot’s model for soil consolidation. For lin-
early elastic, homogeneous, and isotropic porous medium, saturated by an incom-
pressible Newtonian fluid, the consolidation is modeled by the following system of
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partial differential equations (see [8]):

equilibrium equation: −divσ
′+α∇ p = g, inΩ , (1)

constitutive equation: σ
′ = 2µε(u)+λ div(u)I, inΩ , (2)

compatibility condition: ε(u) =
1
2
(∇u+∇ut), inΩ , (3)

Darcy’s law: w =−K∇p, inΩ , (4)
continuity equation: −α div∂tu−divw = f , inΩ , (5)

where λ and µ are the Lamé coefficients, α is the Biot-Willis constant (assumed to
be one without loss of generality), K is the hydraulic conductivity (ratio of the per-
meability of the porous medium to the viscosity of the fluid), I is the identity tensor,
u is the displacement vector, p is the pore pressure, σ ′ and ε are the effective stress
and strain tensors for the porous medium, and w is the percolation velocity of the
fluid relative to the soil. The right-hand-side term, g, is the density of applied body
forces and the source term f represents a forced fluid extraction or injection process.
Here, we consider a bounded open subset, Ω ⊂ Rd , d = 2,3 with regular boundary
Γ . This system is often subject to the following set of boundary conditions:

p = 0, for x ∈ Γ t , σ
′n= 0, for x ∈ Γt ,

u= 0, for x ∈ Γ c, w ·n= 0, for x ∈ Γc,

where n is the outward unit normal to the boundary, Γ = Γ t ∪Γ c, with Γt and
Γc being open (with respect to Γ ) subsets of Γ with nonzero measure. These, or
similar conditions, along with appropriate initial conditions for the displacement
and pressure, complete the system.

Suitable discretizations yield a large-scale linear system of equations to solve at
each time step, which are typically ill-conditioned and difficult to solve in prac-
tice. Thus, iterative solution techniques are usually considered. For the coupled
poromechanics equations considered here, there are two typical approaches: fully-
coupled or monolithic methods and iterative coupling methods. Monolithic tech-
niques solve the resulting linear system simultaneously for all the involved un-
knowns. In this context, efficient preconditioners are developed to accelerate the
convergence of Krylov subspace methods and special smoothers are designed in a
multigrid framework. Examples of this approach for poromechanics are found in
[7, 14, 16, 25, 17, 23, 5] and the references therein. Iterative coupling [22, 20],
in contrast, is a sequential approach in which either the fluid flow problem or
the geomechanics part is solved first, followed by the solution of the other sys-
tem. This process is repeated until a converged solution within a prescribed tol-
erance is achieved. The main advantage of iterative coupling methods is that ex-
isting software for simulating fluid flow and geomechanics can be reused. These
type of schemes have been widely studied [28, 9, 4, 6]. In particular, in [11] and
[31] a re-interpretation of the four commonly used sequential splitting methods as
preconditioned-Richardson iterations with block-triangular preconditioning is pre-
sented. Such analysis indicates that a fully-implicit method outperforms the con-
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vergence rate of the sequential-implicit methods. Following this idea a family of
preconditioners to accelerate the convergence of Krylov subspace methods was re-
cently proposed for the three-field formulation of the poromechanics problem [10].

In this work, we take the monolithic approach and develop efficient block precon-
ditioners for Krylov subspace methods for solving the linear systems of equations
arising from the discretization of the two-field formulation of Biot’s model. These
preconditioners take advantage of the block structure of the discrete problem, de-
coupling different fields at the preconditioning stage. Our theoretical results show
their efficiency and robustness with respect to the physical and discretization param-
eters. Moreover, the techniques proposed here can also be used for designing fast
solvers for the three-field formulation of Biot’s model.

The paper is organized as follows. Section 2 introduces the stabilized finite-
element discretizations for the two-field formulation and the basics of block pre-
conditioners. The proposed block preconditioners are introduced in Section 3. Fi-
nally, in Section 4, we present numerical experiments illustrating the effectiveness
and robustness of the proposed preconditioners and make concluding remarks in
Section 5.

2 Two-Field Formulation

First, we consider the two-field formulation of Biot’s model (1)-(5), where the un-
knowns are the displacement u and the pressure p. By considering appropriate
Sobolev spaces and integration by parts, we obtain the following variational form:
find u(t) ∈H1

0 (Ω) and p(t) ∈ H1
0 (Ω), such that

a(u,v)−α(divv, p) = (g,v), ∀v ∈H1
0 (Ω), (6)

−α(div∂tu,q)−ap(p,q) = ( f ,q), ∀q ∈ H1
0 (Ω), (7)

where

a(u,v) = 2µ

∫
Ω

ε(u) : ε(v)+λ

∫
Ω

divudivv and ap(p,q) =
∫

Ω

K∇p ·∇q.

Here, we assume the above holds for fixed values of t in some time interval, (0, tmax].
The system is then completed with suitable initial data u(0) and p(0).

2.1 Finite-Element Method

We consider two stable discretizations for the two-field formulation of Biot’s model
proposed in [29]: P1-P1 elements and the Mini element with stabilization. The fully
discretized scheme at time tn, n = 1,2, . . . is as follows:
Find un

h ∈ Vh ⊂H1
0 (Ω) and pn

h ∈ Qh ⊂ H1
0 (Ω), such that,
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a(un
h,vh)−α(divvh, pn

h) = (g(tn),vh), ∀vh ∈ Vh, (8)

−α(div ∂̄tu
n
h,qh)−ap(pn

h,qh)−ηh2(∇∂̄t pn
h,∇qh) = ( f (tn),qh), ∀qh ∈ Qh, (9)

where ∂̄tu
n
h := (un

h−un−1
h )/τ , ∂̄t pn

h := (pn
h− pn−1

h )/τ , and η represents the stabi-
lization parameter. Here, Vh and Qh come from the P1-P1 or Mini element. At each
time step, the linear system has the following two-by-two block form:

A x= b, A =

(
Au αBT

αB −τAp−ηh2Lp

)
, x=

(
u
p

)
, and b=

(
fu
fp

)
, (10)

where a(u,v)→ Au, −(divu,q)→ B, ap(∇p,∇q)→ Ap, and (∇p,∇q)→ Lp rep-
resent the discrete versions of the variational forms.

2.2 Block Preconditioners

Next, we introduce the general theory for designing block preconditioners of Krylov
subspace iterative methods [24, 27]. Let X be a real, separable Hilbert space
equipped with norm ‖ · ‖X and inner product (·, ·)X . Also let A : X 7→ X ′ be
a bounded and symmetric operator induced by a symmetric and bounded bilinear
form L (·, ·), i.e. 〈A x,y〉= L (x,y). We assume the bilinear form is bounded and
satisfies an inf-sup condition:

|L (x,y)| ≤ β‖x‖X‖y‖X , ∀x,y ∈X and inf
x∈X

sup
y∈X

L (x,y)

‖x‖X‖y‖X
≥ γ > 0.

(11)

2.2.1 Norm-equivalent Preconditioner

Consider a symmetric positive definite (SPD) operator M : X ′ 7→X as a precondi-
tioner for solving A x= b. We define an inner product (x,y)M−1 := 〈M−1x,y〉 on
X and the corresponding induced norm is ‖x‖2

M−1 := (x,x)M−1 . It is easy to show
that MA : X 7→X is symmetric with respect to (·, ·)M−1 . Therefore, we can use
M as a preconditioner for the MINRES algorithm and use the following theorem
for the convergence rate of preconditioned MINRES.

Theorem 1. [18] If xm is the m-th iteration of MINRES and x is the exact solution,
then,

‖rm‖M ≤ 2ρ
m‖r0‖M , (12)

where rk = A (x− xk) is the residual after the k-th iteration, ρ = κ(MA )−1
κ(MA )+1 , and

κ(MA ) denotes the condition number of MA .

In [27], Mardal and Winther show that, if the well-posedness conditions, (11),
hold, and M satisfies
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c1‖x‖2
X ≤ ‖x‖2

M−1 ≤ c2‖x‖2
X , (13)

then, A and M are norm-equivalent and κ(MA ) ≤ c2β

c1γ
. This implies that ρ ≤

c2β−c1γ

c2β+c1γ
. Thus, if the original problem is well-posed and the constants c1 and c2 are

independent of the physical and discretization parameters, then the convergence rate
of preconditioned MINRES is uniform, hence M is a robust preconditioner.

2.2.2 FOV-equivalent Preconditioner

In this section we consider the class of field-of-values-equivalent (FOV-equivalent)
preconditioners ML :X ′ 7→X , for GMRES. We define the notion of FOV-equivalence
after the following classical theorem on the convergence rate of the preconditioned
GMRES method.

Theorem 2. [13, 12] If xm is the m-th iteration of the GMRES method precondi-
tioned with ML and x is the exact solution, then

‖MLA (x−xm)‖2
M−1 ≤

(
1− Σ 2

ϒ 2

)m

‖MLA (x−x0)‖2
M−1 , (14)

where, for any x ∈X ,

Σ ≤ (MLA x,x)M−1

(x,x)M−1
,
‖MLA x‖M−1

‖x‖M−1
≤ϒ . (15)

If the constants Σ and ϒ are independent of the physical and discretization pa-
rameters, then ML is a uniform left preconditioner for GMRES and is referred to as
an FOV-equivalent preconditioner. In [24], a block lower triangular preconditioner
has been shown to satisfy (15) based on the well-posedness conditions, (11), for
Stokes/Navier-Stokes equations. More recently, the same approach has been gener-
alized to Maxwell’s equations [2] and Magnetohydrodynamics [26].

Similar arguments also apply to right preconditioners for GMRES, MU : X ′ 7→
X , where the operators, MU and A , are FOV equivalent if, for any x′ ∈X ′,

Σ ≤ (A MUx
′,x′)M

(x′,x′)M
,
‖A MUx

′‖M
‖x′‖M

≤ϒ . (16)

Again, if Σ and ϒ are independent of the physical and discretization parameters,
MU is a uniform right preconditioner for GMRES. Such an approach leads to block
upper triangular preconditioners.
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3 Robust Preconditioners for Biot’s Model

In this section, following the framework proposed in [24, 27] and techniques re-
cently developed in [26], we design block diagonal and triangular preconditioners
based on the well-posedness of the discretized linear system at each time step. First,
we study the well-posedness of the linear system (10). The analysis here is similar
to the analysis in [29]. However, we make sure that the constants arising from the
analysis are independent of any physical and discretization parameters.

The choice of finite-element spaces give X = Vh×Qh, and the finite-element
pair satisfies the following inf-sup condition (see [30]),

sup
v∈Vh

(divv,q)
‖v‖1

≥ γ
0
B‖q‖−ξ

0h‖∇q‖, ∀q ∈ Qh. (17)

Here, γ0
B > 0 and ξ 0 ≥ 0 are constants that do not depend on the mesh size. More-

over, if we use the Mini-element, ξ 0 = 0.
For x= (u, p)T , we define the following norm,

‖x‖2
X := ‖u‖2

Au
+ τ‖p‖2

Ap +ηh2‖p‖2
Lp +

α2

ζ 2 ‖p‖2, (18)

where ‖u‖2
Au

:= a(u,u), ‖p‖2
Ap

:= ap(∇p,∇p), ‖p‖2
Lp

:= (∇p,∇p), ζ =
√

λ + 2µ

d ,
and d = 2 or 3 is the dimension of the problem. With ζ defined as above, it holds that
‖v‖Au ≤

√
dζ‖v‖1, and we can reformulate the inf-sup condition, (17), as follows,

sup
v∈Vh

(Bv,q)
‖v‖Au

≥ sup
v∈Vh

(Bv,q)√
dζ‖v‖1

≥ γ0
B√
dζ
‖q‖− ξ 0

√
dζ

h‖∇q‖=:
γB

ζ
‖q‖− ξ

ζ
h‖∇q‖,

(19)
where γB := γ0

B/
√

d and ξ = ξ 0/
√

d.
Noting that for d = 2,3, 2µ(ε(v),ε(v)) ≤ a(v,v) ≤ (2µ + dλ )(ε(v),ε(v)).

Thus, (divv,divv)≤ d(ε(v),ε(v)) and,

ζ
2‖Bv‖2 = (λ +

2µ

d
)‖divv‖2 ≤ ‖v‖2

Au
=⇒‖Bv‖ ≤ 1

ζ
‖v‖Au . (20)

This allows us to show that linear system (10) is well-posed.

Theorem 3. For x= (u, p) and y = (v,q), let

L (x,y) = (Auu,v)+α(Bv, p)+α(Bu,q)− τ(K∇p,∇q)−ηh2(∇p,∇q). (21)

Then, (11) holds and A defined in (10) is an isomorphism from X to X ′ provided
that the stabilization parameter, η , satisfies η = δ

α2

ζ 2 with δ > 0. Moreover, the
constants γ and β are independent of the physical and discretization parameters.
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Proof. Based on the inf-sup condition (17) and (19), for any p, there exists w ∈
Vh such that (Bw, p) ≥

(
γB
ζ
‖p‖− ξ

ζ
h‖∇p‖

)
‖w‖Au and ‖w‖Au = ‖p‖. For given

(u, p) ∈ Vh×Qh, we choose v = u+θw, θ = ϑ
γBα

ζ
and q =−p and then have,

L (x,y) = (Auu,u+θw)+α(B(u+θw), p)−α(Bu, p)

+ τ(K∇p,∇p)+ηh2(∇p,∇p)

≥ ‖u‖2
Au
−ϑ‖u‖Au

γBα

ζ
‖p‖+ϑ

γ2
Bα2

ζ 2 ‖p‖2−ϑ
γBα2

ζ 2 ξ h‖∇p‖‖p‖

+ τ‖p‖2
Ap +

δ

ξ 2
α2

ζ 2 ξ
2h2‖∇p‖2

≥


‖u‖Au
γBα

ζ
‖p‖

α

ζ
ξ h‖∇p‖√
τ‖p‖Ap


T 

1 −ϑ/2 0 0
−ϑ/2 ϑ −ϑ/2 0

0 −ϑ/2 δ/ξ 2 0
0 0 0 1



‖u‖Au
γBα

ζ
‖p‖

α

ζ
ξ h‖∇p‖√
τ‖p‖Ap

 .

If 0 < ϑ < min{2, 2δ

ξ 2 }, the matrix in the middle is SPD and there exists γ0 such that

L (x,y)≥ γ0

(
‖u‖2

Au
+

γ2
Bα2

ζ 2 ‖p‖2 +
α2

ζ 2 ξ
2h2‖∇p‖2 + τ‖p‖2

Ap

)
≥ γ̃‖x‖2

X ,

where γ̃ = γ0 min{γ2
B,ξ

2/δ}. Also, it is straightforward to verify ‖(v,q)‖2
X ≤

γ̄2‖(u, p)‖2
X , and the boundedness of L by continuity of each term and the Cauchy-

Schwarz inequality. Therefore, L satisfies (11) with γ = γ̃/γ̄ .

Remark 1. Note that the choice of ζ =
√

λ +2µ/d is essential to the proof, but is
consistent with previous implementations [3, 29]. Additionally, choosing any δ > 0
is sufficient to show the well-posedness of the stabilized discretization. However,
for eliminating non-physical oscillations of the pressure approximation seen in prac-
tice [3], this is not sufficient, and δ should be sufficiently large. For example, in 1D,
δ = 1/4 is chosen.

3.1 Block Diagonal Preconditioner

Now that we have shown (11) and that the system is well-posed, we find SPD op-
erators such that (13) is satisfied. One natural choice is the Reisz operator corre-
sponding to the inner product (·, ·)X , (Bf ,x)X = 〈f ,x〉, ∀f ∈X ′, x ∈X. For
the two-field stabilized discretization and the norm ‖ · ‖X defined in (18), we get

BD =

(
Au 0
0 τAp +ηh2Lp +

α2

ζ 2 M

)−1

, (22)
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where M is the mass matrix of the pressure block. Since BD satisfies the norm-
equivalent condition with c1 = c2 = 1, by Theorem 3, it holds that κ(BDA )=O(1).

In practice, applying the preconditioner BD involves the action of inverting the
diagonal blocks exactly, which is very expensive and infeasible. Therefore, we re-
place the diagonal blocks by their spectrally equivalent SPD approximations,

MD =

(
Hu 0
0 Hp

)
,

where

c1,u(Huu,u)≤ (A−1
u u,u)≤ c2,u(Huu,u) (23)

c1,p(Hp p, p)≤ ((τAp +ηh2Lp +
α2

ζ 2 M)−1 p, p)≤ c2,p(Hp p, p). (24)

Again, MD and A are norm-equivalent and κ(MDA ) = O(1) by Theorem 3.

3.2 Block Triangular Preconditioners

Next, we consider block triangular preconditioners for the stabilized scheme, A . For
simplicity of the analysis, we modify A slightly by negating the second equation.

We consider two kinds of block triangular preconditioners,

BL =

(
Au 0
−αB τAp +ηh2Lp +

α2

ζ 2 M

)−1

and ML =

(
H−1
u 0
−αB H−1

p

)−1

, (25)

and block upper triangular preconditioners,

BU =

(
Au αBT

0 τAp +ηh2Lp +
α2

ζ 2 M

)−1

and MU =

(
H−1
u αBT

0 H−1
p

)−1

. (26)

According to Theorem 2, we need to show that these block preconditioners sat-
isfy the FOV-equivalence, (15) and (16). We first consider the block lower triangular
preconditioner, BL.

Theorem 4. There exist constants Σ and ϒ , independent of discretization or physi-
cal parameters, such that, for any x= (u, p)T 6= 0,

Σ ≤
(BLA x,x)(BD)−1

(x,x)(BD)−1
,
‖BLA x‖(BD)−1

‖x‖(BD)−1
≤ϒ ,

provided that η = δ
α2

ζ 2 with δ > 0.

Proof. By direct computation,
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(BLA x,x)(BD)−1 = (u,u)Au +α(BT p,u)+ τ(p, p)Ap

+ηh2(Lp p, p)+α
2(BA−1

u BT p, p)

≥ Σ0

(
‖u‖2

Au
+ τ‖p‖2

Ap +ηh2‖p‖2
Lp +α

2‖BT p‖2
A−1
u

)
.

Note that, due to the inf-sup condition (17),

‖BT p‖A−1
u

= sup
v

(Bv, p)
‖v‖Au

≥ γB

ζ
‖p‖− ξ

ζ
h‖∇p‖.

Therefore, since η = δ
α2

ζ 2 with δ > 0 and by choosing 1
1+δ/ξ 2 < θ < 1,

(BLA x,x)(BD)−1 ≥ Σ0

[
‖u‖2

Au
+ τ‖p‖2

Ap +ηh2‖p‖2
Lp

+α
2
(

γB

ζ
‖p‖− ξ

ζ
h‖∇p‖

)2
]

≥ Σ0

[
‖u‖2

Au
+ τ‖p‖2

Ap

+(1−θ)
γ2

Bα2

ζ 2 ‖p‖2 +

(
1+

δ

ξ 2 −
1
θ

)
α2

ζ 2 ξ
2h2‖∇p‖2

]
≥ Σ0Σ1

(
‖u‖2

Au
+ τ‖p‖2

Ap +
α2

ζ 2 h2‖p‖2
Lp +

α2

ζ 2 ‖p‖2
)

=: Σ(x,x)(BD)−1 ,

where Σ1 := min{1,(1−θ)γ2
B,
(

1+ δ

ξ 2 − 1
θ

)
ξ 2

δ
}. This gives the lower bound. The

upper bound ϒ can be obtained directly from the continuity of each term, the
Cauchy-Schwarz inequality, and the fact that ‖BT p‖A−1

u
≤ 1

ζ
‖p‖ obtained by (20).

Similarly, we can show that the other three block preconditioners are also FOV-
equivalent with A and, therefore, can be used as preconditioners for GMRES. Due
to the length constraint of this paper and the fact that the proofs are similar, we only
state the results here.

Theorem 5. If the conditions (23) and (24) hold and ‖I−HuAu‖Au ≤ ρ with 0 ≤
ρ < 1, and there exist constants Σ and ϒ , independent of discretization and physical
parameters, such that, for any x= (u, p)T 6= 0, it holds that

Σ ≤
(MLA x,x)(MD)−1

(x,x)(MD)−1
,
‖MLA x‖(MD)−1

‖x‖(MD)−1
≤ϒ ,

provided that η = δ
α2

ζ 2 with δ > 0.

Theorem 6. There exist constants Σ and ϒ , independent of discretization or physi-
cal parameters, such that, for any 0 6= x′ ∈X ′, it holds that
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Σ ≤
(A BUx

′,x′)BD

(x′,x′)BD

,
‖A BUx

′‖BD

‖x′‖BD

≤ϒ ,

provided that η = δ
α2

ζ 2 with δ > 0.

Theorem 7. If the conditions (23) and (24) hold and ‖I−HuAu‖Au ≤ ρ with 0 ≤
ρ < 1, and there exist constants Σ and ϒ , independent of discretization or physical
parameters, such that, for any 0 6= x′ ∈X ′, it holds that

Σ ≤
(A MUx

′,x′)MD

(x′,x′)MD

,
‖A MUx

′‖MD

‖x′‖MD

≤ϒ ,

provided that η = δ
α2

ζ 2 with δ > 0.

Remark 2. The block upper preconditioner BU here is related to the well-known
fixed-stress split scheme [22]. In fact, without the stabilization term, i.e., η = 0, it is
exactly a re-cast of the fixed-stress split scheme [31]. Moreover, ζ 2 = λ +2µ/d =:
Kdr, where Kdr is the drained bulk modulus of the solid. This is exactly the choice
suggested in [21]. Here, we give a rigorous theoretical analysis when the fixed-
stress split scheme is used as a preconditioner. Our analysis is more general in the
sense that MU is an inexact version of the fixed-stress split scheme, and we have
generalized it to the finite-element discretization with stabilizations.

4 Numerical Experiments

Finally, we provide some preliminary numerical results to demonstrate the robust-
ness of the proposed preconditioners. As a discretization, we use the stabilized P1-
P1 scheme described in [29] and implemented in the HAZMATH library [1].

We consider a 3D footing problem as in [15], on the domain, Ω = (−32,32)×
(−32,32)× (0,64). This is shown in the left side of Figure 1, and represents a
block of porous soil. A uniform load of intensity 0.1N/m2 is applied in a square of
size 32× 32m2 at the middle of the top of the domain. The base of the domain is
assumed to be fixed while the rest of the domain is free to drain. For the material
properties, the Lame coefficients are computed in terms of the Young modulus, E,
and the Poisson ratio, ν : λ = Eν

(1−2ν)(1+ν) and µ = E
1+2ν

. Since we want to study
the robustness of the preconditioners with respect to the physical parameters, we fix
E = 3× 104 N/m2 and let ν change in the experiments. The right side of Figure 1
shows the results of the simulation, demonstrating the deformation due to a uniform
load.

We first study the performance of the preconditioners with respect to the mesh
size h and time step size τ . Therefore, we fix K = 10−6 m2 and ν = 0.2. We use flex-
ible GMRES as the outer iteration with a relative residual stopping criteria of 10−6.
For MD, ML, and MU , the diagonal blocks are solved inexactly by preconditioned
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Fig. 1 Computational domain and boundary conditions

GMRES with a tolerance of 10−2. The results are shown in Table 1. We see that
the block preconditioners are effective and robust with respect to the discretization
parameters h and τ .

Table 1 Iteration counts for the block preconditioners (∗ means the direct method for solving
diagonal blocks is out of memory)

BD

@
@τ

h 1
4

1
8

1
16

1
32

0.1 7 7 8 *
0.01 7 7 8 *
0.001 7 7 8 *
0.0001 7 7 8 *

BL

1
4

1
8

1
16

1
32

5 5 6 *
5 5 6 *
5 5 6 *
5 5 6 *

BU

1
4

1
8

1
16

1
32

4 4 4 *
4 4 5 *
5 5 6 *
5 5 6 *

MD

1
4

1
8

1
16

1
32

8 8 9 9
8 8 9 9
8 8 9 9
8 8 9 9

ML

1
4

1
8

1
16

1
32

6 6 8 8
6 6 8 8
6 6 8 8
7 6 8 8

MU

1
4

1
8

1
16

1
32

6 6 8 8
6 6 8 8
6 6 8 8
6 7 8 8

Next, we investigate the robustness of the block preconditioners with respect to
the physical parameters K and ν . We fix the mesh size h = 1/16 and time step
size τ = 0.01. The results are shown in Table 2. From the iteration counts, we can
see that the proposed preconditioners are quite robust with respect to the physical
parameters.

Table 2 Iteration counts when varying K or ν

ν = 0.2 and varying K
1 10−2 10−4 10−6 10−8 10−10

BD 4 7 8 8 8 8
BL 2 5 6 6 6 6
BU 3 4 5 5 5 5
MD 5 8 9 9 9 9
ML 5 7 8 8 8 8
MU 5 7 8 8 9 8

K = 10−6 and varying ν

0.1 0.2 0.4 0.45 0.49 0.499
7 8 11 11 12 12
5 6 8 8 8 9
4 5 6 6 5 4
8 9 12 13 14 13
7 8 11 11 12 12
7 8 7 8 17 11
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5 Conclusions

We have shown that the stability of the discrete problem, using stabilized finite
elements, provides the means for designing robust preconditioners for the two-field
formulation of Biot’s consolidation model. Our analysis shows uniformly bounded
condition numbers and uniform convergence rates of the Krylov subspace methods
for the preconditioned linear systems. More precisely, we prove that the convergence
is independent of mesh size, time step, and the physical parameters of the model.

Current work includes extending this to non-conforming (and conforming) three-
field formulations as in [19]. For discretizations that are stable independent of the
physical parameters, uniform block diagonal preconditioners can be designed using
the framework developed here. Block lower and upper triangular preconditioners for
GMRES can also be constructed in a similar fashion. In addition to their excellent
convergence properties, the triangular preconditioners naturally provide an (inexact)
fixed-stress split scheme for the three-field formulation.
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An additive Schwarz analysis for multiplicative
Schwarz methods: General case

Susanne C. Brenner

1 Introduction

Multiplicative and additive Schwarz methods are two main classes of iterative meth-
ods since the times of Gauss and Jacobi. Traditionally the analyses of these two
classes of methods follow different paths. On one hand, the theory for additive
Schwarz methods [8, 12, 2, 16, 9, 14, 13, 15, 6, 11], like the theory for the classical
Jacobi method, is relatively simple. On the other hand, the theory for multiplicative
Schwarz methods [10, 3, 16, 19, 18, 9, 4, 1, 17, 13, 15, 11], like the theory for the
classical Gauss-Seidel method, can be quite sophisticated.

An analysis of multiplicative Schwarz methods that is based on the additive the-
ory was carried out in [5]. It is restricted to the case where the subspace corrections
are based on symmetric positive definite (SPD) solvers. The goal of this work is to
extend the results in [5] to multiplicative Schwarz methods with general subspace
corrections. As a by-product we recover the main result in [17], namely a formula
for the norm of product operators.

The rest of the paper is organized as follows. First we review the Gauss-Seidel
method in Section 2. The analysis of this prototypical multiplicative Schwarz
method provides motivations and guidance for the theory in this paper and [5]. We
introduce a general framework of multiplicative Schwarz methods in Section 3 and
recall the fundamental lemma for additive Schwarz theory in Section 4. The key
observation that allows the extension of the formulas in Section 2 to general multi-
plicative Schwarz methods is presented in Section 5. The main results of the paper
are then derived in Section 6. Finally, the connection of our theory to [17] is dis-
cussed in Section 7.

Susanne C. Brenner
Department of Mathematics and Center for Computation and Technology, Louisiana State Univer-
sity, Baton Rouge, LA 70803, USA, e-mail: brenner@math.lsu.edu
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2 The Gauss-Seidel Method

The additive Schwarz analysis for multiplicative Schwarz methods is motivated and
guided by looking at the analysis of the Gauss-Seidel method through the lens of
additive Schwarz theory.

Let A ∈ Rn×n be a SPD matrix and b ∈ Rn. The (forward) Gauss-Seidel method
for the system Ax = b is defined by the iteration step

xnew = xold +(L+D)−1(b−Axold), (1)

where L and D are the strictly lower triangular part and the diagonal part of A
respectively. The error propagation for (1) is described by

x−xnew =
(
I− (L+D)−1A

)
(x−xold) = (I−BA)(x−xold), (2)

where I is the n×n identity matrix and B = (L+D)−1.
The norm of the iteration matrix I−BA in the matrix norm ‖ ·‖A induced by the

inner product (v,w)A = wtAv is given by the following standard formula:

‖I−BA‖2
A = ‖(I−BA)∗(I−BA)‖A = ‖(I−BtA)(I−BA)‖A, (3)

where (I−BA)∗ denotes the adjoint of I−BA with respect to (·, ·)A. It follows from
(3), the spectral theorem and the Rayleigh quotient formula that

‖I−BA‖2
A = λmax

(
I− (Bt +B−BtAB)A

)
= 1−λmin

(
(Bt +B−BtAB)A

)
(4)

= 1− min
v∈Rn

vtAv
vt(Bt +B−BtAB)−1v

.

A simple calculation yields

(Bt +B−BtAB)−1 = (I+D−1U)tD(I+D−1U), (5)

where U = Lt is the strictly upper triangular part of A. It is easy to see that (5) can
be rewritten as

(Bt +B−BtAB)−1 = A+(D−1U)tD(D−1U). (6)

Combining (4) and (5), we have a formula

‖I−BA‖2
A = 1− min

v∈Rn

vtAv
vt(I+D−1U)tD(I+D−1U)v

(7)

for the norm of the iteration matrix I−BA. Similarly the formula
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‖I−BA‖2
A = 1− min

v∈Rn

vtAv
vtAv+vt(D−1U)tD(D−1U)v

= 1− 1
1+ max

v∈Rn,‖v‖A=1
vt(D−1U)tD(D−1U)v

(8)

follows from (4) and (6).
Since L+D is the lower triangular part of A, we can apply forward substitutions

to obtain

(L+D)−1A =
n

∑
i=1

Xi,

where Xi ∈ Rn×n is determined recursively by

Xi = Ti

(
I−

i−1

∑
j=1

X j

)
,

Ti = ei(et
iAei)

−1et
iA, and e1, . . . ,en are the canonical basis vectors in Rn.

It follows that

I−BA =
(

I−
n−1

∑
i=1

Xi

)
−Xn =

(
I−

n−1

∑
i=1

Xi

)
−Tn

(
I−

n−1

∑
j=1

X j

)
= (I−Tn)

(
I−

n−1

∑
i=1

Xi

)
= (I−Tn) · · ·(I−T1).

Hence (7) and (8) are also formulas for the norm of the product (I−Tn) · · ·(I−T1).
Below we will derive similar formulas for general multiplicative Schwarz meth-

ods. The key observation is that even though the explicit formula (5) does not exist
in the general case, we can find an expression for vt(Bt +B−BtAB)−1v through
the additive Schwarz theory.

3 Multiplicative Schwarz Methods

Let V be a finite dimensional vector space, a(·, ·) be a SPD bilinear form on V , and
α ∈V ′, the dual space of V . We consider the following problem:
Find u ∈V such that

a(u,v) = 〈α,v〉 ∀v ∈V, (9)

where 〈·, ·〉 denotes the canonical bilinear form on V ′×V .
We can rewrite (9) as

Au = α (10)

where A : V −→V ′ is defined by
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〈Aw,v〉= a(w,v) ∀v,w ∈V. (11)

The operator A is SPD in the sense that

〈Aw,v〉= 〈Av,w〉 ∀v,w ∈V and 〈Av,v〉> 0 ∀v ∈V \{0}.

We will denote by L∗ the adjoint of a linear operator L : V −→V with respect to
a(·, ·), i.e,

a(Lv,w) = a(v,L∗w) ∀v,w ∈V,

and for a linear operator M : W −→V , the operator Mt : V ′ −→W ′ is defined by

〈Mt
β ,w〉= 〈β ,Mw〉 ∀β ∈V,′ w ∈W.

Let V1, V2, . . . ,VJ be subspaces of V such that

V =
J

∑
j=1

Vj, (12)

and let a j(·, ·) be a nonsingular bilinear form on Vj, i.e.,

A j : Vj −→V ′j is invertible (13)

where
〈A jv j,w j〉= a j(v j,w j) ∀v j,w j ∈Vj.

The operator Fj : V ′ −→Vj for 1≤ j ≤ J are defined recursively by

a j(Fjβ ,v j) = 〈β ,v j〉−
j−1

∑
k=1

a(Fkβ ,v j) ∀v j ∈Vj, β ∈V ′, (14)

and we define B : V ′ −→V by

Bβ =
J

∑
j=1

(Fjβ ). (15)

The multiplicative Schwarz algorithm is then given by the iteration

unew = uold +B(α−Auold), (16)

As in the case of the Gauss-Seidel method, we have two expressions for the error
propagation operator. The first obvious one is given by

u−unew = (I−BA)(u−uold), (17)

where I is the identity operator on V , and the second one, which is responsible for
the name of the algorithm, can be derived as follows.

Let Tj : V −→Vj be defined by
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a j(Tjv,v j) = a(v,v j) ∀v ∈V, v j ∈Vj. (18)

Remark 1. Note that (18) implies that KerTj is the orthogonal complement of Vj
with respect to a(·, ·). Therefore KerT ∗j = KerTj and the restrictions of Tj and T ∗j
to Vj are isomorphisms. In particular we have TjV = Vj = T ∗j V . It follows that the
pseudo-inverse T−1

j (resp., (T ∗j )
−1) of Tj (resp., T ∗j ) with respect to a(·, ·) maps V

onto Vj.

It follows from (14) and (18) that

Fjβ = Tj(A−1
β −

j−1

∑
k=1

Fkβ ) = Tjz j, (19)

where

z j = A−1
β −

j−1

∑
k=1

Fkβ =
(

A−1
β −

j−2

∑
k=1

Fkβ

)
−Fj−1β

= (I−Tj−1)z j−1 = (I−Tj−1) · · ·(I−T1)A−1
β . (20)

Combining (15), (16), (19) and (20), with β = α−Auold, we find

u−unew = u−uold−
J

∑
j=1

Tjz j

=
(

I−
J

∑
j=1

Tj(I−Tj−1) · · ·(I−T1)
)
(u−uold) (21)

= (I−TJ) · · ·(I−T1)(u−uold).

We are interested in formulas for ‖I−BA‖a = ‖(I−TJ) · · ·(I−T1)‖a, where ‖·‖a
is the operator norm induced by a(·, ·).

4 Additive Schwarz Theory

We need the following fundamental result from the additive Schwarz theory.

Lemma 1. Let S j : Vj −→ V and B j : Vj −→ V ′j be linear operators for 1 ≤ j ≤ J,
and let B j be SPD. Then the operator B = ∑

J
j=1 S jB−1

j St
j : V ′ −→ V is SPD if and

only if V = ∑
J
j=1 S jVj, in which case we have

〈B−1v,v〉= min
v=∑

J
j=1 S jv j

v j∈V j

J

∑
j=1
〈B jv j,v j〉 ∀v ∈V. (22)
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Proof. B is clearly symmetric semi-definite, and we have for any β ∈V ′,

〈β ,Bβ 〉= 0⇔
J

∑
j=1
〈St

jβ ,B
−1
j St

jβ 〉= 0,

which holds if and only if St
jβ = 0 for 1≤ j≤ J, since B−1

j is also SPD. We conclude
that 〈β ,Bβ 〉= 0 if and only if

J

∑
j=1
〈β ,S jv j〉= 0 ∀v j ∈Vj, 1≤ j ≤ J.

Therefore 〈β ,Bβ 〉= 0 implies β = 0 if and only if V = ∑
J
j=1 S jVj.

The identity (22) comes from the observations that

〈B−1v,
J

∑
j=1

S jv j〉=
J

∑
j=1
〈B j(B−1

j St
jB
−1v),v j〉=

J

∑
j=1
〈B jw j,v j〉, (23)

where w j = B−1
j St

jB
−1v ∈Vj, and

J

∑
j=1

S jw j =
J

∑
j=1

S j(B−1
j St

jB
−1v) =

( J

∑
j=1

S jB−1
j St

j

)
B−1v = BB−1v = v. (24)

Indeed it follows from (23) that

〈B−1v,v〉=
J

∑
j=1
〈B jw j,v j〉 if

J

∑
j=1

S jv j = v, (25)

and in particular, because of (24),

〈B−1v,v〉=
J

∑
j=1
〈B jw j,w j〉. (26)

Subtracting (26) from (25) we find

0 =
J

∑
j=1
〈B jw j,v j−w j〉 if

J

∑
j=1

S jv j = v. (27)

The orthogonality condition (27) implies

J

∑
j=1
〈B jv j,v j〉=

J

∑
j=1
〈B jw j,w j〉+

J

∑
j=1
〈B j(v j−w j),v j−w j〉 if

J

∑
j=1

S jv j = v,

and hence
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J

∑
j=1
〈B jw j,w j〉= min

v=∑ j=1 S jv j
v j∈V j

J

∑
j=1
〈B jv j,v j〉,

which together with (26) implies (22).

5 A Fundamental Operator

We begin with the standard formula

‖I−BA‖2
a = ‖(I−BA)∗(I−BA)‖a, (28)

where (I−BA)∗ = I−BtA is the adjoint of I−BA with respect to the bilinear form
a(·, ·). We can write

(I−BA)∗(I−BA) = (I−BtA)(I−BA) = I− (Bt +B−BtAB)A. (29)

As in the case of the Gauss-Seidel method, the operator Bt +B−BtAB will play
a fundamental role. The key to the additive analysis is to interpret this operator as
an additive Schwarz preconditioner. We begin with the following result.

Lemma 2. We have

〈β ,(Bt +B−BtAB)β 〉=
J

∑
j=1

[
2a j(y j,y j)−a(y j,y j)

]
∀β ∈V ′, (30)

where y j = Fjβ .

Proof. From (14) and (15), we have

〈β ,(Bt +B−BtAB)β 〉= 2〈β ,
J

∑
j=1

y j〉−a(
J

∑
`=1

y`,
J

∑
j=1

y j)

= 2
J

∑
j=1

(
a j(y j,y j)+

j−1

∑
`=1

a(y`,y j)
)
−a(

J

∑
`=1

y`,
J

∑
j=1

y j),

which implies (30) by the symmetry of a(·, ·).

We assume that

∃ ω j ∈ (0,2) such that a(v j,v j)≤ ω ja j(v j,v j) ∀v j ∈Vj. (31)

Let the operator B j : Vj −→V ′j be defined by

〈B jv j,w j〉= a j(v j,w j)+a j(w j,v j)−a(v j,w j) ∀v j,w j ∈Vj. (32)

Clearly B j is symmetric and it is positive definite because of (31).
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Remark 2. Since we are in a finite dimensional setting, condition (31) is equivalent
to B j being SPD. It is also equivalent to

‖(I−Tj)v‖a ≤ ‖v‖a ∀v ∈V and ‖(I−Tj)v j‖a < ‖v j‖a ∀v j ∈Vj \{0}.

Note that we can write, by (18),

〈B jv j,w j〉= a(T−1
j v j,w j)+a(w j,(T−1

j )∗v j)−a(v j,w j)

= a((T ∗j )
−1(T ∗j +Tj−T ∗j Tj)T−1

j v j,w j) = a(T̄jT−1
j v j,T−1

j w j) (33)

for all v j,w j ∈Vj, where
T̄j = T ∗j +Tj−T ∗j Tj. (34)

Remark 3. According to Remark 1, we have T̄jV ⊂Vj. The relation (33) implies that
a(T̄jv j,v j) = 〈B jv j,v j〉 > 0 for v j ∈ Vj \ {0}. Therefore the restriction of T̄j to Vj
is an isomorphism and it follows from Remark 1 that Ker T̄j = KerTj = KerT ∗j is
the orthogonal complement of Vj with respect to a(·, ·). Consequently the pseudo-
inverse T̄−1

j of T̄j with respect to a(·, ·) maps V onto Vj.

From Lemma 2 and (32) we have

〈β ,(Bt +B−BtAB)β 〉=
J

∑
j=1
〈B jFjβ ,Fjβ 〉=

J

∑
j=1
〈β ,F t

j BFjβ 〉 ∀β ∈V ′. (35)

It then follows from polarization that

Bt +B−BtAB =
J

∑
j=1

F t
j B jFj =

J

∑
j=1

(F t
j B j)B−1

j (B jFj) =
J

∑
j=1

S jB−1
j St

j, (36)

where the operator S j : Vj −→V is given by S j = F t
j B j = (B jFj)

t .

Remark 4. The identity (36) shows that the operator B + Bt − BtAB is indeed an
additive Schwarz preconditioner. Note that (12) and (14) imply F1β = · · ·= FJβ = 0
if and only if β = 0, and hence Bt +B−BtAB is SPD by (35). Therefore the formula
(22) in Lemma 1 is valid.

An explicit formula for S j is provided by the following lemma.

Lemma 3. We have

S j = (I−T ∗1 ) · · ·(I−T ∗j−1)T̄jT−1
j . (37)

Proof. Let v j ∈Vj be arbitrary. It follows from (19), (20) and (33) that

〈St
jβ ,v j〉= 〈(B jFj)β ,v j〉= a(T̄jT−1

j Fjβ ,T−1
j v j)

= a(z j, T̄jT−1
j v j) = 〈β ,(I−T ∗1 ) · · ·(I−T ∗j−1)T̄jT−1

j v j〉,

which implies (37).
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6 Formulas for ‖I−BA‖a

It follows from (28), (29), the spectral theorem and the Rayleigh quotient formula
that

‖I−BA‖2
a = 1−min

v∈V

〈Av,v〉
〈(Bt +B−BtAB)−1v,v〉

,

which together with (36) and Lemma 1 (cf. Remark 4) implies

‖I−BA‖2
a = 1−min

v∈V

〈Av,v〉

min
v=∑

J
j=1 S jw j

w j∈V j

J

∑
j=1
〈B jw j,w j)

. (38)

Remark 5. Note that we can rewrite (7) as

‖I−BA‖2
A = 1− min

v∈Rn

vtAv
min

v=(I+D−1U)−1w
wtDw

, (39)

and (38) is precisely the analog of (39).

Next we will replace the implicit decomposition for v that appears in (38) by an
explicit decomposition that will lead to an analog of (7). In the case of the Gauss-
Seidel method, it is equivalent to inverting the relation v= (I+D−1U)−1w in (39) to
express w as (I+D−1U)v. This motivates the following construction of the explicit
decomposition through an “upper triangular” system.

Given v j ∈Vj for 1≤ j ≤ J, we want to find w j ∈Vj for 1≤ j ≤ J such that

J

∑
j=1

S jw j =
J

∑
j=1

v j. (40)

It is easy to check using (37) that the solution of (40) is given by

T̄jT−1
j w j = v j +T ∗j

J

∑
k= j+1

vk for 1≤ j ≤ J. (41)

Combining (33), (38), (40) and (41), we have the following analog of (7):

‖I−BA‖2
a = 1−min

v∈V

a(v,v)

min
v=∑

J
j=1 v j

v j∈V j

J

∑
j=1

a
(

v j +T ∗j
J

∑
k= j+1

vk, T̄−1
j

(
v j +T ∗j

J

∑
k= j+1

vk

)) . (42)

Remark 6. In the case where a j(·, ·) is SPD for 1≤ j≤ J, the formula (42) becomes
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‖I−BA‖2
a

= 1−min
v∈V

a(v,v)

min
v=∑

J
j=1 v j

v j∈V j

J

∑
j=1

a j

(
v j +Tj

J

∑
k= j+1

vk,(2I−Tj)
−1
(

v j +Tj

J

∑
k= j+1

vk

)) . (43)

The application of the formula (43) to domain decomposition and multigrid can be
found in [5].

To derive the analog of (8), we again seek guidance from the analysis in Sec-
tion 2. The transition from (7) to (8) involves the difference of I+D−1U and D−1U,
which is a diagonal matrix. Therefore we look for operators Q j : Vj −→ Vj for
1≤ j ≤ J such that

J

∑
j=1

a
(

v j +T ∗j
J

∑
k= j+1

vk, T̄−1
j

(
v j +T ∗j

J

∑
k= j+1

vk

))
−a(v,v)

=
J

∑
j=1

a
(

v j +Q jv j +T ∗j
J

∑
k= j+1

vk, T̄−1
j

(
v j +Q jv j +T ∗j

J

∑
k= j+1

vk

))
. (44)

It is straightforward to check that (44) is equivalent to

a(Q jv j, T̄−1
j Q jv j)+2a(v j +T ∗j

J

∑
k= j+1

vk, T̄−1
j Q jv j) =−a

(
v j +2

J

∑
k= j+1

vk,v j

)
,

which would follow from the relations

a(Q jv j +2v j, T̄−1
j Q jv j) =−a(v j,v j), (45)

a
(

T ∗j
J

∑
k= j+1

vk, T̄−1
j Q jv j

)
=−a

( J

∑
k= j+1

vk,v j

)
. (46)

The relation (46) indicates that we should choose T̄−1
j Q j =−T−1

j and therefore
Q j should be given by

Q j =−T̄jT−1
j =−(T ∗j +Tj−T ∗j Tj)T−1

j =−(T ∗j T−1
j + I−T ∗j ), (47)

and then (45) is also satisfied because

a(Q jv j +2v j, T̄−1
j Q jv j) =−a

(
(I−T ∗j T−1

j +T ∗j )v j,T−1
j v j

)
=−a(v j,T−1

j v j)+a(T ∗j T−1
j v j,T−1

j v j)−a(T ∗j v j,T−1
j v j)

=−a(v j,v j).

In view of (47), we have
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v j +Q jv j +T ∗j
J

∑
k= j+1

vk =−T ∗j T−1
j v j +T ∗j

J

∑
k= j

vk = T ∗j
( J

∑
k= j

vk−T−1
j v j

)
. (48)

Putting (42), (44) and (48) together we arrive at the following analog of (8):

‖I−BA‖2
a = 1−min

v∈V

a(v,v)

a(v,v)+ min
v=∑

J
j=1 v j

v j∈V j

a
(

T ∗j
( J

∑
k= j

vk−T−1
j v j

)
, T̄−1

j T ∗j
( J

∑
k= j

vk−T−1
j v j

))

= 1− 1

1+ max
v∈V
‖v‖a=1

min
v=∑

J
j=1 v j

v j∈V j

a
(

T ∗j
( J

∑
k= j

vk−T−1
j v j

)
, T̄−1

j T ∗j
( J

∑
k= j

vk−T−1
j v j

)) . (49)

7 Connection to the Xu-Zikatanov Theory

The theory in [17] was developed for the product operator (I− TJ) · · ·(I− T1) on
an inner product space

(
V,a(·, ·)

)
, where Tj : V −→ Vj and Tj : Vj −→ Vj is an

isomorphism.
A key assumption in [17] is

‖Tjv‖2
a ≤ ω a(Tjv,v) ∀v ∈V (50)

for some ω ∈ (0,2).

Lemma 4. Under assumption (50), we have

Tjv = 0⇔ a(v,v j) = 0 ∀v j ∈Vj.

Proof. If a(v j,v) = 0 for all v j ∈Vj, then Tjv= 0 by (50). Therefore, by a dimension
argument, the kernel of Tj is the orthogonal complement of Vj with respect to a(·, ·).

In view of Lemma 4, we can define a j(·, ·) by

a j(Tjv,v j) = a(v,v j) ∀v ∈V, v j ∈Vj.

Then a j(·, ·) is nonsingular since

a j(w j,v j) = 0 ∀w j ∈Vj ⇒ a(v,v j) = 0 ∀v ∈V ⇒ v j = 0.

On one hand we have a(Tjv,Tjv) = ‖Tjv‖2
a, and on the other hand we have

a(Tjv,v) = a(v,Tjv) = a j(Tjv,Tjv). Hence (50) is equivalent to (31) since Vj = TjV .
We conclude that the framework in [17] is identical to the framework in Section 3

and Section 5, and ‖(I−TJ) · · ·(I−T1)‖a is given by the formulas (42) and (49). In
particular, the formula (49) is identical to the identity (1.1) in [17]. We note that
another derivation of this identity can be found in [7].



12 Susanne C. Brenner

Acknowledgements

This work is supported in part by the National Science Foundation under Grant No.
DMS-16-20273. The author would also like to acknowledge the support provided
by the Hausdorff Research Institute of Mathematics at Univeristät Bonn during her
visit in Spring 2017.

References

1. M. Benzi, A. Frommer, R. Nabben, and D.B. Szyld. Algebraic theory of multiplicative
Schwarz methods. Numer. Math., 89:605–639, 2001.

2. P. Bjørstad and J. Mandel. On the spectra of sums of orthogonal projections with applications
to parallel computing. BIT, 31:76–88, 1991.

3. J.H. Bramble, J.E. Pasciak, J. Wang, and J. Xu. Convergence estimates for product iterative
methods with applications to domain decomposition. Math. Comp., 57:1–21, 1991.

4. J.H. Bramble and X. Zhang. The Analysis of Multigrid Methods. In P.G. Ciarlet and J.L.
Lions, editors, Handbook of Numerical Analysis, VII, pages 173–415. North-Holland, Ams-
terdam, 2000.

5. S.C. Brenner. An additive analysis of multiplicative Schwarz methods. Numer. Math., 123:1–
19, 2013.

6. S.C. Brenner and L.R. Scott. The Mathematical Theory of Finite Element Methods (Third
Edition). Springer-Verlag, New York, 2008.

7. L. Chen. Deriving the X-Z identity from auxiliary space method. In Domain decomposition
methods in science and engineering XIX, volume 78 of Lect. Notes Comput. Sci. Eng., pages
309–316. Springer, Heidelberg, 2011.

8. M. Dryja and O.B. Widlund. An additive variant of the Schwarz alternating method in the
case of many subregions. Technical Report 339, Department of Computer Science, Courant
Institute, 1987.

9. M. Griebel and P. Oswald. On the abstract theory of additive and multiplicative Schwarz
algorithms. Numer. Math., 70:163–180, 1995.

10. P.-L. Lions. On the Schwarz alternating method. I. In First International Symposium on
Domain Decomposition Methods for Partial Differential Equations (Paris, 1987), pages 1–
42. SIAM, Philadelphia, PA, 1988.

11. T.P.A. Mathew. Domain Decomposition Methods for the Numerical Solution of Partial Dif-
ferential Equations. Springer-Verlag, Berlin, 2008.

12. S. Nepomnyaschikh. On the application of the bordering method to the mixed boundary value
problem for elliptic equations and on mesh norms in W 1/2

2 (S). Sov. J. Numer. Anal. Math.
Modelling, 4:493–506, 1989.

13. Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, 2003.
14. B. Smith, P. Bjørstad, and W. Gropp. Domain Decomposition. Cambridge University Press,

Cambridge, 1996.
15. A. Toselli and O.B. Widlund. Domain Decomposition Methods - Algorithms and Theory.

Springer, New York, 2005.
16. J. Xu. Iterative methods by space decomposition and subspace correction. SIAM Review,

34:581–613, 1992.
17. J. Xu and L. Zikatanov. The method of alternating projections and the method of subspace

corrections in Hilbert space. J. Amer. Math. Soc., 15:573–597 (electronic), 2002.
18. H. Yserentant. Old and new convergence proofs for multigrid methods. Acta Numerica,

2:285–326, 1993.
19. X. Zhang. Multilevel Schwarz methods. Numer. Math., 63:521–539, 1992.



Scalable cardiac electro-mechanical solvers and
reentry dynamics

P. Colli Franzone, L. F. Pavarino, S. Scacchi, and S. Zampini

Abstract We present a scalable solver for the three-dimensional cardiac electro-
mechanical coupling (EMC) model, which represents, currently, the most com-
plete mathematical description of the interplay between the electrical and mechan-
ical phenomena occurring during a heartbeat. The most computational demanding
parts of the EMC model are: the electrical current flow model of the cardiac tissue,
called Bidomain model, consisting of two non-linear partial differential equations
of reaction-diffusion type; the quasi-static finite elasticity model for the deformation
of the cardiac tissue. Our finite element parallel solver is based on: Block Jacobi
and Multilevel Additive Schwarz preconditioners for the solution of the linear sys-
tems deriving from the discretization of the Bidomain equations; Newton-Krylov-
Algebraic-Multigrid or Newton-Krylov-BDDC algorithms for the solution of the
non-linear algebraic system deriving from the discretization of the finite elasticity
equations. Three-dimensional numerical test on two linux clusters show the effec-
tiveness and scalability of the EMC solver in simulating both physiological and
pathological cardiac dynamics.
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1 Introduction

In the last twenty years, computer modeling has become an effective tool to push
forward the understanding of the fundamental mechanisms underlying the origin
of life-threatening arrhythmias and contractile disorders in the human heart and to
provide theoretical support to cardiologists in developing more successful pharma-
cological and surgical treatments for these pathologies.

The spread of the electrical impulse in the cardiac muscle and the subsequent
contraction-relaxation process are quantitatively described by the cardiac electro-
mechanical coupling (EMC) model, which consists of the following four compo-
nents: the quasi-static finite elasticity model of the deforming cardiac tissue, de-
rived from a strain energy function which characterizes the anisotropic mechanical
properties of the myocardium; the active tension model, consisting of a system of
non-linear ordinary differential equations (ODEs), describing the intracellular cal-
cium dynamics and cross bridges binding; the electrical current flow model of the
cardiac tissue, called Bidomain model, which is a degenerate parabolic system of
two non-linear partial differential equations of reaction-diffusion type, describing
the evolution in space and time of the intra- and extracellular electric potentials; the
membrane model of the cardiac myocyte, i.e. a stiff system of ODEs, describing the
flow of the ionic currents through the cellular membrane.

This complex non-linear model poses great theoretical and numerical challenges.
At the numerical level, the approximation and simulation of the cardiac EMC model
is a very demanding and expensive task, because of the very different space and
time scales associated with the electrical and mechanical models, as well as their
non-linear and multiphysics interactions.

In this paper, we present the finite element solver that we have developed to sim-
ulate the cardiac electro-mechanical activity on parallel computational platforms.
The solver is based on a Multilevel Additive Schwarz preconditioner for the linear
system arising from the discretization of the Bidomain model and on a Newton-
Krylov-BDDC method for the non-linear system arising from the discretization of
finite elasticity. Three-dimensional numerical tests show the effectiveness and scala-
bility of the solver on Linux clusters, in both normal physiological and pathological
situations.

2 Cardiac electro-mechanical models

a) Mechanical model of cardiac tissue. The deformation of the cardiac tissue is
described by the equations of three-dimensional non-linear elasticity

Div(FS) = 0, X ∈ Ω̂ , (1)

where X = (X1,X2,X3)
T are the material coordinates of the undeformed cardiac

domain Ω̂ (x = (x1,x2,x3)
T are the spatial coordinates of the deformed cardiac do-
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main Ω(t) at time t), and F(X, t) = ∂x
∂X is the deformation gradient. The second

Piola-Kirchoff stress tensor S = Spas +Svol +Sact is assumed to be the sum of pas-
sive, volumetric and active components. The passive and volumetric components
are defined as

Spas,vol
i j =

1
2

(
∂W pas,vol

∂Ei j
+

∂W pas,vol

∂E ji

)
i, j = 1,2,3, (2)

where E = 1
2 (C− I) and C = FT F are the Green-Lagrange and Cauchy strain ten-

sors, W pas is an exponential strain energy function (derived from [7]) modeling the
myocardium as an orthotropic (or transversely isotropic) hyperelastic material, and
W vol =K (J−1)2 is a volume change penalization term accounting for the nearly in-
compressibility of the myocardium, with K a positive bulk modulus and J = det(F).

b) Mechanical model of active tension. The active component of the stress
tensor is given by Sact = Ta

âl⊗âl
âT

l Câl
, where âl is the fiber direction and Ta =

Ta

(
Cai,λ ,

dλ

dt

)
is the fiber active tension, obtained by solving a biochemical dif-

ferential system depending on intracellular calcium concentrations, the myofiber

stretch λ =
√

âT
l Câl and stretch-rate dλ

dt (see [11]).
c) Bioelectrical model of cardiac tissue: the Bidomain model. The evolution

of the cardiac extracellular and transmembrane potentials ue,v, gating variable w,
and ionic concentrations c, is given by the Bidomain model. Its parabolic-elliptic
formulation on the deformed configuration Ω(t) reads:{

cm
∂v
∂ t
−div(Di∇(v+ue))+ iion(v,w,c,λ ) = iapp

−div(Di∇v)−div((Di +De)∇ue) = 0.
(3)

In the Lagrangian framework, after the pull-back on the reference configuration
Ω̂ × (0,T ), the Bidomain system becomes cmJ

(
∂ v̂
∂ t
−F−T Grad v̂ ·V

)
−Div(J F−1D̂iF−T Grad(v̂+ ûe))+ J iion(v̂, ŵ, ĉ,λ ) = J îapp

−Div(J F−1D̂iF−T Grad v̂)−Div(J F−1(D̂i + D̂e)F−T Grad ûe) = 0,
(4)

where cm and iion are the membrane capacitance and ionic current per unit volume,

respectively, and V =
∂u
∂ t

is the rate of deformation; see [4] for the detailed deriva-
tion. These two partial differential equations (PDEs) are coupled through the reac-
tion term iion with the ODE system of the membrane model, given in Ω(t)× (0,T )
by

∂w
∂ t
−Rw(v,w) = 0,

∂c
∂ t
−Rc(v,w,c) = 0. (5)

This system is completed by prescribing initial conditions, insulating boundary con-
ditions, and the applied current îapp. Since the extracellular potential ûe is defined
up to a time dependent constant in space, we fix it by imposing that ûe has zero aver-
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age on the cardiac domain; see [4] for further details. The orthotropic conductivity
tensors in the deformed configuration are given by

Di,e = σ
i,e
t I +(σ i,e

l −σ
i,e
t )al⊗al +(σ i,e

n −σ
i,e
t )an⊗an,

where σ
i,e
l , σ

i,e
t , σ

i,e
n are the conductivity coefficients in the intra- and extracellular

media measured along and across the fiber direction al ,at ,an.
d) Ionic membrane model and stretch-activated channel current. The ionic

current in the Bidomain model (3) is iion = χIion, where χ is the membrane sur-
face to volume ratio and Iion(v,w,c,λ ) = Im

ion(v,w,c)+ Isac(v,c,λ ) is the sum of the
ionic term Im

ion(v,w,c) given by the ten Tusscher model (TP06) consisting of 17 or-
dinary differential equations, [20, 21], available from the cellML depository (mod-
els.cellml.org/cellml), and a stretch-activated current Isac. In this work, we adopt the
model of Isac proposed in [13] as the sum of non-selective and selective currents
Isac = Ins + IKo. We will consider two calibrations where the Isac equilibrium poten-
tial (denoted in the following by Vsac, i.e. the value such that Isac(Vsac) = 0) is either
Vsac =−60 mV or Vsac =−19 mV . We recall that, for v >Vsac, the stretch-activated
current Isac is positive, thus it has a hyperpolarizing effect, while, for v < Vsac, Isac
is negative, resulting in a depolarizing effect. For further details, we refer to [5].

3 Numerical methods

Space discretization. We discretize the cardiac domain with a hexahedral struc-
tured grid Thm for the mechanical model (1) and The for the electrical Bidomain
model (4), where The is a refinement of Thm . We then discretize all scalar and vector
fields of both mechanical and electrical models by isoparametric Q1 finite elements
in space.
Time discretization. The time discretization is performed by a semi-implicit
splitting method, where the electrical and mechanical time steps can be different.
At the n−th time step,

a) given vn, wn, cn, solve the ODE system of the membrane model with a
first-order IMEX method to compute the new wn+1, cn+1.

b) given the calcium concentration Can+1
i , which is included in the concentration

variables cn+1, solve the mechanical problems (1) and the active tension differential
system to compute the new deformed coordinates xn+1, providing the new defor-
mation gradient tensor Fn+1.

c) given wn+1, cn+1, Fn+1 and Jn+1 = det(Fn+1), solve the Bidomain system (4)
with a first order IMEX method and compute the new electric potentials vn+1, un+1

e
with an operator splitting method, where the parabolic and elliptic PDEs are
decoupled; see [4] for further details.
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4 Parallel solver

4.1 Computational kernels

Due to the discretization strategies described above, the main computational kernels
of our solver at each time step are the following:

1- solve the non-linear system deriving from the discretization of the mechanical
problem (1) using an inexact Newton method. At each Newton step, a non-
symmetric Jacobian system Kx = f is solved inexactly by the GMRES iterative
method preconditioned by a BDDC preconditioner, described in the next section.

2- solve the two linear systems deriving from the discretization of the parabolic
and elliptic equations of the Bidomain model, by using the Conjugate Gradient
method preconditioned by the Block Jacobi and Multilevel Additive Schwarz
preconditioners, respectively, developed in [14].

4.2 Mechanical solver

Schur Complement System. To keep the notation simple, in the remainder of this
section and the next, we denote the reference domain by Ω instead of Ω̂ . Let us
consider a decomposition of Ω into N nonoverlapping subdomains Ωi of diameter
Hi (see e.g. [22, Ch. 4]) Ω =

⋃N
i=1 Ωi, and set H = maxHi. As in classical itera-

tive substructuring, we reduce the problem to the interface Γ :=
(⋃N

i=1 ∂Ωi

)
\∂Ω

by eliminating the interior degrees of freedom associated to basis functions with
support in the interior of each subdomain, hence obtaining the Schur complement
system

SΓ xΓ = gΓ , (6)

where SΓ = KΓ Γ −KΓ IK−1
II KIΓ and gΓ = fΓ −KΓ IK−1

II fI are obtained from the
original discrete problem Kx = f by reordering the finite element basis functions in
interior (subscript I) and interface (subscript Γ ) basis functions.
BDDC preconditioner. The Schur complement system (6) is solved iteratively by
the GMRES method using a BDDC preconditioner M−1

BDDC

M−1
BDDCSΓ xΓ = M−1

BDDCgΓ . (7)

Once the interface solution xΓ is computed, the internal values xI can be recovered
by solving local problems on each subdomain Ωi.

BDDC preconditioners represent an evolution of balancing Neumann-Neumann
methods where all local and coarse problems are treated additively due to a choice of
so-called primal continuity constraints across the interface of the subdomains. These
primal constraints can be point constraints and/or averages or moments over edges
or faces of the subdomains. BDDC preconditioners were introduced in [6] and first
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SIM2: TRANSMEMBRANE POTENTIAL SNAPSHOTS
t=110 ms t=235 ms t=440 ms t=1270 ms

SIM3: TRANSMEMBRANE POTENTIAL SNAPSHOTS
t=110 ms t=235 ms t=440 ms t=1270 ms

Fig. 1 Test 1: Snapshots of transmembrane potentials computed from SIM2 (ventricular tachycar-
dia) and SIM3 (ventricular fibrillation). The units in the colorbars are given in mV .

analyzed in [12]. We remark that BDDC is closely related to FETI-DP algorithms,
see, e.g. [10, 9], defined with the same set of primal constraints as BDDC, since
it is known that in such a case the BDDC and FETI-DP operators have the same
eigenvalues with the exception of zeros and ones. For the construction of BDDC
preconditioners applied to the non-linear elasticity system constituting the cardiac
electromechanical coupling problem, we refer to [16].

5 Numerical Results

In this section, we present the results of parallel numerical experiments performed
on the Linux cluster Marconi (http://www.hpc.cineca.it/hardware/marconi) of the
Cineca Consortium (www.cineca.it). Our code is built on top of the FORTRAN90
wrappers of the open source PETSc library [1]. In the mechanical solver, at each
Newton iteration, the non-symmetric Jacobian system is solved iteratively by GM-
RES preconditioned by the BoomerAMG or the BDDC preconditioner, with zero
initial guess and stopping criterion a 10−8 reduction of the relative residual l2-norm.
The BDDC method is available as a preconditioner in PETSc and it has been con-
tributed to the library by S. Zampini, see [25].
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Fig. 2 S1 beat of physiological test SIM1 over 500 msec.: time plots at an epicardial point of the
indicated electrical (left) and mechanical (right) quantities

5.1 Test 1: comparison of solver performance on normal and
pathological dynamics

We consider an idealized left ventricle, represented by a truncated ellipsoid dis-
cretized by an electrical grid of 384× 192× 48 Q1 finite elements, yielding a total
amount of about 3.6 ·106 nodes, thus the degrees of freedom (dofs) of the parabolic
and elliptic Bidomain linear systems are 3.6 · 106. The mechanical mesh is eight
times coarser than the electrical one, i.e. 48× 24× 6 Q1 finite elements, with a to-
tal amount of 8400 nodes, thus the dofs of the finite elasticy non-linear system are
25200. The electrical time step is 0.05 ms, while the mechanical time step is 0.5 ms.
The simulations are run on 24 processors. The tissue is assumed to be axisymmetric.
The mechanical non-linear system is solved by the Newton-Krylov-AMG method.

We first compare the performance of the electro-mechanical solver in three dif-
ferent situations:

• a normal physiological heartbeat (SIM1) without reentry;
• a ventricular tachycardia dynamics (SIM2), with Vsac =−19 mV ;
• a ventricular fibrillation dynamics (SIM3), with Vsac =−60 mV .
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Fig. 3 Periodic test SIM2 with slope = 1.8, Vsac = −19 mV over 2000 msec.: time plots at an
epicardial point of the indicated electrical (left) and mechanical (right) quantities

In SIM1, the external stimulus is applied at the endocardial apical region, the
interior bottom part of the truncated ellipsoid, and the total simulation run is 500 ms.
The activation wavefront propagates starting from the endocardial apical regions,
where the stimulus is delivered, towards the whole ventricle (not shown, but similar
to the propagation displayed in Fig. 6).

In SIM2 and SIM3, we apply first an S1 stimulus as in SIM1. 280 ms after the
S1 stimulus is delivered, we apply a premature S2 cross-gradient stimulation current
from the base to the apex and across the wall thickness, covering about a third of
ventricular volume, to induce a ventricular reentry consisting of a pair of counter-
rotating scroll waves. We run the simulation for 2000 ms after the S2 delivery. The
SAC parameter Vsac is set to−19 mV and−60 mV is SIM2 and SIM3, respectively.

In SIM2, the two scroll waves generated by the S2 stimulus continue to rotate
without breaking, leading to a stable periodic ventricular tachycardia pattern, see
Fig. 1.

In SIM3 instead, after the first rotation, the two scroll waves break up into sev-
eral smaller scroll waves, generating irregular transmembrane potential distributions
characterized by high electrical turbulence, often associated with ventricular fibril-
lation, as shown in the snapshots of Fig. 1. Thus, the low SAC reversal potential
(Vsac =−60 mV ) seems to induce deterioration of the stability of scroll waves, pro-
moting the onset of ventricular fibrillation.

Figures 2, 3, 4 report the time evolution of the mathematical parameters of the
electro-mechanical solver (CG iterations, condition numbers, Newton iterations,
GMRES iterations) and the CPU times needed to solve the parabolic, elliptic and
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Fig. 4 Turbulent test SIM3 with slope = 1.8, Vsac = −60 mV over 2000 msec.: time plots at an
epicardial point of the indicated electrical (left) and mechanical (right) quantities

proc itpar timepar itell timeell Π =V Π =V E
nit lit timesnes nit lit timesnes

32 3 2.24e-1 20 9.56e-1 4 39 12.90 4 38 13.23
64 3 1.24e-1 20 5.37e-1 4 48 5.03 4 47 5.36
128 3 7.71e-2 20 3.17e-1 4 48 3.67 4 47 3.50
256 3 3.78e-2 20 2.40e-1 4 45 2.55 4 44 2.88

Table 1 Strong scaling test on a whole heartbeat simulation. itpar: CG iteration to solve the
parabolic linear system (average per time step). timepar: CPU time to solve the parabolic linear
system (average per time step). itell : CG iteration to solve the elliptic linear system (average per
time step). timeell : CPU time to solve the elliptic linear system (average per time step). nit: New-
ton iteration to solve the mechanical system (average per time step). lit: GMRES iteration to solve
the Jacobian system (average per Newton iteration). timesnes: CPU time to solve the mechanical
system (average per time step). All CPU times are given in seconds.

non-linear systems (TIME PARAB., TIME ELL., TIME SNES, respectively) ob-
tained from the SIM1, SIM2, SIM3, respectively. The results show that all the
components of the solver are quite robust with respect to the different simulation
dynamics considered, physiological and pathological. The condition number of the
elliptic solver increases slightly when the contraction is more pronounced, but it
always remains bounded betweem 10 and 15.
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Fig. 5 Strong scaling test on a whole heartbeat simulation. Time evolution of electrical and me-
chanical solvers parameters.

5.2 Test 2: strong scaling on a normal heartbeat

We then perform a strong scaling test on a whole heartbeat lasting 400 ms. The
three-dimensional cardiac domain considered is a truncated ellipsoid modeling the
left ventricle, discretized by an electrical mesh of 384 · 192 · 48 Q1 finite elements,
yielding the same Bidomain dofs as in the previous test, about 3.6 ·106. The mechan-
ical mesh size is now four times coarser than the electrical one in each direction,
thus the mechanical elements are 96 ·48 ·12, resulting in 183456 displacement dofs.
The number of subdomains (processors) increases from 32 to 256 whereas the num-
ber of degrees of freedom per subdomain is reduced as the number of subdomains
increases. The tissue is assumed to be orthotropic. The mechanical non-linear sys-
tem is solved by the Newton-Krylov-BDDC method. We choose as BDDC primal
constraints vertices (Π =V ) and vertices + edges (Π =V E). To start the electrical
excitation, the external stimulus is applied at the endocardial apical region, in four
points modeling an idealized Purkinje network.

Fig. 6 reports selected snapshots of transmembrane and extracellular potentials
on the deforming domain during the entire heartbeat. The results reported in Table 1
(averages) and Fig. 5 (time evolution) show a good scalability of both the electrical
and mechanical components of the parallel solver, with linear and non-linear itera-
tions remaining about constant, while the CPU times decrease when the number of
processors increases.
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TRANSMEMBRANE POTENTIAL SNAPSHOTS
t=5 ms t=50 ms t=100 ms t=150 ms

t=200 ms t=250 ms t=300 ms t=375 ms

EXTRACELLULAR POTENTIAL SNAPSHOTS
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t=200 ms t=250 ms t=300 ms t=375 ms

Fig. 6 Snapshots of transmembrane and extracellular potentials during a whole heartbeat. The
units in the colorbars are given in mV .



On overlapping domain decomposition
methods for high-contrast multiscale
problems

Juan Galvis1, Eric Chung3, Yalchin Efendiev2, and Wing Tat Leung2

1 Summary
We review some important ideas in the design and analysis of robust overlap-
ping domain decomposition algorithms for high-contrast multiscale problems.
In recent years, there have been many contributions to the application of dif-
ferent domain decomposition methodologies to solve high-contrast multiscale
problems. We mention two- and multi-levels methods, additive and additive
average methods, iterative substructuring and non-overlapping methods and
many others. See [11]. Due to page limitation, we focus only on two-levels
overlapping methods developed by some of the authors that use a coarse-grid
for the construction of the second level. We also propose a domain decompo-
sition method with better performance in terms of the number of iterations.
The main novelty of our approaches is the construction of coarse spaces,
which are computed using spectral information of local bilinear forms. We
present several approaches to incorporate the spectral information into the
coarse problem in order to obtain minimal (locally constructed) coarse space
dimension. We show that using these coarse spaces, we can obtain a domain
decomposition preconditioner with the condition number independent of con-
trast and small scales. To minimize further the number of iterations until
convergence, we use this minimal dimensional coarse spaces in a construction
combining them with large overlap local problems that take advantage of the
possibility of localizing global fields orthogonal to the coarse space. We ob-
tain a condition number close to 1 for the new method. We discuss possible
drawbacks and further extensions.

1Departamento de Matemáticas, Universidad Nacional de Colombia, Bogotá, Colombia.
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USA. 3Department of Mathematics, The Chinese University of Hong Kong, Hong Kong
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2 High-contrast problems. Introduction
The methods and algorithms, discussed in the paper, can be applied to various
PDEs, even though we will focus on Darcy flow equations. Given D ⊂ R2,
f : D → R , and g : ∂D → R, find u : D → R such that

∂

∂xi

(
κij

∂u

∂xj

)
= f

with a suitable boundary condition, for instance u = 0 on ∂D. The coefficient
κij(x) = κ(x)δij represents the permeability of the porous media D. We
focus on two-levels overlapping domain decomposition and use local spectral
information in constructing “minimal” dimensional coarse spaces (MDCS)
within this setting. After some review on constructing MDCS and their use in
overlapping domain decomposition preconditioners, we present an approach,
which uses MDCS to minimize the condition number to a condition number
closer to 1. This approach requires a large overlap (when comparted to coarse-
grid size) and, thus, is more efficient for small size coarse grids. We present
the numerical results and state our main theoretical result. We assume that
there exists κmin and κmax with 0 < κmin ≤ κ(x) ≤ κmax for all x ∈ D. The
coefficient κ has a multiscale structure (significant local variations of κ
occur across D at different scales). We also assume that the coefficient κ is
a high-contrast coefficient (the constrast is η = κmax/κmin). We assume that
η is large compared to the coarse-grid size.

It is well known that performance of numerical methods for high-contrast
multiscale problems depends on η and local variations of κ across D. For
classical finite element methods, the condition to obtain good approximation
results is that the finite element mesh has to be fine enough to resolve the
variations of the coefficient κ. Under these conditions, finite element approx-
imation leads to the solution of very large (sparse) ill-conditioned problems
(with the condition number scaling with h−2 and η). Therefore, the perfor-
mance of solvers depends on η and local variations of κ across D. This was
observed in several works, e.g., [8, 10, 1]1.

Let T h be a triangulation of the domain D, where h is the size of typical
element. We consider only the case of discretization by the classical finite
element method V = P1(T h) of piecewise (bi)linear functions. Other dis-
cretizations can also be considered. The application of the finite element dis-
cretization leads to the solution of a very large ill-conditioned system Ax = b,
where A is roughly of size h−2 and the condition number of A scales with η
and h−2. In general, the main goal is to obtain an efficient good approxima-
tion of solution u. The two main solution strategies are:
1. Choose h sufficiently small and implement an iterative method. It
is important to implement a preconditioner M−1 to solve M−1Au = M−1b.
Then, it is important to have the condition number of M−1A to be small
and bounded independently of physical parameters, e.g., η and the multi-
scale structure of κ.

1 Due to the page limitation, only a few references are cited throughout.
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2. Solve a smaller dimensional linear system (T H with H > h) so that
computations of solutions can be done efficiently2. This usually involves the
construction of a downscaling operator R0 (from the coarse-scale to fine-scale
v0 7→ v) and an upscaling operator (from fine-scale to coarse-scale, v 7→ v0)
(or similar operators). Using these operators, the linear system Au = b be-
comes a coarse linear system A0u0 = b0 so that R0u0 or functionals of it
can be computed. The main goal of this approach it to obtain a sub-grid
capturing such that ||u−R0u0|| is small.

The rest of the paper will focus on the design of overlapping domain de-
composition methods by constructing appropriate coarse spaces. First, we will
review existing results, which construct minimal dimensional coarse spaces,
such that the condition number of resulting preconditioner is independent of
η. These coarse spaces use local spectral problems to extract the information,
which cannot be localized. This information is related to high-conductivity
channels, which connect coarse-grid boundaries and it is important for the
performance of domain decomposition preconditioners and multiscale sim-
ulations. Next, using these and oversampling ideas, we present a “hybrid”
domain decomposition approach with a condition number close to 1 by ap-
propriately selecting the oversampling size (i.e., overlapping size). We state
our main result, discuss some limitations and show a numerical example. We
compare the results to some existing contrast-independent preconditioners.

3 Classical overlapping methods. Brief review
We start with a non-overlapping decomposition {Di}NS

i=1 of the domain D

and obtain an overlapping decomposition {D′i}
NS
i=1 by adding a layer of width

δ around each non-overlapping subdomain. Let Aj be the Dirichlet matrix
corresponding to the overlapping subdomain D′j . The one level method solves

M−11 A = M−11 b with M−11 =
∑NS

j=1Rj(Aj)
−1RTj and the operators RTj ,

j = 1, . . . , NS , being the restriction to overlapping subdomain D′j operator
and with the Rj being the extension by zero (outside D′j) operator. We

have the bound Cond(M−11 A) ≤ C (1 + 1/δH). For high-contrast multiscale
problems, it is known that C � η.

Next, we introduce a coarse space, that is, a subspace V0 ⊂ V of small di-
mension (when compared to the fine-grid finite element space V). We consider
A0 as the matrix form of the discretization of the equation related to sub-
space V0. For simplicity of the presentation, let A0 be the Galerkin projection
of A on the subspace V0. That is A0 = R0AR

T
0 , where R0 is a downscaling

operator that converts coarse-space coordinates into fine-grid space coordi-
nates. The two-levels preconditioner uses the coarse space and it is defined by
M−12 = R0A

−1
0 RT0 +

∑NS

j=1Rj(Aj)
−1RTj = R0A

−1
0 RT0 +M−11 . It is known that

Cond(M−1A) � η (1 +H/δ) . The classical two-levels method is robust with
respect to the number of subdomains but it is not robust with respect to η.

2 The coarse mesh does not necessarily resolve all the variations of κ.
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The condition number estimates use a Poincaré inequality and small overlap
trick; [13]. Without the small overlap trick Cond(M−1A) � η(1 +H2/δ2).

There were several works addressing the performance of classical domain
decomposition algorithms for high-contrast problems. Many of these works
considered simplified multiscale structures3, see e.g., [13] for some works by O.
Widlund and his collaborators. We also mention the works by Sarkis and his
collaborators, where they introduce the assumption of quasi-monotonicity [4].
Sarkis also introduced the idea of using “extra” or additional basis functions
as well as techniques that construct the coarse spaces using the overlapping
decomposition (and not related to a coarse mesh); [12]. Scheichl and Graham
[10] and Hou and Aarnes [1], started a systematic study of the performance of
classical overlaping domain decomposition methods for high-contrast prob-
lems. In their works, they used coarse spaces constructed using a coarse grid
and special basis functions from the family of multiscale finite element meth-
ods. These authors designed two-levels domain decomposition methods that
were robust (with respect to η) for special multiscale structures. None of the
results available in the literature (before the method in papers [8, 9] was in-
troduced) were robust for a coefficient not-aligned with the construction of
the coarse space (i.e., not aligned either with the non-overlapping decompo-
sion or the coarse mesh if any), i.e., the condition number of the resulting
preconditioner is independent of η for general multiscale coefficients.

4 Stable decomposition and eigenvalue problem. Review
A main tool in obtaining condition number bounds is the construction of a
stable decomposition of a global field. That is, if for all v ∈ V = P 1

0 (D, T h)

there exists a decomposition v = v0 +
∑NS

j=1 vj with v0 ∈ V0 and vj ∈ Vj =

P 1
0 (D′j , T h), j = 1, . . . , N , and

∫
D

κ|∇v0|2 +

NS∑
j=1

∫
D′j

κ|∇vj |2 ≤ C2
0

∫
D

κ|∇v|2

for C0 > 0. Then, cond(M−12 A) ≤ c(T h, T H)C2
0 . Existence of a suitable

coarse interpolation I0 : V → V0 = span{Φ} implies the stable decomposition
above. Usually such stable decomposition is constructed as follows.

For the coarse part of the stable decomposition, we introduce a partition
of unity {χi} subordinated to the coarse mesh (supp χi ⊂ ωi where ωi is the
coarse-block neighborhood of the coarse-node xi). We begin by restricting
the global field v to ωi. For each coarse node neighborhood ωi, we identify
local field that will contribute to the coarse space Iωi

0 v so that the coarse
space will be defined as V0 = Span{χiIωi

0 v}. In classical methods Iωi
0 v is the

average of v in ωi. Later we present some more general examples for Iωi
0 . We

3 These works usually assume some alignment between the coefficient heterogeneities and

the initial non-overlapping decomposition.
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assemble a coarse field as v0 = I0v =
∑NS

i=1 χi(I
ωi
0 v). Note that in each block

v − v0 =
∑
xi∈K χi(v − I

ωi
0 v).

For the local parts of the stable decomposition, we introduce a partition
of unity {ξj} subordinated to the non-overlapping decomposition (supp ξj ⊂
D′j). The local part of the stable decomposition is defined by vj = ξj(v− v0).
For instance, to bound the energy of vj , we have in each coarse-block K,∫

K

κ|∇vj |2 �
∫
K

κ|∇ξj

(∑
xi∈K

χi(v − Iωi
0 v)

)
|2

�
∑
i∈K

∫
K

κ(ξjχi)
2|∇(v − Iωi

0 v)|2 +
∑
xi∈K

∫
K

κ|∇(ξjχi)|2|v − Iωi
0 v|2.

Adding up over K, we obtain,∫
D′j

κ|∇vj |2 �
∑
xi∈D

′
j

∫
D′j

κ(ξjχi)
2|∇(v − Iωi

0 v)|2

+
∑
xi∈ωj

∫
D′j

κ|∇(ξjχi)|2|v − Iωi
0 v|2

and we would like to bound the last term by C
∫
D′j
κ|∇v|2.

For simplicity of our presentation, we consider the case when the coarse
elements coincide with the non-overlapping decomposition subdomains. That
is, D′j = ωj . In this case, we can replace ξ by χ and replace ∇(χ2) by ∇χ so

that we need to bound
∑
xi∈ωj

∫
ωj
κ|∇χi|2|v− Iωi

0 v|2. We refer to this design

as coarse-grid based.

Remark 1 (General case and overlapping decomposition based design). Sim-
ilar analysis holds in the case when there is no coarse-grid and the coarse
space is spanned by a partition of unity {ξj}. We can replace χ by ξ and
∇(ξ2) by ∇ξ. In general these two partitions are not related (see Sec. 4.1).

We now review the three main arguments to complete the required bound:
1) A Poincaré inequality. 2) L∞ estimates. 3) Eigenvalue problem.

1. A Poincaré inequality: Classical analysis uses a Poincaré inequality
to obtain the required bound above. That is, the inequality 1

H2

∫
ω

(v − v̄)2 ≤
C
∫
ω
|∇v|2 to obtain

∑
xi∈ωj

∫
ωj
κ|∇χi|2|v − Iωi

0 v|2 � 1
H2

∫
ωi
κ|v − Iωi

0 v|2 �
C
∫
ωi
κ|∇v|2. In this case, Iωi

0 v is the average of v on the subdomain. For
the case of high-contrast coefficients, C depends on η, in general. For quasi-
monotone coefficient it can be obtained that C is independent of the contrast
[4]. We also mention [8] for the case locally connected high-contrast
region. In this case Iωi

0 v is a weighted average. From the argument given in
[8], it was clear that when the high-contrast regions break across the domain,
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defining only one average was not enough to obtain contrast independent
constant in the Poincaré inequality.

2. L∞ estimates: Another idea is to use an L∞ estimate of the form∑
xi∈K

∫
ωi

κ|∇χi|2|v − Iωi
0 v|2 �

∑
xi∈K

||κ|∇χi|2||∞
∫
ωi

|v − Iωi
0 v|2.

The idea in [10, 1] was then to construct a partition of unity such that
||κ|∇χi|2||∞ is bounded independently of the contrast and then to use clas-
sical Poincaré inequality estimates. Instead of minimizing the L∞, one can
intuitively try to minimize

∫
K
κ|∇χi|2. This works well when the multiscale

structure of the coefficient is confined within the coarse blocks. For instance,
for a coefficient and coarse-grid as depicted in Figure 1 (left picture), we
have that a two-level domain decomposition method can be proven to be
robust with respect the value of the coefficient inside the inclusions. In fact,
the coarse space spanned by classical multiscale basis functions with linear
boundary conditions (−div(κ∇χi) = 0 in K and linear on each edge of ∂K)
is sufficient and the above proof works. Now consider the coefficient in Figure
1 (center picture). For such cases, the boundary condition of the basis func-
tions is important. In these cases, basis functions can be constructed such
that the above argument can be carried on. Here, we can use multiscale basis
functions with oscillatory boundary condition in its construction4.

Fig. 1 Examples o multiscale coefficients with interior high-contrast inclusions (left),
boundary inclusions (center) and long channels(right).

For the coefficient in Figure 1, right figure, the argument above using L∞

cannot be carried out unless we can work with larger support basis functions
(as large as to include the high-contrast channels of the coefficient). If the
support of the coarse basis function does not include the high-contrast region,
then ||κ|∇χi|2||∞ increases with the contrast leading to non-robust two-level
domain decomposition methods.

4 We can include constructions of boundary conditions using 1D solution of the problem
along the edges. Other choices include basis functions constructed using oversampling

regions, energy minimizing partition of unity (global), constructions using limited global

information (global), etc.
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3. Eigenvalue problem. We can write
∑
xj∈ωi

∫
ωi

κ|∇χj |2|v − Iωi
0 v|2 �

1

H2

∫
ωi

κ|(v − Iωi
0 v)|2 � C

∫
ωi

κ|∇v|2, where we need to justify the last in-

equality with constant independent of the contrast. The idea is then to con-

sider the Rayleigh quotient, Q(v) :=

∫
ωi
κ|∇v|2∫

ωi
κ|v|2

with v ∈ P 1(ωi). This

quotient is related to an eigenvalue problem and we can define Iωi
0 v to be

the projection on low modes of this quotient on ωi. The associated eigen-
problem is given by −div(k(x)∇ψ`) = λ`k(x)ψi in ωi with homogeneous
Neumann boundary condition for floating subdomains and a mixed homoge-
neous Neumann-Dirichlet condition for subdomains that touch the bound-
ary. It turns out that the low part of the spectrum can be written as
λ1 ≤ λ2 ≤ ... ≤ λL < λL+1 ≤ ... where λ1, ..., λL are small, asymptoti-
cally vanishing eigenvalues and λL can be bounded below independently of
the contrast. After identifying the local field Iωi

0 v, we then define the coarse
space as V0 = Span{Ihχiψωi

j } = Span{Φi}.
Eigenvalue problem with a multiscale partition of unity. Instead of

the argument presented earlier, we can include the gradient of the partition
of unity in the bounds (somehow similar to the ideas of L∞ bounds). We
then need the following chain of inequalities,∫
ωi

 ∑
xj∈ωi

κ|∇χj |2


︸ ︷︷ ︸
:= H−2κ̃

|v − Iωi
0 v|2 =

1

H2

∫
ωi

κ̃|v − Iωi
0 v)|2 �

∫
ωi

κ|∇v|2. Here

we have to consider Rayleigh quotient Qms(v) :=

∫
ωi
κ|∇v|2∫

ωi
κ̃|v|2 , v ∈ P 1(ωi) and

define Iωi
0 v as projection on low modes. Additional modes “complement” the

initial space spanned by the partition of unity used so that the resulting
coarse space leads to robust methods with minimal dimension coarse spaces;
[9].

If we consider the two-level method with the (multiscale) spectral coarse
space presented before, then

cond(M−1A) ≤ C(1 + (H/δ)2), (1)

where C is independent of the contrast if enough eigenfunctions in each node
neighborhood are selected for the construction of the coarse spaces. The con-
stant C and the resulting coarse-space dimension depend on the partition of
unity (initial coarse-grid representation) used.
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4.1 Abstract problem eigenvalue problems
We consider an abstract variational problem, where the global bilinear
form is obtained by assembling local bilinear forms. That is a(u, v) =∑
K aK(RKu,RKv), where aK(u, v) is a bilinear form acting on functions

with supports being the coarse block K. Define the subdomain bilinear form
aωi(u, v) =

∑
K⊂ωi

aK(u, v). We consider the abstract problem
a(u, v) = F (v) for all v ∈ V.

We introduce {χj}, a partition of unity subordinated to coarse-mesh blocks
and {ξi} a partition of unity subordinated to overlapping decomposition (not
necessarily related in this subsection). We also define the “Mass” bilinear
form (or energy of cut-off) mωi and the Rayleigh quotient Qabs by

mωi
(v, v) :=

∑
j∈ωi

a(ξiχjv, ξiχjv) and Qabs(v) :=
aωi

(v, v)

mωi
(v, v)

.

For the Darcy problem, we have mωi
(v, v) =

∑
j∈ωi

∫
ωi
κ|∇(ξiχjv)|2 �∫

ωi
κ̃|v|2. The same analysis can be done by replacing the partition of unity

functions by partition of degree of freedom (PDoF). Let {χχχj} be PDoF sub-
ordianted to coarse mesh neighborhood and {ξξξi} be PDoF subordianted to
overlapping decomposition. We define the cut-off bilinear form and quotient,

mωi
(v, v) :=

∑
j∈ωi

a(ξξξiχχχjv,ξξξiχχχjv) and Qabs2(v) :=
aωi

(v, v)

mωi(v, v)
.

The previous construction alows applying the same design recursively and
therefore to use the same ideas in a multilevel method. See [6, 7].

4.2 Generalized Multiscale Finite Element Method
(GMsFEM) eigenvalue problem

We can consider the Rayleigh quotients presented before only in a suit-
able subspace that allows a good approximation of low modes. We call
these subspace the snapshot spaces. Denote by Wi the snapshot space
corresponding to subdomain ωi, then we consider the Rayleigh quotient,

Qgm(v) :=
aωi

(v, v)

mωi(v, v)
with v ∈Wi. The snapshot space can be obtained

by dimension reduction techniques or similar computations. See [5, 2]. For
example, we can consider the following simple example. In each subdomain
ωi, i = 1, . . . , NS :
(1) Generate forcing terms f1, f2, . . . , fM randomly (

∫
ωi
f` = 0);

(2) Compute the local solutions −div(κ∇u`) = f` with homogeneous Neu-
mann boundary condition;
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(3) Generate Wi = span{u`} ∪ {1};
(4) Consider Qgm with Wi in 3 and compute important modes.
In Table 1, we see the results of using the local eigenvalue problem versus
using the GMsFEM eigenvalue problem.

η MS Full 8 rand. 15 rand

106 209 35 37 37
109 346 38 44 38

Table 1 PCG iterations for different values η. Here H = 1/10 with h = 1/200. We use

the GMsFEM eigevalue problem with Wi = Vi (full local fine-grid space), column 2; Wi

spanned by 8 random samples, column 4, and Wi spanned by 15 samples, column 5.

5 Constrained coarse spaces, large overlaps, and DD
In this section, we introduce a hybrid overlapping domain decomposition
preconditioner. We use the coarse spaces constructed in [3], which rely on
minimal dimensional coarse spaces as discussed above. First, we construct
local auxiliary basis functions. For each coarse-block K ∈ T H , we solve

the eigenvalue problem with Rayleigh quotient Qms(v) :=
∫
K
κ|∇v|2∫

K
κ̂|v|2 , where

κ̂ = κ
∑
j |∇χj |2. We assume λK1 ≤ λK2 ≤ . . . and define the local auxiliary

spaces,
Vaux(K) = span{φKj |1 ≤ j ≤ LK} and Vaux = ⊕KVaux(K).

Next, define a projection operator πK as the orthogonal projection on Vaux
with respect to the inner product

∫
K
κ̂uv and πD = ⊕KπK . Let K+ be

obtained by adding l layers of coarse elements to the coarse-block K. The
coarse-grid multiscale basis ψKj,ms ∈ V (K+) = P 1

0 (K+) solve∫
K+

κ∇ψKj,ms∇v +

∫
K+̂

κπD(ψKj,ms)πD(v) =

∫
K+

κ̂φKj πD(v), ∀v ∈ V (K+).

The coarse-grid multiscale space is defined as Vms = span{ψ(i)
j,ms}. We remark

that this space is used as the global coarse solver in our preconditioner. More
precisely, we define the (coarse solution) operator A−10,ms : H−1(κ̂, D) 7→ Vms
by,∫
D

κ∇A−10,ms(u)∇v = u(v) for all v ∈ Vms
where H−1(κ̂, D) is the space of bounded linear functionals on the weighted
sobolev space, H1(κ,D). In our preconditioner, we also need local solution
operators which are the operators A−1i,ms : H−1(κ̂, D) 7→ V (ω+

i ) defined by,∫
ω+

i

κ∇A−1i,ms(ui)∇v +

∫
ω+

i

κ̂π(A−1i (ui))πD(v) = ui(χiv) for all v ∈ V (ω+
i ),
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where ω+
i is obtained by enlarging ωi by k coarse-grid layers. Next, we can

define the preconditioner5 M by

M−1 = (I −A−10,msA)
(∑

iA
−1
i,ms

)
(I −AA−10,ms) +A−10,ms.

Note that this is a hybrid preconditioner as defined in [13]. We remark that
the constructions of the global coarse space and local solution operators are
motivated by [3], where a new multiscale space is developed and analyzed,
and it is shown to have a good convergence property independent of the
scales of the coefficient of the PDE. In addition, the size of the local problem
is dictated by an exponential decay property.

Using some estimates in [3], we can establish the following condition num-
ber estimate for cond(M−1A),

cond(M−1A) ≤
1 + C(1 + Λ−1)

1
2E

1
2 max{κ̃ 1

2 }
1− C(1 + Λ−1)

1
2E

1
2 max{κ̃ 1

2 }
(2)

where E = 3(1+Λ−1)
(

1+(2(1+Λ−
1
2 ))−1

)1−k
, C is a constant that depends

on the fine and coarse grid only and Λ = minK λ
K
LK+1. See [3] for the required

estimates of the coarse space. The analysis of the local solvers of the hybrid
method above will be presented elsewhere6. We see that the condition number
is close to 1 if sufficient number of basis functions is selected (i.e., Λ is not
close to zero)7. The overlap size usually involves several coarse-grid block
sizes and thus, the method is effective when the coarse-grid sizes are small.
We comment that taking the generous overlap δ = kH/2 in (1), we get the
bound C(1 + 4/k2) with C independent of the contrast. The estimate (2),
on the other hand, gives a bound close to 1 if the oversampling is sufficiently
large (e.g., the number of coarse-grid layers is related to log(η)), which is due
to the localization of global fields orthogonal to the coarse space.

Next, we present a numerical result and consider a problem with perme-
ability κ shown in Fig. 2. The fine-grid mesh size h and the coarse-grid mesh
size are considered as h = 1/200 and H = 1/20. In Table 2, we present the
number of iterations for using varying numbers of oversampling layers k, val-
ues of the contrast η and κM−1A − 1, which is the condition number of the
preconditioned matrix minus one. We observe that when k = 3, the condi-
tion number κM−1A is almost one, which confirms (2). In practice, one can
choose smaller local problems with a corresponding increase in the number
of iterations. This balance can be determined by practical needs.

We would like to emphasize that the proposed method has advantages if
the coarse mesh size is not very coarse. In this case, the oversampled coarse
regions are still sufficiently small and the coarse-grid solves can be relatively

5 Here we avoid restriction and extension operators for simplicity of notation.
6 We mention that the analysis does not use a stable decomposition so, in principle, a new

family of robust methods can be obtained.
7 Having a robust condition number close to 1 is important, especially in applications

where the elliptic equation needs to be solved many times.
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Fig. 2 Left: The coarse mesh used in the numerical experiments. We highlight a coarse

neighborhood and the results of adding 3 coarse-block layers to it. Right: The permeability

κ used in the experiments. The gray regions indicate high-permeability regions of order η
while the white regions indicates a low (order 1) permeability.

# basis per ω k # iter κM−1A − 1

3 3 3 5.33e-04
3 4 2 2.57e-05

3 5 2 1.25e-06

3 6 1 5.50e-08

# basis per ω η # iter κM−1A − 1

3 1e+3 3 5.68e-04
3 1e+4 3 5.33e-04
3 1e+5 3 6.74e-04

Table 2 Condition number κM−1A and number of iterations until convergence for the
PCG with H = 1/20, h = 1/200 and tol = 1e− 10. Left: different number of oversampling

layers k with η = 1e+ 4. Right: different values of the contrast η with k = 3.

expensive. Consequently, one wants to minimize the number of coarse-grid
solves in addition to local solves. In general, the proposed approach can be
used in a multi-level setup, in particular, at the finest levels, while at the
coarsest level, we can use original spectral basis functions proposed in [8].
This is object of future research.

6 Conclusions
In this paper, we give an overview of domain decomposition precondition-
ers for high-contrast multiscale problems. In particular, we review the design
of overlapping methods with an emphasis on the stable decomposition for
the analysis of the method. We emphasize the use of minimal dimensional
coarse spaces in order to construct optimal preconditioners with the condi-
tion number independent of physical scales (contrast and spatial scales). We
discuss various approaches in this direction. Furthermore, using these spaces
and oversampling ideas, we design a new preconditioner with a significant re-
duction in the number of iterations until convergence if oversampling regions
are large enough (several coarse-grid blocks). We note that when using only
minimal dimensional coarse spaces in additive Schwarz preconditioner with
standard overlap size, we obtain around 19 iterations. in the new method,
our main goal is to reduce even further the number of iterations due to large
coarse problem sizes. We obtained around 3 iterations until convergence for
the new approach. A main point of the new methodology is that after remov-
ing the channels we are able to localize the remaining multiscale information
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via oversampling. Another interesting aspect of the new approach is that the
bound can be obtained by estimating directly operator norms and do not
require a stable decomposition.
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Mex., México, 2003.

[13] A. Toselli and O. Widlund. Domain decomposition methods – Algorithms
and Theory, volume 34 of Computational Mathematics. Springer-Verlag,
2005.



INTERNODES for heterogeneous couplings

Paola Gervasio and Alfio Quarteroni

Abstract The INTERNODES (INTERpolation for NOnconforming DEcomposi-
tionS) method is an interpolation based approach to solve partial differential equa-
tions on non-conforming discretizations. In this paper we apply the INTERNODES
method to different problems such as the Fluid Structure Interaction problem and
the Stokes-Darcy coupled problem that models the filtration of fluids in porous me-
dia. Our results highlight the flexibility of the method as well as its optimal rate of
convergence.

1 Introduction

The INTERNODES (INTERpolation for NOnconforming DEcompositionS) method
is an interpolation based approach to solve partial differential equations on non-
conforming discretizations [3, 9]. It is an alternative to projection-based methods
like mortar [1], or other interpolation-based method like GFEM/XFEM [10]. Dif-
ferently than in mortar methods, no cross-mass matrix involving basis functions
living on different grids of the interface are required by INTERNODES to build the
intergrid operators. Instead, two separate interface mass matrices (separately on ei-
ther interface) are used. The substantial difference between GFEM/XFEM methods
and INTERNODES consists in the fact that the former ones use a partition of unity
to enrich the finite element space, while the latter does not add any shape function
to those of the local finite element subspaces.

Paola Gervasio
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In this paper we apply the INTERNODES method to different problems such as
the Fluid Structure Interaction problem and the Stokes-Darcy coupled problem that
models the filtration of fluids in porous media. Our results highlight the flexibility
of the method as well as its optimal rate of convergence. Before addressing the two
specific problems above, we introduce an abstract formulation for heterogeneous
problems. This will also be useful to state the definition of the interface matching
operators that will stand at the base of the INTERNODES method.

Let Ω ⊂ Rd , with d = 2,3, be an open domain with Lipschitz boundary ∂Ω ,
Ω1 and Ω2 be two non-overlapping subdomains with Lipschitz boundary such that
Ω = Ω1∪Ω2, and Γ = ∂Ω1∩∂Ω2 be their common interface.

Given a function f defined in Ω , we look for u1 in Ω1 and u2 in Ω2 such that

Lk(uk) = f in Ωk, k = 1,2, (1)
Φ2(u2) = Φ1(u1) on Γ (Dirichlet-like condition), (2)
Ψ1(u1)+Ψ2(u2) = 0 on Γ (Neumann-like condition), (3)
boundary conditions on ∂Ω , (4)

where L1 and L2 are two differential operators (that may also coincide) while, for
k = 1,2, Φk and Ψk are suitable boundary operators restricted to the interface Γ ,
that depend upon the nature of the differential operators L1 and L2. More specifi-
cally, Neumann conditions refer here to natural conditions that are enforced weakly,
whereas Dirichlet conditions identify those essential conditions that are enforced
directly in the solution subspaces, via the suitable choice of trial functions (see, e.g.,
[13]). Typically for second order differential operators there is one Dirichlet-like
condition and one Neumann-like condition, however more general situations are
admissible.

Problem (1)–(4) provides an abstract setting for several kinds of differential prob-
lems; here we present two instances of (1)–(4) which the INTERNODES method is
applied to.

2 Fluid Structure Interaction problem

When modeling the coupling between fluids and solids, the viscous incompressible
Navier-Stokes equations are typically written in ALE (Arbitrarian Lagrangian Eu-
lerian) coordinates in the fluid domain, whereas an elasticity model (either linear or
nonlinear, depending on the type of structure) is solved in a reference frame; a third
field, the so-called geometry problem, allows to determine the displacement of the
fluid domain which defines, in turn, the ALE map, see, e.g., [14, 8, 5].

Let Ω̂s and Ω̂ f be two non-overlapping reference configurations for the struc-
ture and fluid domains, respectively, and Γ̂ = ∂Ω̂s ∩ ∂Ω̂ f be the fluid-structure
reference interface. We assume that the boundaries ∂Ω̂k, for k = s, f are Lips-
chitz continuous and that (∂Ω̂k \ Γ̂ ) is the union of two nonoverlapping subsets
∂Ω̂ N

k and ∂Ω̂ D
k on which Neumann and Dirichlet boundary conditions will be
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Ω̂s Ω̂ f
D f ,t

Ω f ,t

Ds,t

Ωs,t

Ds,t

Fig. 1 At left: the ALE frame of reference. At right: the computational domains for the FSI prob-
lem: the fluid domain Ω f ,t and the structure domain Ωs,t . Γt = ∂Ω f ,t ∩∂Ωs,t

imposed, respectively. Then, for any t ∈ (0,T ) let Ωs,t and Ω f ,t be the computa-
tional structure and fluid domains, respectively, such that Ωs,0 = Ω̂s, Ω f ,0 = Ω̂ f
and Ω t = Ωs,t ∪Ω f ,t . The current configurations Ωs,t and Ω f ,t are defined as
Ωk,t = {x =Dk,t(x̂) = x̂+ d̂k(x̂, t), ∀x̂ ∈ Ω̂k}, with k = s, f , where d̂s and d̂ f are the
displacements induced by the dynamics (see Fig. 1).

We introduce the following entities:

- the outward unit normal vectors nk to ∂Ωk,t (current configuration) and n̂k to
∂Ω̂k (reference configuration),

- the Arbitrary-Lagrangian-Eulerian (ALE) velocity w =
∂ d̂ f
∂ t |x̂,

- the deformation gradient tensor for both structure (k = s) and fluid (k = f ) Fk =
∂x
∂ x̂ = I+ ∂ d̂k

∂ x̂ for any x̂ ∈ Ω̂k,
- the fluid velocity u f and the fluid pressure p f , the dynamic viscosity of the fluid

µ , the fluid density ρ f ,
- the Cauchy stress tensor for the fluid σ f = σ f (u f , p f ) = −p f I + µ(∇u f +

(∇u f )
T ), and σ̂ f such that σ̂ f n̂ f = det(F f )F−T

f σ f n f ◦D f ,t ,

- the Cauchy stress tensor σs = σs(d̂s) and the first Piola-Kirchhoff tensor σ̂s =

σ̂s(d̂s) = det(Fs)σs(d̂s)F−T
s for the structure, the structure density ρs.

Then, for any t ∈ (0,T ) the structure and fluid displacements (d̂s and d̂ f ) and the
fluid velocity and pressures (u f and p f ) are the solution of the FSI system:

structure problem (in reference configuration)

ρs
∂ 2d̂s

∂ t2 −∇ · σ̂s = 0 in Ω̂s, (5)

fluid problem (in current configuration)

ρ f
∂u f

∂ t

∣∣∣
x̂
+ρ f ((u f −w) ·∇)u f −∇ ·σ f = 0, in Ω f ,t , (6)

∇ ·u f = 0 in Ω f ,t , (7)

geometry problem (in reference configuration)
−∆ d̂ f = 0 in Ω̂ f , (8)

interface conditions (at interface in reference configuration)
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σ̂sn̂s + σ̂ f n̂ f = 0 (dynamic) on Γ̂ , (9)

u f ◦D f ,t =
∂ d̂s

∂ t
(kinematic) on Γ̂ , (10)

d̂ f = d̂s (adherence) on Γ̂ , (11)

completed with: the Dirichlet boundary conditions u f = gD
f on Γ D

f ,t and d̂ f = gD
g on

Γ̂ 0
f ⊂ ∂Ω̂ f , d̂s = gD

s on Γ̂ D
s , the Neumann conditions σ f n f ,t = gN

f on Γ N
f ,t , σ̂sn̂s = gN

s

on Γ̂ N
s , and the initial conditions u f = u0 in Ω f ,0, d̂s = d̂0,

∂ d̂s
∂ t = d̂1 in Ωs,0.

System (5)–(11) can be recast in the form (1)–(4) by associating the structure
problem with L1(u1) (now representing nonlinear operators, the choices of u1 and u2
are obvious), the fluid problem and the geometric problem with L2(u2), both the ad-
herence and the kinematic interface conditions are interpreted as Φ-like conditions
(they involve the traces of the unknowns functions on Γ̂ ), whereas the dynamic in-
terface condition is interpreted as a Ψ -like condition (as it involves normal stresses
on Γ̂ ).

3 Fluids filtration in porous media (Stokes-Darcy coupling)

Flow processes in a free-fluid region adjacent to a porous medium occur in many
relevant applications. Under the (realistic) assumption that the Reynolds number in
the porous domain is small, the Navier-Stokes equations could be therein up-scaled
to a macroscopic level and replaced by the Darcy law.

Consider the case of a tangential flow of a fluid over a porous bed. This situation
is known in literature also as near parallel flows [12], i.e. flows for which the pres-
sure gradient is not normal to the interface and the Darcy velocity inside the porous
domain is much smaller than the velocity in the fluid domain. The most widely used
approach to couple the free fluid regime with the porous-medium one consists of:
- the introduction of an artificial sharp interface Γ between the Stokes (or fluid) do-
main Ωs and the Darcy (or porous) domain Ωd ;
- the imposition of the mass conservation, the balance of normal forces and the
Beavers-Joseph-Saffman (BJS) experimental law on Γ ([7]), see Fig. 2.

To write down the associated mathematical model, we introduce the following
entities:

- the outward unit normal vectors nk to ∂Ωk,
- the dynamic viscosity µ , the density ρ , the velocity us and the pressure ps of the

fluid in Ωs,
- the Cauchy stress tensor for the fluidσs =σs(us, ps)=−psI+µ(∇us+(∇us)

T ),
- the Darcy velocity ud and the intrinsic average pressure pd in the porous domain,

the intrinsic permeability κ= κ(x) (for any x ∈Ωd) of the porous media,
- two given body forces fs and fd ,
- the normal unit vector nΓ to Γ directed from Ωs to Ωd (then nΓ = ns =−nd on

Γ ) and an orthonormal system of tangent vectors τ j, with j = 1, . . . ,d−1 on Γ .
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Fig. 2 A typical setting of
the Stokes-Darcy coupled
problem for a fluid over a
porous bed Γ

Ωd

Ωs

solid wall

medium
porous

The coupled problem that we consider reads:

Stokes problem (fluid domain)
−∇ ·σs = fs, ∇ ·us = 0 in Ωs, (12)
Darcy problem (porous domain)
ud =−κ

µ
(∇pd− fd), ∇ ·ud = 0 in Ωd , (13)

interface conditions (sharp interface)
us ·ns +ud ·nd = 0 (mass conservation) on Γ , (14)
(σsns) ·ns + pd = 0 (balance of normal forces) on Γ , (15)

(σsns) ·τ j +
αµ√
τ jTκτ j

us ·τ j = 0, j = 1, . . . ,d−1, (BJS condition) on Γ , (16)

where α is a suitable parameter depending on the porous media. Indeed, the BJS
condition is not a coupling condition, as it only involves quantities from one side.

The system (12)–(16) is completed with suitable boundary conditions that read
(as usual, D stands for Dirichlet and N for Neumann): us = gD

s on ∂Ω D
s , σsns = 0

on ∂Ω N
s , pd = 0 on ∂Ω D

d , ud ·nd = gN
d on ∂Ω N

d , where we assume that ∂Ω N
k and

∂Ω D
k are non-intersecting subsets of ∂Ωk \Γ such that ∂Ω N

k ∪∂Ω D
k = ∂Ωk \Γ .

The coupled system (12)–(16) can be recast in the form (1)–(4) by associating the
Stokes problem with L2(u2) and the Darcy problem with L1(u1). When considering
the weak (variational) formulation of the coupled problem (12)–(16), the interface
coupling conditions (14) and (15) can be treated in different ways depending on the
specific variational form used. In the form used in Sect. 6, the balance of normal
forces (15) plays the role of a Φ-like condition (2), while the mass conservation
condition (14) will be treated as a Ψ -like condition (3). In specific circumstances,
however, for instance when the interface Γ is parallel to one of the cartesian coordi-
nates, condition (14) can be easily enforced as a Dirichlet condition (thus under the
form (2)) on the space of trial functions and condition (15) as a Neumann (natural)
condition, e.g., like (3).

4 Intergrid operators for non-conforming discretization

We consider two a-priori independent families of triangulations T1,h1 in Ω1 and
T2,h2 in Ω2, respectively. The meshes in Ω1 and in Ω2 can be non-conforming on
Γ and characterized by different mesh-sizes h1 and h2. Moreover, different poly-
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x(Γ1)
j

x(Γ2)
i

Γ1

Γ2

Ω1

Ω2

Γ1

x(Γ1)
j

x(Γ2)
i

Ω2

Ω1

Γ2

Fig. 3 Γ1 and Γ2 induced by the triangulations T1,h1 and T2,h2 , when d = 2

nomial degrees p1 and p2 can be used to define the finite element spaces. Inside
each subdomain Ωk we assume that the triangulations Tk,hk are affine, regular and
quasi-uniform ([15, Ch.3]).

Then, for k = 1,2, let Xk,hk = {v ∈C0(Ωk) : v|T ∈ Ppk , ∀T ∈Tk,hk} be the usual
Lagrangian finite element spaces associated with Tk,hh , while Yk,hk = {λ = v|Γ , v ∈
Xk,hk} are the spaces of traces on Γ of functions in Xk,hk , whose dimension is nk.

We denote by Γ1 and Γ2 the internal boundaries of Ω1 and Ω2, respectively,
induced by the triangulations T1,h1 and T2,h2 . If Γ is a straight segment, then
Γ1 = Γ2 = Γ , otherwise Γ1 and Γ2 may not coincide (see Fig. 3).

For k = 1,2, let {x(Γk)
1 , . . . ,x(Γk)

nk } ∈ Γ k be the nodes induced by the mesh Tk,hk .
We introduce two independent operators that exchange information between the

two independent grids on the interface Γ : Π12 : Y2,h2 →Y1,h1 and Π21 : Y1,h1 →Y2,h2 .
If Γ1 =Γ2, Π12 and Π21 are the classical Lagrange interpolation operators defined

by the relations:

(Π12µ2,h2)(x
(Γ1)
i ) = µ2,h2(x

(Γ1)
i ), i = 1, . . . ,n1, ∀µ2,h2 ∈ Y2,h2 , (17)

(Π21µ1,h1)(x
(Γ2)
i ) = µ1,h1(x

(Γ2)
i ), i = 1, . . . ,n2, ∀µ1,h1 ∈ Y1,h1 . (18)

If, instead, Γ1 and Γ2 are geometrically non-conforming, we define Π12 and Π21
as the Rescaled Localized Radial Basis Function (RL-RBF) interpolation operators
introduced in formula (3.1) of [4]. In both cases, the (rectangular) matrices associ-
ated with Π12 and Π21 are, respectively, R12 ∈ Rn1×n2 and R21 ∈ Rn2×n1 and they
are defined by:

(R12)i j = (Π12µ
(2)
j )(x(Γ1)

i ) i = 1, . . . ,n1, j = 1, . . . ,n2,

(R21)i j = (Π21µ
(1)
j )(x(Γ2)

i ) i = 1, . . . ,n2, j = 1, . . . ,n1,
(19)

where {µ(k)
i } are the Lagrange basis functions of Yk,hk , for k = 1,2 and i = 1, . . . ,nk.

In the special conforming case for which Γ1 = Γ2, h1 = h2 and p1 = p2, the in-
terpolation operators Π12 and Π21 are the identity operator and R12 = R21 = I (the
identity matrix of size n1 = n2). Finally, let MΓk such that

(MΓk)i j = (µ
(k)
j ,µ

(k)
i )L2(Γk)

, k = 1,2, (20)
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be the interface mass matrices. To assemble both the interface mass matrices and
the interpolation matrices, for both the Lagrange and the RL-RBF approaches, the
only information that are needed are the coordinates of the interface nodes.

Let `,k = 1,2. If µ(k) ∈ [Yk,hk ]
d with d = 2,3; by writing Π`kµ

(k) we mean that
the interpolation operator Π`k is applied to each component of the vector-value func-
tion µ(k). Finally, MΓk = diag(MΓk , . . . ,MΓk) and R`k = diag(R`k, . . . ,R`k) are block
diagonal matrices with d blocks.

5 INTERNODES applied to the FSI system

We define the functional spaces:

V f ,t = [H1(Ω f ,t)]
d , Q f ,t = L2(Ω f ,t), VD

f ,t = {v ∈ V f ,t : v = 0 on ∂Ω D
f ,t},

V0
f ,t = {v ∈ V f ,t : v = 0 on ∂Ω D

f ,t ∪Γt}, Vs = [H1(Ω̂s)]
d ,

VD
s = {v ∈ Vs : v = 0 on ∂Ω̂ D

s }, V0
s = {v ∈ Vs : v = 0 on ∂Ω̂ D

s ∪ Γ̂ },
Vg = [H1(Ω̂ f )]

d , VD
g = {v ∈ Vg : v = 0 on ∂Ω̂ 0

f }, Λ̂= [H1/2
00 (Γ̂ )]d ,

(21)

and the lifting operators Rs : Λ̂ → V̂D
s s.t. (Rsλ̂)|Γ̂ = λ̂, R f ,t : Λ̂ → VD

f ,t s.t.

(R f ,tλ̂)|Γt = λ̂◦D−1
f ,t .

Let us discretize the time derivatives by standard finite difference schemes (e.g.
a backward differentiation formula to approximate the first order derivative and
the Newmark method to approximate the second one). The weak semi-discrete
(continuous in space) counterpart of the FSI system (5)–(11) reads: for any time
level tn, with n ≥ 1, find un

f ∈ V f ,tn , pn
f ∈ Q f ,tn , d̂n

f ∈ Vg and d̂n
s ∈ Vs satisfy-

ing the Dirichlet boundary conditions un
f = gD

f (t
n) on Γ D

f ,tn and d̂n
f = gD

g (t
n) on

Γ̂ 0
f ⊂ ∂Ω̂ f , d̂n

s = gD
s (t

n) on Γ̂ D
s and the initial conditions u0

f = u0 in Ω f ,0, d̂0
s = d̂0,

and ∂ d̂s
∂ t |t=0 = d̂1 in Ωs,0, such that:

As(d̂n
s , v̂s) = F n

s (v̂s) ∀v̂s ∈ V0
s , (22)

A f (un
f , d̂

n
f ;v f )+B f (v f , pn

f ) = F n
f (v f ) ∀v f ∈ V0

f ,tn , (23)
B f (un

f ,q) = 0 ∀q ∈ Q f ,tn , (24)

G (d̂n
f , v̂g) = 0 ∀v̂g ∈ VD

g , (25)

As(d̂n
s ,Rsµ̂)+A f (un

f , d̂
n
f ;R f µ̂)+B f (R f µ̂, pn

f ) (26)
= F n

s (Rsµ̂)+F n
f (R f µ̂) ∀µ̂ ∈ Λ̂,

un
f ◦D f ,tn = a3d̂n

s + b̂n−1
3 , d̂n

f = d̂n
s on Γ̂ , (27)

where
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As(d̂s, v̂s) =
∫

Ω̂s
(ρsa1d̂s · v̂s + σ̂s : ∇x̂v̂s)dΩ̂ ,

F n
s (v̂s) =

∫
∂Ω̂ N

s
gn

s,N · v̂sdγ̂ +
∫

Ω̂s
bn−1

1 dΩ̂ , G (d̂ f , v̂g) =
∫

Ω̂ f
∇x̂d̂ f : ∇x̂v̂g dΩ ,

A f (u f , d̂ f ;v f ) =
∫

Ω f ,t
ρ f (a2u f +((u f −w) ·∇)u f ) ·v f dΩ

+
∫

Ω f ,t
µ(∇u f +(∇u f )

T ) : ∇v f )dΩ ,

B f (u f ,q f ) =
∫

Ω f ,t
(∇ ·u f )qdΩ , F n

f (v f ) =
∫

∂Ω N
f ,t

gn
f ,N ·v f dγ +

∫
Ω f ,t

bn−1
2 ·v f dΩ ,

with a1,a2,a3 suitable real values and bn−1
1 ,bn−1

2 , and bn−1
3 (depending on the so-

lution at the previous time levels) suitable vector functions arising from the finite
difference discretization of the time derivatives.

Equation (26) is the weak counterpart of the dynamic interface condition (9).
We consider now independent finite element space discretizations (as described

in Sect. 4) in Ω̂ f and Ω̂s (a suitable inf-sup stable couple of finite elements will
be considered in the fluid domain) that may induce two different discrete interfaces
Γ̂f =T f ,h f ∩Γ̂ and Γ̂s =Ts,hs∩Γ̂ in the case that Γ̂ is curved as in Fig. 3, right. Then
we use the subindices hk, for k = s, f , to characterize the subspaces of the functional
spaces (21) as well as the discrete counterpart of each variable appearing in the
system (22)–(27). From now on, in d̂n

s,hs
, un

f ,h f
, d̂n

f ,h f
, and pn

f ,h f
, the super-index n

will be omitted for sake of notations.
In order to apply the INTERNODES method to the discrete counterpart of (22)–

(27), we define the scalar quantities:

rs,i = As(d̂s,hs ,Rsµ̂
(s)
i )−F n

s (Rsµ̂
(s)
i ), i = 1, . . . ,d ·ns,

r f ,i = A f (u f ,h f , d̂ f ,h f ;R f µ̂
( f )
i )+B f (R f µ̂

( f )
i , p f ,h f )

−F n
f (R f µ̂

( f )
i ), i = 1, . . . ,d ·n f

(28)

(where {µ̂(k)
i }

d·nk
i=1 are the Lagrange basis functions of [Yk,hk ]

d) and

zk, j =
d·nk

∑
i=1

(M−1
Γ̂k

) jirk,i, k = s, f , j = 1, . . . ,d ·nk, (29)

and the functions rk,hk =
d·nk

∑
j=1

zk, jµ̂
(k)
j ,which are the so called discrete residuals and

are the discrete counterpart of σ̂kn̂k.
The INTERNODES method applied to system (9)–(11) at any tn reads:

As(d̂s,hs , v̂s,hs) = F n
s (v̂s,hs) ∀v̂s,hs ∈ V0

s,hs
, (30)

A f (u f ,h f , d̂ f ,h f ;v f ,h f )+B f (v f ,h f , p f ,h f ) = F n
f (v f ,h f ) ∀v f ,h f ∈ V0

f ,h f ,tn , (31)
B f (u f ,h f ,q f ,h f ) = 0 ∀q f ,h f ∈ Q f ,h f ,tn , (32)
G (d̂ f ,h f , v̂g,hg) = 0 ∀v̂g,hg ∈ VD

g,hg
, (33)

rs,hs +Πs f r f ,h f = 0 (dynamic) on Γ̂s, (34)
u f ,h f ◦D f ,tn = Π f s(a3d̂s,hs + b̂n−1

3 ) (kynematic) on Γ̂f , (35)
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d̂ f ,h f = Π f sd̂s,hs (adherence) on Γ̂f . (36)

The conditions (34)–(36) are the INTERNODES counterpart of the interface con-
dition (9)–(11), obtained by applying the intergrid operators Π12 and Π21 defined in
Sect. 4. More precisely, if we make the associations s↔ 1 and f ↔ 2, the operator
Π f s(= Π21) is used to interpolate on Γ̂f each component of the discrete traces d̂s,hs

and (the discretization of) ∂ d̂s,hs
∂ t |tn that are known on Γ̂s, while Πs f (= Π12) is used

to interpolate on Γ̂s each component of the discrete counterpart of the normal stress
σ̂ f n̂ f that is known on Γ̂f .

By construction, rk,hk ∈Yk = [Yk,hk ]
d , for k = s, f , and then r f ,h f has the sufficient

regularity to be interpolated.

Remark 1. The scalar values (28), typically computed as algebraic residuals at the
interface of the finite element system, are not the coefficients of the function rk,hk

w.r.t. the Lagrange expansion {µ̂(k)
j }, rather the coefficients of rk,hk w.r.t. the canon-

ical basis {ψ̂(k)
i }

d·nk
i=1 of Y′k,hk

. The latter is the dual to {µ̂(k)
j }, that is it satisfies the

relations (ψ̂(k)
i , µ̂

(k)
j )L2(Γ̂k)

= δi j, for i, j = 1,d · . . . ,nk, with δi j the Kronecker delta.

It can proved (see [2]) that ψ̂(k)
i = ∑

d·nk
j=1(M

−1
Γk

) jiµ̂
(k)
j , i.e., the interface mass matrix

MΓk and its inverse play the role of transfer matrices from the Lagrange basis to the
dual one and viceversa, respectively.

Denoting by r f , rs, u f , ds, d f , bn−1
3 , and d f the arrays whose entries are the La-

grangian degrees of freedom of r f ,h f , rs,hs , u f ,h f , d̂s,hs , d̂ f ,h f , and bn−1
3 , respectively,

the algebraic form of the INTERNODES conditions (34)–(36) reads:

M−1
Γs

rs +Rs f M−1
Γf

r f = 0, (37)
u f = R f s(a3ds +bn−1

3 ), (38)
d f = R f sds. (39)

Notice that (37) can be equivalently written as rs +MΓs Rs f M−1
Γf

r f = 0.

The INTERNODES method has been successfully applied to the FSI system in
[8, 5].

6 INTERNODES applied to the Stokes-Darcy system

We define the functional spaces:

Vs = [H1(Ωs)]
d , VD

s = {v ∈ Vs : v = 0 on ∂Ω
D
s }, (40)

Vd = {v ∈ [L2(Ωd)]
d : ∇ ·v ∈ L2(Ωd)}, VN

d = {v ∈ Vd : v ·n = 0 on ∂Ω
N
d },

Qs = L2(Ωs), Qd = L2(Ωd), Λ = H1/2
00 (Γ ).
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Then we consider the following weak form of the Stokes-Darcy coupled problem
(12)–(16) ([11]): find us ∈ Vs, ps ∈ Qs, ud ∈ Vd , pd ∈ Qd , and λ ∈Λ with us = gD

s
on ∂Ω D

s , ud ·nd = gN
d on ∂Ω N

d such that:

2µ

∫
Ωs

D(us) : D(vs)dΩ −
∫

Ωs

ps∇ ·vs dΩ +
∫

Γ

λvs ·ns dΓ (41)

+
d−1

∑
j=1

∫
Γ

α j(us ·τ j)(vs ·τ j)dΓ =
∫

Ωs

fs ·vs dΩ ∀vs ∈ VD
s ,∫

Ωs

qs∇ ·us dΩ = 0 ∀qs ∈ Qs,

µ

∫
Ωd

(κ−1ud) ·vd dΩ −
∫

Ωd

pd∇ ·vd dΩ +
∫

Γ

λvd ·nd dΓ (42)

=
∫

Ωd

fd ·vd dΩ ∀vd ∈ VN
d ,∫

Ωd

qd∇ ·ud dΩ = 0 ∀qd ∈ Qd ,∫
Γ

us ·nsη +
∫

Γ

ud ·ndη = 0 ∀η ∈Λ , (43)

where D(v) = (∇v+(∇v)T )/2, while α j = αµ/
√
τ T

j κτ j.

The Lagrange multiplier λ ∈Λ is in fact λ = pd =−(σsns) ·ns on Γ .
We discretize both Stokes problem (12) and Darcy problem (13) by inf-sup stable

(or stabilized) couples of finite elements (see, e.g., [6]). Independent finite element
space discretizations (as described in Sect. 4) are considered in Ωs and Ωd that
may induce two different discrete interface Γs = Ts,hs ∩Γ and Γd = Td,hd ∩Γ in
the case that Γ is curved as in Fig. 3, right. Then we use the subindices hk, for
k = s,d, to characterize the subspaces of the functional spaces (40) as well as the
discrete counterpart of each variable appearing in the system (41)–(43). For k = s,d,
Λk,hk = Λ ∩Yk,hk .

In order to apply the INTERNODES method to the discrete counterpart of (41)–
(43), we define the scalar quantities:

rk,i =
∫

Γ

(uk,hk ·nk)µ
(k)
i , i = 1, . . . ,nk, k = s,d, (44)

(where {µ(k)
i }

nk
i=1 are the Lagrange basis functions of Yk,hk ) and

zk, j =
nk

∑
i=1

(M−1
Γk

) jirk,i, j = 1, . . . ,nk, k = s,d, (45)

and the discrete functions (belonging to Yk,hk )

wk,hk =
nk

∑
j=1

zk, jµ
(k)
j . (46)
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The INTERNODES form of problem (41)–(43) reads: find us,hs ∈ Vs,hs , ps,hs ∈
Qs,hs , ud,hd ∈Vd,hd , pd,hd ∈Qd,hd , λs,hs ∈Λs,hs and λd,hd ∈Λd,hd (satisfying the given
boundary conditions) such that:

2µ

∫
Ωs

D(us,hs) : D(vs,hs)dΩ −
∫

Ωs

ps,hs∇ ·vs,hs dΩ +
∫

Γ

λs,hsvs,hs ·ns dΓ (47)

+
d−1

∑
j=1

∫
Γ

α j(us,hs ·τ j)(vs,hs ·τ j)dΓ =
∫

Ωs

fs ·vs,hs dΩ ∀vs,hs ∈ VD
s,hs

,∫
Ωs

qs,hs∇ ·us,hs dΩ = 0 ∀qs,hs ∈ Qs,hs ,

µ

∫
Ωd

(κ−1ud,hd ) ·vd,hd dΩ −
∫

Ωd

pd,hd ∇ ·vd,hd dΩ (48)

+
∫

Γ

λd,hd vd,hd ·nd dΓ =
∫

Ωd

fd ·vd,hd dΩ ∀vd,hd ∈ VN
d,hd

,∫
Ωd

qd,hd ∇ ·ud,hd dΩ = 0 ∀qd,hd ∈ Qd,hd ,

Πdsws,hs +wd,hd = 0 on Γd , (49)
λs,hs = Πsdλd,hd on Γs. (50)

The conditions (49)–(50) are the INTERNODES counterpart of the interface con-
dition (14)–(15), obtained by applying the intergrid operators Π12 and Π21 defined
in Sect. 4. More precisely, if we make the associations d↔ 1 and s↔ 2, the operator
Πsd(= Π21) is used to interpolate on Γs the discrete trace of pd,hd that is known on
Γd , while Πds(= Π12) is used to interpolate on Γd the weak counterpart of us,hs ·ns
that is known on Γs.

Denoting by ws, wd , ts, and td , the arrays whose entries are the Lagrangian de-
grees of freedom of ws,hs , wd,hd , λs,hs , and λd,hd respectively, the algebraic form of
the INTERNODES conditions (49)–(50) reads:

RdsM−1
Γs

ws +M−1
Γd

wd = 0, ts = Rsdtd . (51)

We test the accuracy of INTERNODES by solving problem (12)–(16) with:
Ωs = (0,1)× (1,2), Ωd = (0,1)× (0,1), µ = 1, κ = 10−2, κ = κI, boundary
data and fs = fd are such that the exact solution is us = κ[−sin(π

2 x)cos(π

2 y)− y+
1,cos(π

2 x)sin(π

2 y)−1+x], ps = 1−x, ud = κ[sin(π

2 x)cos(π

2 y)+y,cos(π

2 x)sin(π

2 y)−
1+ x], pd = 2

π
cos(π

2 x)sin(π

2 y)− y(x− 1). The approximation in each subdomain
is performed with stabilized hp-fem on quadrilaterals ([6]). The errors es = ‖us−
us,hs‖H1(Ωs)

+ ‖ps− ps,hs‖L2(Ωs)
and ed = ‖ud −ud,hd‖L2(Ωd)

+ ‖pd − pd,hd‖H1(Ωd)

are shown in Figure 4, versus either the mesh sizes hs, hd and the polynomial de-
grees ps and pd , they decay exponentially w.r.t. the polynomial degrees (Fig. 4, at
left) and with order q = ps = pd w.r.t. the mesh sizes (Fig. 4, at center and at right).

In Fig. 5 we show the INTERNODES solution computed for the cross-flow mem-
brane filtration test case with non-flat interface Γ . The setting of the problem is
given in Sect. 5.3 of [6]. We have considered either a cubic spline interface (Fig. 5
at the left) and a piece-wise interface (Fig. 5 at the right). Quadrilaterals hp-fem are
used for the discretization in either Ωs and Ωd . The solution at left is obtained with
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hs = 0.2, hd = 0.333
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Fig. 4 Errors es (red) and ed (blue) for the Stoked-Darcy problem (12)–(16) solved on non-
conforming meshes by the INTERNODES method

Fig. 5 INTERNODES solution of the Stokes-Darcy coupling. The velocity field us is red in Ωs
and black in Ωd , the underground colored scalar field the hydrodynamic pressure. Γ is curved at
left and piece-wise linear at right

hs = 3/8, hd = 1/2, and ps = pd = 4, that at right with hs = hd = 3/8, ps = 4 and
pd = 3. RL-RBF interpolation is used to build the intergrid operators (17) when Γ

is curved, and Lagrange interpolation when Γ is piece-wise linear.
Numerical results show that INTERNODES keeps the optimal accuracy of the

local discretizations and that it is a versatile method to deal with non-conforming
interfaces.
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Domain Decomposition Approaches for PDE
Based Mesh Generation

Ronald D. Haynes

Abstract Adaptive, partial differential equation (PDE) based, mesh generators are
introduced. The mesh PDE is typically coupled to the physical PDE of interest and
one has to be careful not to introduce undue computational burden. Here we pro-
vide an overview of domain decomposition approaches to reduce this computational
overhead and provide a parallel solver for the coupled PDEs. A preview of a new
analysis for optimized Schwarz methods for the mesh generation problem using the
theory of M–functions is given. We conclude by introducing a two-grid method with
FAS correction for the grid generation problem.

1 Introduction

Automatically adaptive and possibly dynamic meshes are often introduced to solve
partial differential equations (PDEs) whose solutions evolve on disparate space and
time scales. In this paper we will review a class of PDE based mesh generators
in 1D and 2D – a PDE is formulated and its solution provides the mesh used to
approximate the solution of the physical PDE of interest. The physical PDE and
mesh PDE are coupled and are solved in a simultaneous or decoupled manner. The
hope is that the cost of computing the mesh, by solving the mesh PDE, should not
substantially increase the total computational burden and ideally the mesh solution
strategy should fit within the overall solution framework.

Meshes which automatically react to the solution of the physical PDE fall into
(at least) two broad categories: hp-refinement and r–refinement — PDE based mesh
generation which evolves a fixed number of mesh points with a fixed topology. The
choice of mesh generator is often predicated on the class of problem and experience
of the practitioner. The PDE based mesh generators, motivated by r-refinement, dis-
cussed here, can be designed to capture dynamical physics, Lagrangian behaviour,

Ronald D. Haynes
Memorial University, St. John’s, Newfoundland, Canada, e-mail: rhaynes@mun.ca
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symmetries, conservation laws or self–similarity features of the physical solution,
and achieve global mesh regularity.

In this overview paper, we review parallel solution strategies for the mesh PDE
and the coupled system using domain decomposition (DD) and survey various
known theoretical results. The analysis of the optimized Schwarz method (OSM)
uses several classical tools including Peaceman-Rachford iterations and monotone
convergence using the theory of M-functions. We present previews of two exten-
sions of our previous work. We provide an analysis of OSM on two subdomains
using the theory of M–functions. We also introduce a coarse correction for the mesh
PDE to improve convergence of DD as the number of subdomains increases.

In this paper we provide a brief review of PDE based mesh generation (Section
2), an overview of, and theoretical convergence results for, Schwarz methods to
solve the mesh PDE (Section 3), a new strategy for the analysis of OSM and a new
coarse correction algorithm to solve the nonlinear mesh PDE (Section 4).

2 PDE based mesh generation

We consider PDEs whose numerical solution can benefit from automatically chosen
non-uniform meshes. r-refinement adapts an initial grid by relocating a fixed number
of mesh nodes. The mesh is determined by solving a mesh PDE simultaneously, or
in an iterative fashion, with the physical PDE. Suppose the PDE defined on the
physical domain x ∈ Ωp = [0,1] is difficult to solve in the physical co-ordinate x.
We compute a mesh transformation, x = x(ξ , t), so that solving the problem on
a uniform mesh ξi =

i
N , i = 0,1, . . . ,N, with moderate N, is sufficient. In one

dimension, such a mesh transformation can be constructed by the equidistribution
principle of de Boor [4]. Given some measure of the error in the physical solution,
M (called the mesh density function), we require∫ xi(t)

xi−1(t)
M(t, x̃,u)dx̃ =

1
N

∫ 1

0
M(t, x̃,u)dx̃,

which says that the error in the solution is equally distributed across all intervals.
If we assume some approximation to the physical solution u is given, then in the

steady case a continuous form of the mesh transformation can be found by solving
the nonlinear boundary value problem (BVP)

∂

∂ξ

{
M(x(ξ ))

∂

∂ξ
x(ξ )

}
= 0, subject to x(0) = 0 and x(1) = 1. (1)

The boundary conditions ensure mesh points at the boundaries of the physical do-

main. This is equivalent to minimizing the functional I[x] = 1
2
∫ 1

0

(
M(x) dx

dξ

)2
dξ .

Discretizing and solving gives the physical mesh locations directly, however the



Domain Decomposition Approaches for PDE Based Mesh Generation 3

Euler-Lagrange (EL) equations are nonlinear, and a system of nonlinear algebraic
equations must be solved upon discretization.

Fig. 1 An example of an equidistributing grid for
a boundary layer function.

As an example, consider construct-
ing an equidistributing grid for the
function u(x) = (eλx− 1)/(eλ − 1) for
large λ . A uniform grid in the physi-
cal co-ordinate x would require a large
number of mesh points to resolve the
boundary layer near x = 1. Instead we
solve the nonlinear BVP above on a
uniform grid ξi =

i
N with M(x,u) ∼√

1+ |uxx|2 and we obtain the grid lo-
cations corresponding to the abscissa of
the green circles in Figure 1. The solu-
tion on a uniform grid (white squares)
is shown for comparison.

Alternatively, we can solve for the
the inverse transformation, ξ (x), as the solution of

d
dx

(
1

M(x)
dξ

dx

)
= 0, ξ (0) = 0, ξ (1) = 1,

or as the minimizer of the functional I[ξ ] = 1
2
∫ 1

0
1

M(x)

(
dξ

dx

)2
dx.

The EL equations are now linear, and discretizing on a uniform grid in x gives
a linear system for the now non-uniform points in the computational co-ordinate ξ .
We have to invert the transformation to find the required physical mesh locations. It
is easier to ensure well-posedness in higher dimensions (d ≥ 2) for this formulation.

In two dimensions, solution independent, but boundary fitted meshes, can be
found by generalizing the formulations above, but setting the mesh density to be the
identity function. The mesh transformation x= [x(ξ ,η),y(ξ ,η)] : Ωc→Ωp can be
found by minimizing

I[x,y] =
1
2

∫
Ωc

[(
∂x
∂ξ

)2

+

(
∂x
∂η

)2

+

(
∂y
∂ξ

)2

+

(
∂y
∂η

)2
]

dξ dη .

The EL eqns are
∂ 2x
∂ξ 2 +

∂ 2x
∂η2 = 0,

∂ 2y
∂ξ 2 +

∂ 2y
∂η2 = 0.

Solving the EL equations subject to boundary conditions, which ensure mesh points
on the boundary of Ωp, gives a boundary fitted co-ordinate system. Care is required,
however, as folded meshes may result if Ωp is concave (see the left of Figure 2
where Ωp is L-shaped and Ωc = [0,1]2).

If instead we solve for the inverse mesh transformation ξ = [ξ (x,y),η(x,y)] :
Ωp→Ωc by minimizing
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x,y : Ωc→Ωp ξ ,η : Ωp→Ωc

Fig. 2 PDE generated physical grid lines on L–shaped domains.

I[ξ ,η ] =
1
2

∫
Ωp

[(
∂ξ

∂x

)2

+

(
∂ξ

∂y

)2

+

(
∂η

∂x

)2

+

(
∂η

∂y

)2
]

dxdy,

or solving the EL equations

∂ 2ξ

∂x2 +
∂ 2ξ

∂y2 = 0,
∂ 2η

∂x2 +
∂ 2η

∂y2 = 0,

subject to appropriate boundary conditions, we obtain the mesh on the right of Fig-
ure 2. This is the equipotential mesh generation method of Crowley [7]. The phys-
ical grid lines are obtained as level curves ξ = C, η = K. This approach is more
robust – well-posed if the domain Ωc (which we get to choose) is convex, see [8].
But as mentioned previously it is more complicated to get the physical mesh.

Solution dependent meshes in higher dimensions can be constructed by speci-
fying a scalar mesh density function M = M(u,x) > 0, characterizing where addi-
tional mesh resolution is needed, and minimizing I[x] = 1

2
∫

Ωp
1
M ∑i(∇ξi)

T ∇ξidx.
The EL equations give the variable diffusion mesh generator of Winslow [26],
which requires the solution of the elliptic PDEs −∇ ·

( 1
M ∇ξi

)
= 0, i = 1,2, . . . ,d.

Fig. 3 A mesh generated using a Winslow gener-
ator on an L–shaped domain.

This gives an isotropic mesh generator.
Godunov and Prokopov [10], Thomp-
son et al. [25] and Anderson [2], for ex-
ample, add terms to the mesh PDEs to
better control the mesh distribution and
quality. As an example, in Figure 3, we
illustrate the mesh obtained by adapt-
ing a mesh for a solution with a rapid
transition at x = 3/4 and using an arc-
length based M.

If the physical solution has strong
anisotropic behaviour, corresponding
mesh adaptation is desired. This can
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be achieved by using a matrix–valued diffusion coefficient [6] and minimizing
I[x] = 1

2
∫

Ωp ∑i(∇ξi)
TM−1(∇ξi)dx whereM is a spd matrix.

These approaches can be extended to the time dependent situation, where x =
x(ξ, t) or ξ = ξ(x, t); we obtain moving mesh PDEs as the modified gradient flow
equations for the adaptation functionals.

In addition to the variational approach to derive the mesh PDEs mentioned above,
there are other PDE based approaches including harmonic maps, Monge–Ampère,
and geometric conservation laws, see [15] for a recent extensive overview.

3 Domain Decomposition approaches and analysis for nonlinear
mesh generation

We wish to design and analyze parallel approaches to solve the continuous (and
discrete forms) of the PDE mesh generators discussed above. Our research goal
is to systematically analyze DD based implementations to solve mesh PDEs and
coupled mesh–physical PDE systems.

3.1 Mesh/Physical PDE solution strategies

There are several approaches to introduce parallelism, by domain decomposition,
while solving PDEs which require or benefit from a PDE based mesh generator. As
an example we consider generating a time dependent mesh for a moving interior
layer problem. In [14] we apply DD in the physical co-ordinates by partitioning
Ωp, and use an adaptive, moving mesh solver in each physical domain. This is illus-
trated in the left of Figure 4 for two overlapping subdomains; the solver tracks a front
which develops and moves to the right. In each physical subdomain, the mesh points
react and follow the incoming front. In general, this approach needs hr–refinement
to predict the number of mesh points in each subdomain and could result in a severe
load balancing issue. Alternatively, one could fix the total number of mesh points
and apply DD in the fixed, typically uniform, computational co-ordinates, by par-
titioning Ωc. This gives rise to time dependent or moving subdomains, as viewed
in the physical co-ordinate system, as shown in the right of Figure 4 for a similar
moving front. The subdomains are shaded dark and light gray, with the overlap in
between.
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Fig. 4 DD in Ωp (left) and DD in Ωc (right).

In Figure 5 we illustrate a two dimensional mesh computed using a classical

Fig. 5 DD solution of two-dimensional mesh
generator

Schwarz iteration applied in Ωc, on two
overlapping subdomains (the overlap is
shown in green). DD is applied to the
two dimensional nonlinear mesh gener-
ator of [16]. Here the mesh is adapted
to the physical solution given by

u = tanh(R(
1

16
− (x− 1

2
)2− (y− 1

2
)2))

and

M =
a2∇u ·∇uT

1+b∇uT ∇u
+ I,

where a = 0.2 and b = 0.

3.2 PDE Based Mesh Generation using Schwarz methods

Here we will focus on the analysis of DD methods for the mesh PDE applied in
the computational co-ordinates, assuming an approximation to the solution of the
physical PDE is given. To generate the physical mesh locations directly, we are
interested in the solution of the nonlinear BVP (1).

A general parallel Schwarz approach would partition ξ ∈ Ωc into two subdo-
mains Ω1 = (0,β ) and Ω2 = (α,1) with α ≤ β . Let xn

1 and xn
2 solve
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d
dξ

(
M(xn

1)
dxn

1
dξ

)
= 0 on Ω1

xn
1(0) = 0

B1(xn
1(β )) = B1(xn−1

2 (β ))

d
dξ

(
M(xn

2)
dxn

2
dξ

)
= 0 on Ω2

B2(xn
2(α)) = B2(xn−1

1 (α))

xn
2(1) = 1,

where B1,2 are transmission operators between the subdomains.
If 0 < m̌≤M(x)≤ m̂ < ∞, we show in [9] the overlapping (β > α) parallel clas-

sical Schwarz iteration (B1,2 = I) converges for any initial guess x0
1(α), x0

2(β ), with
a contraction factor ρ := α

β

1−β

1−α
< 1 which improves with the size of the overlap. As

expected α < β is needed for convergence. A multidomain result is also given in [9]
with a contraction rate that deteriorates as the number of subdomains increases. This
result motivates the need for a coarse correction (see Section 4). Optimal Schwarz
methods using non-local transmission conditions (TCs) giving finite convergence
have been proposed and analyzed in [9, 12]. This comes at a cost as nonlocal TCs
are expensive!

We can recover a local algorithm, an OSM, on 2 subdomains by approxi-
mating the non-local TCs. We decompose ξ ∈ [0,1] into two non–overlapping
subdomains Ω1 = [0,α] and Ω2 = [α,1] and approximate the optimal TCs with
nonlinear Robin TCs. Using the notation above, we choose B1(·) = M(·)∂ξ (·) +
p(·) and B2(·) = M(·)∂ξ (·)− p(·), where p is a constant chosen to improve
the convergence rate. The OSM is equivalent to a nonlinear Peaceman–Rachford
interface iteration for the interface values

(pI−R2)xn+1
2 (α) = (pI−R1)xn

1(α),

(pI +R1)xn+1
1 (α) = (pI +R2)xn

2(α),
(2)

where the operators R1 and R2, given by R1(x)= 1
β

∫ x
0 M dx̃ and R2(x)= 1

1−β

∫ 1
x M dx̃,

are strictly monotonic (increasing and decreasing respectively). This type of itera-
tion has been analyzed by Kellogg and Caspar [17] and Ortega & Rheinboldt [18].
In [9] we show convergence for all p > 0 and the contraction rate can be minimized
by an appropriate choice of p.

An analysis of the classical Schwarz algorithm at the discrete level has been pro-
vided in [13] in the steady and time dependent cases using a θ method to discretize
in time. Using the notion of M–functions, which we will revisit in the next sec-
tion, we have shown convergence of nonlinear Jacobi and Gauss–Seidel (and block
versions) starting from super and sub solutions or from a uniform initial guess.

A dramatically different parallel technique for PDE mesh generation has been
considered by Haynes and Bihlo in [3]. Motivated by the possible lower accuracy
requirements for mesh generation we have investigated stochastic domain decom-
position (SDD) methods, proposed by Acebrón et al. [1], Spigler [24], and Peirano
and Talay [19]. These methods use the Feynmac-Kac formula (and Monte-Carlo) to
approximate the linear mesh generator in 2D/3D along artificial interfaces. These
interface solutions then provide boundary conditions for the deterministic solves
in the subdomains. No iteration is required, and the method is fully parallel. The
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method may be expensive in the relatively rare situation that the mesh is needed
with high-accuracy due to the slow convergence of the Monte Carlo evaluations.

4 Some Extensions

In this section, we provide previews of two extensions of the work described above.

4.1 Optimized Schwarz on Many Subdomains

Her we show an alternate approach to obtain a sufficient condition for convergence
of the OSM for the grid generation problem. This approach, which guarantees a
monotonic convergence result, is generalizable to an arbitrary number of subdo-
mains. Here we will give a flavour of the analysis on two subdomains. The general
result was studied by Sarker [22] and will be published elsewhere.

To demonstrate the difficulty of generalizing the OSM analysis to an arbitrary
number of subdomains, consider partitioning Ωc into three non–overlapping sub-
domains, [0,α1], [α1,α2] and [α2,1]. The analysis of the parallel OSM to generate
equidistributing grids requires us to study the interface iteration

pyn
1 +R1(xn

1,y
n
1) = pxn−1

2 +R2(xn−1
2 ,yn−1

2 ),

pxn
2−R2(xn

2,y
n
2) = pyn−1

1 −R1(xn−1
1 ,yn−1

1 ),

pyn
2 +R2(xn

2,y
n
2) = pxn−1

3 +R3(xn−1
3 ,yn−1

3 ),

pxn
3−R3(xn

3,y
n
3) = pyn−1

2 −R2(xn−1
2 ,yn−1

2 ),

(3)

where xn
1 = 0 and yn

3 = 1, Ri(xi,yi) =
1

αi−αi−1

∫ yi
xi

M(σ)dσ , and we define α0 ≡ 0 and
α3 ≡ 1.

The Peaceman–Rachford analysis relies on the monotonicity of the operators
which define the subdomain solutions. The difficulty in the analysis of (3) lies in the
coupled system of equations which arise from the middle subdomain. This coupled
system involves the operator pI +H. The operator H = (−R2,R2)

T is not mono-
tonic and hence the two subdomain analysis can not be repeated, at least not in a
straightforward way.

We pursue an alternate tack to obtain a sufficient condition for convergence. It is
well known that for linear systems, Ax = b, Gauss–Seidel and Jacobi will converge
for any initial vector if A is symmetric positive definite, or if A is an M–matrix (for
example if ai j ≤ 0, i 6= j, aii > 0 and A is strictly diagonally dominant). Analogous
results for nonlinear systems, Fx = b, where

Fx≡ ( f1(x1, . . . ,xn), f2(x1, . . . ,xn), . . . , fn(x1, . . . ,xn))
T and b=(b1,b2, . . . ,bn)

T ,
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were obtained by Schechter [23] who showed if F has a continuous, symmetric, and
uniformly positive definite (Frechet) derivative then nonlinear Gauss–Seidel con-
verges. The analogous M–matrix condition for convergence was extended to the
nonlinear case by Rheinboldt [21], with the introduction of M–functions. To be an
M–function requires F to have certain monotonicity, sign and diagonal dominance
properties. Rheinboldt gives the following sufficient condition to guarantee a non-
linear map F is an M–function.

Theorem 1. Let D be a convex and open subset of Rn. Assume F : D⊂ Rn→ Rn is
off-diagonally non-increasing, and that for any x∈D, the functions qi : Si⊂R→Rn

defined as

qi(τ) =
n

∑
j=1

f j(x+ τei), i = 1, . . . ,n, with Si = {τ : x+ τei ∈ D},

are strictly increasing. Then F is an M-function.

If F is an M–function and if Fx = b has a solution then it is unique. Moreoever,
Ortega and Rheinboldt [18] show that if F is a continuous, surjective M–function
then for any initial vector the nonlinear Jacobi and Gauss–Seidel processes will
converge to the unique solution. Results for the convergence of block versions of
these iterations exist [20]. This result generalizes the classical result of Varga for
M–matrices. We note that the parallel OSM (3) is a nonlinear block Jacobi iteration.

As an application of this theory we reconsider the two subdomain iteration (2).
The technique generalizes to an arbitrary number of subdomains. The iteration
(2) is well–posed. Existence and uniqueness for a given right hand side is trivial
since the functions are uniformly monotone and tend to ±∞ as x1,2 → ±∞. The
two subdomain interface solution would solve the system F = ( f1, f2)

T = 0 where
f1(x,y) = R1(x)−R2(y)+ px− py= 0 and f2(x,y) =−R2(y)+R1(x)+ py− px= 0.
In [22] Sarker obtains the following result.

Theorem 2. The function F = ( f1, f2)
T above is a surjective M–function if p >

max{1/α,1/(1−α)}m̂. Hence, the iteration (2) will converge to the unique solution
of F = 0 for any initial vector. The convergence will be monotone if we start from a
super or sub solution.

Proof. Clearly the function F is continuous. By direct calculation and the bounds on
M we have ∂ f1

∂x = 1
α

M(x)+ p > 0 and ∂ f2
∂y = 1

1−α
M(y)+ p > 0, for all p > 0. Hence

f1 and f2 are strictly increasing. Therefore, F is strictly diagonally increasing. Fur-
thermore, ∂ f1

∂y = 1
1−α

M(y)− p and ∂ f2
∂x = 1

α
M(x)− p. Hence, if p > { m̂

α
, m̂

1−α
} then

F is off-diagonally decreasing. A super (sub) solution, a vector (x̂, ŷ) satisfying
F(x̂, ŷ)≥ 0(≤ 0), can easily be constructed [22]. Monotone convergence from (x̂, ŷ)
follows from Theorem 13.5.2 of [18].

To show that F is an M–function, we now consider the functions qi(t) =
∑

2
j=1 f j(X + tei) where ei ∈ R2 is the i-th standard basis vector, for i = 1,2. The

functions q1(t) and q2(t) are given by q1(t) = f1(x+ t,y)+ f2(x+ t,y) = 2R1(x+



10 Ronald D. Haynes

t)− 2R2(y) and q2(t) = f1(x,y + t) + f2(x, ,y + t) = 2R1(x)− 2R2(y + t). Hence
dq1
dt = 2

α
M(t)> 0 and dq2

dt = 2
1−α

M(t)> 0 and we conclude that qi is strictly increas-
ing, for i = 1,2. Hence F is an M-function from Theorem 1. Surjectivity requires a
super and sub solution for Fx = b for a general b, see [22]. The convergence from
any initial vector then follows from Theorem 13.5.9 of [18].

Fig. 6 Convergence history of the interface iteration for small and large p values.

In Figure 6 we see monotonic convergence (consistent with the M–function the-
ory) if p is large enough and non-monotonic convergence for small p (consistent
with the Peaceman–Rachford theory).

4.2 A Coarse Correction

The convergence rate of Schwarz methods suffers as the number of subdomains
increases, see the left plot in Figure 7. A coarse correction is able to improve the sit-
uation dramatically by providing a global transfer of solution information. Here we
propose a coarse correction for the (nonlinear) PDE based mesh generation problem
by using a two-grid method with a full approximation scheme (FAS) correction ap-
plied in the computational co-ordinates. This work was completed by Grant in [11]
and will be published in full elsewhere.

FAS [5] provides a solution strategy for nonlinear PDEs. FAS restricts an ap-
proximation (and corresponding residual) of the PDE, obtained on a fine grid, to a
coarse grid. The error in the approximation is found by solving a coarse problem.
This error is then interpolated back to the fine grid and used to update the solution
approximation.

FAS may be combined with a DD approach in a very natural way. We perform
one classical Schwarz iteration to obtain approximate subdomain solutions on a
fine grid. FAS is then applied to update the subdomain solutions before proceeding
with the next Schwarz iteration. As shown in the right plot of Figure 7, the effect
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Fig. 7 Schwarz convergence results on multidomains and multidomains with a coarse correction.

is dramatic. This promising result for the nonlinear PDE mesh generator suggests
the possibility of a two-grid FAS DD approach for the coupled mesh and physical
PDEs.

5 Conclusions

PDE based mesh generators can be useful for problems which would benefit from
automatically adaptive spatial grids. It is possible to analyze DD approaches for
nonlinear mesh generators which directly give the physical mesh locations. We can
then incorporate DD, within the coupled physical PDE/mesh PDE solution frame-
works in a theoretically sound way.

Acknowledgements I would like to thank my former students Alex Howse, Devin Grant and Abu
Sarker for their assistance and some of the plots included in this paper, and also Felix Kwok for
several discussions related to this work.
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Abstract 
Mixed-dimensional	partial	differential	equations	arise	in	several	physical	applications,	wherein	parts	of	
the	domain	have	extreme	aspect	ratios.	In	this	case,	it	is	often	appealing	to	model	these	features	as	
lower-dimensional	manifolds	embedded	into	the	full	domain.	Examples	are	fractured	and	composite	
materials,	but	also	wells	(in	geological	applications),	plant	roots,	or	arteries	and	veins.		

In	this	manuscript,	we	survey	the	structure	of	mixed-dimensional	PDEs	in	the	context	where	the	sub-
manifolds	are	a	single	dimension	lower	than	the	full	domain,	including	the	important	aspect	of	
intersecting	sub-manifolds,	leading	to	a	hierarchy	of	successively	lower-dimensional	sub-manifolds.	We	
are	particularly	interested	in	partial	differential	equations	arising	from	conservation	laws.	Our	aim	is	to	
provide	an	introduction	to	such	problems,	including	the	mathematical	modeling,	differential	geometry,	
and	discretization.		

1. Introduction 
Partial	differential	equations	(PDE)	on	manifolds	are	a	standard	approach	to	model	on	high-aspect	
geometries.	This	is	familiar	in	the	setting	of	idealized	laboratory	experiments,	where	1D	and	2D	
representations	are	used	despite	the	fact	that	the	physical	world	is	3D.	Similarly,	it	is	common	to	
consider	lower-dimensional	models	in	applications	ranging	from	geophysical	applications.	Some	
overview	expositions	for	various	engineering	problems	can	be	found	in	[1,	2,	3].	

Throughout	this	paper	we	will	consider	the	ambient	domain	to	be	3D,	and	our	concern	is	when	models	
on	2D	submanifolds	are	either	coupled	to	the	surrounding	domain,	and/or	intersect	on	1D	and	0D	
submanifolds.	Such	models	are	common	in	porous	media,	where	the	submanifolds	may	represent	either	
fractures	(see	e.g.	[4])	or	thin	porous	strata	(see	[1]),	but	also	appear	in	materials	[3].	In	all	these	
examples,	elliptic	differential	equations	representing	physical	conservation	laws	are	applicable	on	all	
subdomains,	and	the	domains	of	different	dimensionality	are	coupled	via	discrete	jump	conditions.	
These	systems	form	what	we	will	consider	as	mixed-dimensional	elliptic	PDEs,	and	we	will	limit	the	
exposition	herein	to	this	case.		

In	order	to	establish	an	understanding	for	the	physical	setting,	we	will	in	section	2	present	a	short	
derivation	of	the	governing	equations	for	fractured	porous	media,	emphasizing	the	conservation	
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structure	and	modeling	assumptions.	This	derivation	will	lead	to	familiar	models	from	literature	(see	e.g.	
[4,	5,	6,	7]	and	references	therein).		

We	develop	a	unified	treatment	of	mixed-dimensional	differential	operators	on	submanifolds	of	various	
dimensionality,	using	the	setting	of	exterior	calculus,	and	thus	recast	the	physical	problem	in	the	sense	
of	differential	forms.	We	interpret	the	various	subdomains	as	an	imposed	structure	on	the	original	
domain,	and	provide	a	decomposition	of	differential	forms	onto	the	mixed-dimensional	structure.	By	
introducing	a	suitable	inner	product,	we	show	that	this	mixed-dimensional	space	is	a	Hilbert	space.	On	
this	decomposition	we	define	a	semi-discrete	exterior	derivative,	which	leads	to	a	de	Rham	complex	
with	the	same	co-homology	structure	as	the	original	domain.	It	is	interesting	to	note	that	the	differential	
operators	we	define	were	independently	considered	by	Licht	who	introduced	the	concept	of	discrete	
distributional	differential	forms	[8].	A	co-differential	operator	can	be	defined	via	the	inner	product,	and	
it	is	possible	to	calculate	an	explicit	expression	for	the	co-differential	operator.	This	allows	us	to	
establish	a	Helmholtz	decomposition	on	the	mixed-dimensional	geometry.	We	also	define	the	mixed-
dimensional	extensions	of	the	familiar	Sobolev	spaces.		

Having	surveyed	the	basic	ingredients	of	a	mixed-dimensional	calculus,	we	are	in	a	position	to	discuss	
elliptic	minimization	problems.	Indeed,	the	mixed	dimensional	minimization	problems	are	well-posed	
with	unique	solutions	based	on	standard	arguments,	and	we	also	state	the	corresponding	Euler	
equations	(variational	equations).	With	further	regularity	assumptions,	we	also	give	the	strong	form	of	
the	minimization	problems,	corresponding	to	conservation	laws	and	constitutive	laws	for	mixed-
dimensional	problems.		

This	paper	aims	to	provide	a	general	overview	and	roadmap	for	the	concepts	associated	with	
hierarchical	mixed-dimensional	partial	differential	equations,	more	complete	and	detailed	analysis	will	
necessarily	due	to	space	be	considered	in	subsequent	publications.		

2. Fractured porous media as a mixed-dimensional PDE 
This	section	gives	the	physical	rationale	for	mixed-dimensional	PDE.	As	the	section	is	meant	to	be	
motivational,	we	will	omit	technical	details	whenever	convenient.	We	will	return	to	these	details	in	the	
following	sections.		

	

Figure	1:	Example	geometry	of	two	intersecting	fractures	in	2D,	and	the	logical	representation	of	the	
intersection	after	mapping	to	a	local	coordinate	system.		
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We	consider	the	setting	of	a	domain	𝐷 ∈ ℝ!.	In	sections	3	and	onwards	we	will	consider	arbitrary	𝑛,	
however	in	this	section	we	will	for	simplicity	of	exposition	consider	only	𝑛 = 3.	We	consider	a	fractured	
media,	where	we	are	given	explicit	knowledge	of	the	fractures,	thus	we	consider	the	domains	Ω!! 	as	
given,	where	𝑖 ∈ 𝐼	is	an	index	and	𝑑 = 𝑑 𝑖 	represents	the	dimensionality	of	the	domain.	We	denote	by	
𝑖 ∈ 𝐼! 	the	subset	of	indexes	in	𝐼	for	which	𝑑 𝑖 = 𝑑.	In	particular,	intact	material	lies	in	domains	of	
𝑑 = 3,	while	𝑑 = 2	represents	fracture	segments,	and	𝑑 = 1	represents	intersections,	see	Figure	1.	For	
each	domain	Ω!! 	we	assign	an	orientation	based	on	𝑛 − 𝑑	outer	normal	vectors	𝝂!".	

In	order	to	specify	the	geometry	completely,	we	consider	the	index	sets	𝑆! 	and	𝑆! 	as	the	𝑑 + 1	
dimensional	and	𝑑 − 1	dimensional	neighbors	of	a	domain	𝑖.	Thus	for	𝑑 = 2,	the	set	𝑆! 	contains	the	
domain(s)	Ω!!	which	are	on	the	positive	(and	negative)	side	of	Ω!!.	On	the	other	hand,	the	set	𝑆! 	contains	
the	lines	that	form	(parts	of)	the	boundary	of	Ω!.	Additionally,	the	set	of	all	lower-dimensional	neighbors	
is	defined	as		𝔖! = 𝑆! , 𝑆!! ,… 	We	will	define	Ω! = Ω!!!∈!! 	as	all	subdomains	of	dimension	𝑑,	while	
similarlty	Ω = Ω!!

!!! 	is	the	full	mixed-dimensional	stratification.	Note	that	since	the	superscript	
indicating	dimension	is	redundant	when	the	particular	domain	is	given,	we	will	(depending	what	offers	
more	clarity)	use	Ω! = Ω!! 	interchangeably.	

For	steady-state	flows	in	porous	media,	the	fluid	satisfies	a	conservation	law,	which	for	intact	rock	and	
an	𝑛-dimensional	fluid	flux	vector	𝒖	takes	the	form		

∇ ⋅ 𝒖 = 𝜙	 	 	 on		 𝐷	 	 	 (2.1)	

We	wish	to	express	this	conservation	law	with	respect	to	our	geometric	structure.	To	this	end,	let	us	first	
define	the	mixed-dimensional	flux	𝖚,	which	is	simply	a	𝑑-dimensional	vector	field	on	each	Ω!!.	We	write	
𝖚 = 𝒖!! 	when	we	want	to	talk	about	specific	components	of	𝖚.	We	similarly	define	other	mixed-
dimensional	variables,	such	as	the	source-term	𝔣.		

Now	clearly,	for	𝑑 = 𝑛,	we	recover	equation	(2.1).	Now	consider	𝑑 = 𝑛 − 1,	and	a	fracture	Ω!	of	
variable	Lipschitz-continuous	aperture	(illustrated	for	𝑑(1) = 1	in	figure	2).		

	

Figure	2:	Example	of	local	geometry	for	derivation	of	mixed-dimensional	conservation	law.		

Here	the	dashed	lines	indicate	a	fracture	boundary,	the	solid	black	line	is	the	lower-dimensional	
representation,	and	the	solid	gray	line	indicates	the	region	of	integration,	𝜔,	of	length	ℓ	and	width	𝜖 𝑥 .	
Evaluating	the	conservation	law	over	𝜔	leads	to		

∇ ⋅ 𝒖
!

 𝑑𝑎 = 𝒖 ⋅ 𝝂
!"

 𝑑𝑠 = 𝜙
!
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where	𝝂	are	the	external	normal	vectors.	Since	our	integration	area	is	in	the	limiting	case	of	ℓ → 0	a	
quadrilateral,	we	split	the	last	integral	into	parts	where	𝝂	is	constant,		

𝒖 ⋅ 𝝂
!"

 𝑑𝑠 = 𝝂! ⋅ 𝒖!!
!!!

 𝑑𝑠 + 𝝂! ⋅ 𝒖!!
!!!

  𝑑𝑠 + 𝝉 ⋅ 𝒖
!!!

 𝑑𝑠 − 𝝉 ⋅ 𝒖
!!!

 𝑑𝑠	

where	 𝑙!, 𝑙! ∈ 𝑆! 	is	the	domain	on	the	“+”	and	“-”	side	of	Ω!,	respectively,	and	denote	the	Left	and	
Right	side	of	the	integration	boundary	by	subindexes.	The	notation	𝝉	is	the	tangential	vector	to	Ω!.	
Clearly,	letting	the	length	ℓ	be	infinitesimal,	the	last	two	terms	satisfy	

lim
ℓ→!

𝝉 ⋅ 𝒖!!!
 𝑑𝑠 − 𝝉 ⋅ 𝒖!!!

 𝑑𝑠

ℓ
= ∇!! ⋅ 𝝉 ⋅ 𝒖

!!!

!!!
 𝑑𝑠 = ∇!! ⋅ 𝜖𝒖! 	

where	∇!! ⋅	is	the	in-plane	divergence	and		

𝒖! ≡
!
!

𝝉 ⋅ 𝒖!!!
!!!

 𝑑𝑠	 	 	 	 	 (2.3)	

Considering	similarly	the	limits	of	ℓ → 0	for	the	two	first	terms,	we	obtain	for	the	positive	side		

lim
ℓ→!

𝝂! ⋅ ℓ!! 𝒖!!
! !!

!!!
 𝑑𝑠 = 1 +

𝑑
𝑑𝑥

∇!! 𝜕!𝜔
! !/!

𝝂! ⋅ 𝒖!!
! !! 	

Combining	the	above,	we	thus	have		

limℓ→! ℓ!! ∇ ⋅ 𝒖!  𝑑𝑎 = 𝜆!! + 𝜆!! + ∇!! ⋅ 𝜖𝒖! = 𝜆 ! + ∇!! ⋅ 𝜖𝒖! 	 	 (2.4)	

where	𝜆	is	defined	as		

𝜆!! = 1 + !
!"
∇!! 𝜕!𝜔

! !/!
𝝂! ⋅ 𝒖!!

! !! 	 	 	 	 	 (2.5)	

and	(using	the	analogous	definition	for	𝜆!!)	

𝜆 ! = − 𝜆!!∈!! 	 	 	 	 	 		 (2.6)	

Note	that	we	have	made	no	approximations	in	obtaining	equation	(2.4)	–	the	left-hand	side	is	an	exact	
expression	of	conservation.	The	model	approximations	appear	later	when	deriving	suitable	constitutive	
laws.	Nevertheless,	since	the	fractures	have	a	high	aspect	ratio	by	definition,	the	pre-factor	in	equation	
(2.5)	is	in	practice	often	approximated	by	identity,	for	which	(2.5)	simplifies	to		

𝜆! ≈ 𝝂± ⋅ 𝒖! 		 	 	 	 	 	 (2.7)	

The	derivation	above	(including	the	definition	in	equation	(2.4)),	generalizes	in	the	same	way	to	
intersection	lines	and	intersection	points,	thus	we	find	that	for	all	𝑑 < 𝑛	it	holds	that		

𝜖𝜆 ! + ∇!! ⋅ 𝜖!𝒖! = 𝜙! 	 	 	 	 	 (2.8)	

Here	the	hat	again	denotes	the	next	higher-dimensional	domains,	so	that	𝜖 = 𝜖!.	Since	𝑆! = Ø	for	𝑖 ∈ 𝐼!,		
equation	(2.8)	reduces	to	(2.1)	for	𝑑 = 𝑛,	and	thus	it	represents	the	mixed-dimensional	conservation	
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law	for	all	Ω!!.	In	this	more	general	setting,	𝜖	denotes	the	cross-sectional	width	(2D),	area	(1D)	and	
volume	(0D)	for	successively	lower-dimensional	intersections.		

For	porous	materials,	the	conservation	law	(2.1)	is	typically	closed	by	introducing	Darcy’s	law	as	a	
modeling	assumption,	stated	in	terms	of	a	potential	𝑝	on	the	domain	𝐷	as	

𝒖 = −𝐾∇𝑝	 	 	 	 	 	 (2.9)	

The	coefficient	𝐾	is	in	general	a	tensor.	Unlike	for	the	conservation	law,	it	is	not	possible	to	derive	an	
exact	expression	for	the	mixed-dimensional	constitutive	law,	but	by	making	some	(reasonable)	
assumptions	on	the	structure	of	the	solution,	it	is	usually	accepted	that	Darcy’s	law	is	inherited	for	each	
subdomain	(see	extended	discussion	in	[1],	but	also	[9]),	i.e.	

𝒖! = −𝐾!∇!!𝑝! 	 	 	 	 	 	 (2.10)	

To	close	the	model,	it	is	also	necessary	to	specify	an	additional	constraint,	where	the	two	most	common	
choices	are	that	either	the	potential	is	continuous	(see	discussion	in	[10])	

𝑝! = 𝑝!	 	 	 	 	 (2.11)	

or,	more	generally,	that	the	pressure	is	discontinuous	but	related	to	the	normal	flux	above	

𝜆! = −2𝐾!,±
!!!!±

!!
!

!!!
	 	 	 	 	 (2.12)		

The	model	equations	(2.8-2.12)	are	typical	of	those	used	in	practical	applications	[11].	However,	to	the	
authors’	knowledge,	our	work	is	the	first	time	they	are	explicitly	treated	as	a	mixed-dimensional	PDE	
(see	also	[12,	13]).		

3. Exterior calculus for mixed-dimensional geometries 
We	retain	the	same	geometry	as	in	the	previous	section,	but	continue	the	exposition	in	the	language	of	
exterior	calculus	(for	introductions,	see	[14,	15,	16]).	Throughout	the	section,	we	will	assume	that	all	
functions	are	sufficiently	smooth	for	the	derivatives	and	traces	to	be	meaningful.	We	also	point	out	that	
similar	structures	to	those	discussed	in	this	section	have	been	considered	previously	by	Licht	in	a	
different	context	[8].			

First,	we	note	that	the	components	of	the	mixed-dimensional	flux	discussed	in	section	2	all	correspond	
to	𝑑 − 1	forms,		𝒖!! ∈ Λ!!! Ω!! ,	while	the	components	of	pressure	all	correspond	to	𝑑-forms,	
𝑝!! ∈ Λ! Ω!! .	This	motivates	us	to	define	the	following	mixed-dimensional	𝑘-form		

𝔏! Ω = Λ!!(!!! ! ) Ω!!!∈! 	 	 	 	 	 (3.1)	

From	here	on,	it	is	always	assumed	that	𝔏! 	is	defined	over	Ω,	and	the	argument	is	suppressed.		

Moreover,	we	note	that	equation	(2.7)	is	(up	to	a	sign)	the	trace	with	respect	to	the	inclusion	map	of	the	
submanifold,	thus	for	a	mixed-dimensional	variable	𝔞 ∈ 𝔏! 	the	jump	operator	is	naturally	written	as		

𝕕𝔞 !
! = −1 !!!  𝜀 Ω!! , 𝜕!Ω!!!! Tr!!!  𝑎!!!!!∈!! 	 	 	 (3.2)	
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Here	we	have	exchanged	the	bracket	notation	of	equation	(2.5b),	which	is	common	in	applications,	with	
a	simpler	notation,	𝕕,		which	more	clearly	emphasizes	that	this	is	a	(discrete)	differential	operator,	in	the	
normal	direction(s)	with	respect	to	the	submanifold.	We	use	the	notation	𝜀 Ω!! , 𝜕!Ω!!!! 	to	indicate	the	
relative	orientation	(positive	or	negative)	of	the	arguments.	

We	obtain	a	mixed-dimensional	exterior	derivative,	which	we	denote	𝔡,	by	combining	the	jump	operator	
with	the	exterior	derivative	on	the	manifold,	such	that	for	𝔞 ∈ 𝔏! 	

𝔡𝔞 !
! = 𝑑𝑎!! + 𝕕𝔞 !

! 	 	 	 	 	 	 (3.3)	

This	expression	is	meaningful,	since	both	𝑑𝑎!! , 𝕕𝔞 !
! ∈ Λ!! !!! !! Ω!! ,	and	thus	clearly	𝔡𝔞 ∈ 𝔏!!!.	A	

straight-forward	calculation	shows	that	𝑑 𝕕𝔞 !
! = − 𝕕𝑑𝔞 !

!,	thus	for	all	𝔞		

𝔡𝔡𝔞 = 0	 	 	 	 	 	 (3.4)	

and	it	can	furthermore	be	shown	that	if	𝔞 = 0,	and	if	𝐷	is	contractible,	then	there	exists	𝔟 ∈ 𝔏!!!	such	
that	𝔞 = 𝔡𝔟.	Thus	the	mixed-dimensional	exterior	derivative	forms	a	de	Rham	complex,		

0 → ℝ
⊂
𝔏!

𝔡
𝔏!

𝔡
…

𝔡
𝔏! → 0	 	 	 	 	 (3.5)	

which	is	exact	(for	the	proof	of	this,	and	later	assertions,	please	confer	[13]).		

Due	to	the	jump	terms	in	the	differential	operators,	the	natural	inner	product	for	the	mixed-dimensional	
geometry	must	take	into	account	the	traces	on	boundaries,	and	thus	takes	the	form	for	𝔞, 𝔟 ∈ 𝔏! 	

𝔞, 𝔟 = 𝑎!! , 𝑏!! + Tr!!! !  𝑎!! ,Tr!!! !  𝑏!!  !∈𝔖!
!!∈! 	 	 	 (3.6)	

Note	that	Λ! Ω!! = Ø	whenever	𝑘 ∉ 0,𝑑 ,	thus	many	of	the	terms	in	(3.6)	are	void.	It	is	easy	to	verify	
that	equation	(3.6)	indeed	defines	an	inner	product,	and	thus	forms	the	norm	on	𝔏! 	

𝔞 = 𝔞, 𝔞 !/!	 	 	 	 	 	 (3.7)	

The	codifferential	𝔡∗:𝔏! → 𝔏!!!	is	defined	as	the	dual	of	the	exterior	derivative	with	respect	to	the	
inner	product,	such	that	for	𝔞 ∈ 𝔏! 	

𝔡∗𝔞, 𝔟 = 𝔞, 𝔡𝔟 + Tr 𝔟,Tr∗𝔞 !!	 for	all	𝔟 ∈ 𝔏!!!		 	 	 (3.8)	

It	follows	from	the	properties	of	inner	product	spaces	that	the	codifferential	also	forms	an	exact	de	
Rham	sequence.	Thus,	when	𝐷	is	contractible,	we	have	the	following	Helmholtz	decomposition:	For	all	
𝔞 ∈ 𝔏!,	there	exist	𝔞𝔡 ∈ 𝔏!!!	and		𝔞𝔡∗ ∈ 𝔏!!!	such	that		

𝔞 = 𝔡𝔞𝔡 + 𝔡∗𝔞𝔡∗ 		 	 	 	 	 (3.9)	

In	view	of	the	uncertainty	in	the	modeling	community	of	the	correct	constitutive	laws	for	mixed-
dimensional	problems	(as	per	the	discussion	of	equation	(2.11)	and	(2.12)),	it	is	of	great	practical	utility	
to	be	able	to	explicitly	calculate	the	co-differential,	since	this	will	have	the	structure	of	the	constitutive	
law.	Utilizing	equations	(3.6)	and	(3.8),	we	obtain		

𝔡∗𝔟 !
! = 𝑑∗𝑏!! 	 	 	 on	Ω!! 	 	 	 (3.10)	
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and		

Tr!!!!!  𝔡∗𝔟 !
! = 𝑑∗Tr!!!!!  𝑏!! + Tr!!!!!

∗  𝑏!! − −1 !!!𝜀 Ω!!!!, 𝜕!Ω!!  𝑏!!!!!∈!!
! 	 on	𝜕Ω!! 	

	 (3.11)	

We	close	this	section	by	noting	that	the	differential	operators	provide	the	basis	for	extending	Hilbert	
spaces	to	the	mixed-dimensional	setting.	In	particular,	we	are	interested	in	the	first	order	differential	
spaces,	and	therefore	the	norms	of	𝐻𝔏! 	and	𝐻∗𝔏! 	by		

𝔞 ! = 𝔞 + 𝔡𝔞 	 and		 𝔞 !∗ = 𝔞 + 𝔡∗𝔞 	 	 	 (3.12)	

from	which	we	obtain	the	spaces		

𝐻𝔏! ≔ 𝔞 ∈ 𝔏!   𝔞 ! < ∞}	 and	 𝐻∗𝔏! ≔ 𝔞 ∈ 𝔏!  𝔞 !∗ < ∞}	 	 (3.13)	

We	use	the	convention	that	a	circle	above	the	function	space	denotes	homogeneous	boundary	

conditions,	i.e.	𝐻
∘
𝔏!: 𝔞 ∈ 𝐻𝔏!  Tr!" 𝔞 = 0}	and	𝐻

∘
∗𝔏!: 𝔞 ∈ 𝐻∗𝔏!  Tr!"

∗  𝔞 = 0}.	The	spaces 𝐻𝔏! 	and	
𝐻∗𝔏! 	can	be	characterized	in	terms	of	product	spaces	of	functions	defined	on	domains	Ω!! 	and	its	
boundary	components	𝜕!Ω!!,	see	e.g.	[13,	12].		

Then,	the	Poincaré	inequality	holds	for	contractible	domains	in	the	mixed-dimensional	setting	for	either	

𝔞 ∈ 𝐻
∘
𝔏! ∩ 𝐻∗𝔏! 	or	𝔞 ∈ 𝐻𝔏! ∩ 𝐻

∘
∗𝔏!:		

𝔞 ≤ 𝐶! 𝔡𝔞 + 𝔡∗𝔞 	 	 	 	 	 (3.14)	

4. Mixed-dimensional elliptic PDEs 
Based	on	the	extension	of	the	exterior	derivative	and	its	dual	to	the	mixed-dimensional	setting,	we	are	
now	prepared	to	define	the	generalization	of	elliptic	PDEs.	We	start	by	considering	the	minimization	
problem	equivalent	to	the	Hodge	Laplacian	for	𝔞 ∈ 𝔏! 	

𝔞 = arg inf
𝔞∈!

∘
𝔏!∩!∗𝔏!

𝐽𝔎 𝔞! 	 	 	 	 	 (4.1)	

where	we	define	the	functional	by		

𝐽𝔎 𝔞! = !
!
𝔎𝔡∗𝔞!, 𝔡∗𝔞! + !

!
𝔎∗𝔡𝔞!, 𝔡𝔞! − 𝔣, 𝔞! 	 	 	 	 (4.2)	

The	material	coefficients		𝔎	are	spatially	variable	mappings	from	Λ!!(!!! ! ) Ω!! 	onto	itself,	defined	
independently	for	all	terms	in	the	inner	product	(3.6).	In	particular,	with	reference	to	section	2,	𝔎	
contains	all	instances	of	the	proportionality	constants	𝐾	appearing	in	(2.9),	(2.10)	and	(2.12).		

For	equation	(4.1)	to	be	well-posed	and	have	a	unique	solution,	we	need	 𝔎𝔡∗𝔞!, 𝔡∗𝔞! + 𝔎∗𝔡𝔞!, 𝔡𝔞! 	to	
be	continuous	and	coercive,	i.e.	we	need	to	impose	constraints	on	𝔎	and	𝔎∗.	Indeed,	by	reverting	to	the	
definition	of	the	inner	product,	we	define	the	ellipticity	constant	𝛼𝔎	as	the	minimum	eigenvalue	of	𝔎,	
and	similarly	for		𝛼𝔎∗.	We	require	both	these	constants	to	be	bounded	above	zero,	such	that		

𝔎𝔡∗𝔞!, 𝔡∗𝔞! + 𝔎∗𝔡𝔞!, 𝔡𝔞! ≥ min 𝛼𝔎,𝛼𝔎∗ 1 + 𝐶! ! 𝔞! ! 	
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The	minimum	of	equation	(4.1)	must	satisfy	the	Euler-Lagrange	equations,	thus	𝔞 ∈ 𝐻
∘
𝔏! ∩ 𝐻∗𝔏! 	

satisfies		

𝔎𝔡∗𝔞, 𝔡∗𝔞! + 𝔎∗𝔡𝔞, 𝔡𝔞! = 𝔣, 𝔞! 	 	 	 for	all	𝔞′ ∈ 𝐻
∘
𝔏! ∩ 𝐻∗𝔏! 		 	 (4.3)	

From	the	perspective	of	applications,	and	mirroring	the	distinctions	between	conservation	laws	and	
constitutive	laws	discussed	in	Section	2,	we	will	be	interested	in	the	mixed	formulation	of	equation	(4.3)	
obtained	by	introducing	the	variable	𝔟 = 𝔎𝔡∗𝔞,	where	𝔟	is	the	generalization	of	the	various	fluxes	𝒖.	
Then	we	may	either	consider	a	constrained	minimization	problem	derived	from	equation	(4.1),	or	for	
the	sake	of	brevity,	proceed	directly	to	the	Euler-Lagrange	formulation:	Find	 𝔞, 𝔟 ∈ 𝐻𝔏!×𝐻𝔏!!!	which	
satisfy	

𝔎!!𝔟, 𝔟! − 𝔞, 𝔡𝔟! = 0	 	 	 for	all	𝔟! ∈ 𝐻𝔏!!!	 	 	 (4.4)		

𝔡𝔟, 𝔞! + 𝔎∗𝔡𝔞, 𝔡𝔞! = 𝔣, 𝔞! 	 	 	 for	all	𝔞′ ∈ 𝐻𝔏! 		 	 	 (4.5)	

The	saddle-point	formulation	is	well-posed	subject	to	Babuška-Aziz	inf-sup	condition.	Due	to	the	
presence	of	a	Helmholtz	decomposition,	this	follows	by	standard	arguments.	From	equations	(4.4)	and	
(4.5)	we	deduce	the	strong	form	of	the	Hodge	Laplacian	on	mixed	form,	corresponding	to	the	equations		

𝔟 = 𝔎𝔡∗𝔞	 and	 𝔡𝔟 + 𝔡∗ 𝔎∗𝔡𝔞 = 𝔣	 	 	 (4.6)	

Of	the	various	formulations,	equations	(4.4)	and	(4.5)	are	particularly	appealing	from	the	perspective	of	
practical	computations,	as	they	do	not	require	the	coderivative.			

An	important	remark	is	that	the	relative	simplicity	of	the	well-posedness	analysis	for	the	mixed-
dimensional	equations	relies	on	the	definition	of	the	function	spaces	and	norms.	In	particular,	due	to	the	
definition	of	𝐻𝔏! 	via	the	mixed-dimensional	differential	𝔡,	the	norm	on	the	function	space	is	inherently	
also	mixed-dimensional,	and	cannot	simply	be	decomposed	into,	say	norms	on	the	function	spaces	
𝐻Λ!!(!!!) Ω!! .	For	this	reason,	analysis	in	terms	of	“local	norms”	becomes	significantly	more	involved	
[17,	18,	11].		

5. Finite-dimensional spaces 
In	order	to	exploit	the	mixed-dimensional	formulations	from	the	preceding	section,	and	in	particular	
equations	(4.4-4.5)	we	wish	to	consider	finite-dimensional	subspaces	of	𝐻𝔏!.	These	spaces	should	be	
constructed	to	inherit	the	de	Rham	structure	of	equation	(3.5),	and	with	bounded	projection	operators.	
A	natural	approach	is	to	consider	the	polynomial	finite	element	spaces	as	a	starting	point	[15].		

From	the	finite	element	exterior	calculus	(FEEC	-	[15]),	we	know	that	on	the	highest-dimensional	
domains	Ω!!,	we	may	choose	any	of	the	finite	element	de	Rham	sequences,	and	in	particular,	we	may	
consider	the	standard	spaces	from	applications	for	a	simplicial	tessellation	𝒯!! = 𝒯 Ω!! 	

𝒫!Λ! 𝒯!! 	 	 and		 	 𝒫!!Λ! 𝒯!! 	 	 	 (5.1)	

These	correspond	to	the	full	and	reduced	polynomial	spaces	of	order	𝑟,	respectively,	in	the	sense	of	
[15].	In	order	to	build	a	finite	element	de	Rham	sequence,	we	recall	that	(while	still	commuting	with	
bounded	projection	operators)	the	full	polynomial	spaces	reduce	order	
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𝒫!Λ! 𝒯!
!
𝒫!!!Λ!!! 𝒯! 	 	 	 	 	 (5.2)	

while	the	reduced	spaces	preserve	order	

𝒫!!Λ! 𝒯!
!
𝒫!!Λ!!! 𝒯! 	 	 	 	 	 (5.3)	

Thus,	any	of	these	combinations	of	spaces	are	acceptable	for	Ω!!,	and	consider	therefore	the	choice	as	
given,	and	denoted	by	Λ!

!,!	and	Λ!
!!!,!.			

For	𝑑 < 𝑛,	we	must	consider	not	only	the	continuous	differential	operator	𝑑,	but	also	the	discrete	jump	
operator	𝕕.	It	is	therefore	clear	that	for	i.e.	𝑑 = 𝑛 − 1,	we	must	consider	the	traces	of	the	finite	element	
spaces	of	higher	dimensions.	In	particular,	we	require	for	all	pairs	of	dimensions	0 ≤ 𝑒 < 𝑑 ≤ 𝑛,	

Tr!!!  Λ!! 𝒯! ⊆ Λ!
!!(!!!) 𝒯! 	 	 	 	 	 (5.4)	

In	contrast	to	the	continuous	differential	order,	the	discrete	differential	operator	preserves	order	for	
both	the	full	and	reduced	spaces,	since	[15]:	

Tr!!  𝒫!Λ! 𝒯! = 𝒫!Λ!!(!!!) 𝒯! 		 and		 Tr!!  𝒫!!Λ! 𝒯! = 𝒫!!Λ!!(!!!) 𝒯! 	 	 (5.5)	

We	now	define	the	polynomial	subspaces	𝒫𝔯𝔪𝔏! ∈ 𝐻𝔏! 	as		

𝒫𝔯𝔪𝔏! !
! = 𝒫

!!
!
!!
!
Λ!! !!! 𝒯!! 		 	 	 	 (5.6)	

where	the	multi-indexes	𝔯	and	𝔪	have	values	𝑟!! ∈ ℙ	and	𝑚!
! ∈ [ ,−],	respectively.	When	the	multi-

indexes	are	chosen	to	satisfy	both	(5.2-5.3)	as	well	as	(5.4),	we	obtain	the	discrete	de	Rham	complex		

0 → ℝ ↪ 𝒫𝔯𝔪𝔏!
𝔡
𝒫𝔯𝔪𝔏!

𝔡
…

𝔡
𝒫𝔯𝔪𝔏! → 0	 	 	 	 (5.7)	

Due	to	the	existence	of	stable	projections	for	all	finite	element	spaces	in	𝒫𝔯𝔪𝔏!,	the	discrete	de	Rham	
sequence	can	be	shown	to	be	exact,	thus	equations	(4.4)	and	(4.5)	have	stable	approximations.		

The	discrete	spaces	for	𝐻∗𝔏! 	must	satisfy	similar	properties.	Equations	(5.2-5.3)	hold	in	the	dual	sense,	
i.e.	we	write	𝒫!∗Λ! 𝒯!! = 𝒫!∗Λ! 𝒯!! =⋆ (𝒫!Λ!!! 𝒯!! ,	and	𝑑∗𝒫!∗Λ! 𝒯!! ⊂ 𝒫!!∗Λ!!! 𝒯!! ⊂
𝒫!!!∗ Λ!!! 𝒯!! .	Furthermore,	the	coderivative	𝔡∗	imposes	the	inverted	condition	Λ!

!!(!!!) 𝒯! ⊆
Tr!!!!!

∗  Λ!! 𝒯! 	on	boundaries.		

6. Implications in terms of classical calculus 
We	take	a	moment	to	untangle	the	notation	from	Sections	3-5	in	order	to	extract	insight	into	modeling	
and	discretization	for	the	original	physical	problem.		

Our	initial	task	is	to	express	simplest	form	of	the	mixed-dimensional	Hodge	Laplacian	in	terms	of	
conventional	notation.	We	limit	the	discussion	to	the	case	where	𝑘 = 𝑛,	the	function	spaces	𝐻∗𝔏!	and		
𝐻𝔏!!!		correspond	to	𝐻!	scalars	and	𝐻(𝑑𝑖𝑣)	vectors	on	each	dimension	𝑑 ≥ 1.	For	𝑑 = 0,	only	the	
scalars	are	defined.	Furthermore,	the	term	𝔡𝔞 ∈ 𝔏!!! = Ø,	and	thus	we	arrive	from	(4.6)	to	the	simpler	
problem		

𝔟 = 𝔎𝔡∗𝔞	 and	 𝔡𝔟 = 𝔣	 	 	 	 	 (6.1)	
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In	this	case,	the	exterior	derivative	is	the	negative	divergence	plus	jumps	for	each	domain,	while	the	
codifferential	is	the	gradient	parallel	to	each	domain,	and	the	difference	from	boundaries	perpendicular.	
As	such,	we	arrive	exactly	at	the	model	equations	of	Section	2,	with	the	second	choice	of	modeling	
assumption	(2.12).		

Turning	our	attention	to	the	finite	element	spaces,	the	lowest	order	spaces	for	discretizing	(4.4-4.5)	are	
the	reduced	spaces	obtained	by	choosing	𝑟!! = 1	and	𝑚!

! = −,	from	which	we	obtain	piecewise	
constants	for	𝔞	on	all	domains,	while	we	obtain	for	𝔟	the	Nedelec	1st	kind	(div)	–	Raviart-Thomas	–	
continuous	Lagrange	elements	for	domains	with	dimensions	𝑑 = 3,2,1,	respectively	–	all	of	the	lowest	
order	[12]	(this	method	will	be	referred	to	as	“Mixed	Reduced”	in	the	next	section).		Interestingly,	if	we	
choose	Nedelec	2nd	kind	(div)	elements	of	lowest	order	for	𝑑 = 3,	equations	(5.2)	and	(5.5)	implies	that	
we	should	increase	the	order	in	the	lower-dimensional	domains,	obtaining	dG	elements	of	order	𝑛 − 𝑑	
for	pressure,	with	BDM	(2nd	order)	–	continuous	Lagrange	(3rd	order)	for	fluxes	in	domains	with	𝑑 = 2,1.	
This	is	a	new	method	resulting	from	the	analysis	herein.	We	refer	to	this	method	as	“Mixed	Full”.			

The	mixed	finite	element	discretization	has	the	advantage	of	a	strong	conservation	principle,	and	may	
be	hybridized	to	obtain	a	cheaper	numerical	scheme	(see	[12]	for	a	direct	approach	in	this	context,	but	
also	[6,	5]	for	direct	constructions	in	the	finite	volume	setting).	Alternatively,	we	consider	discretizing	
the	Euler-variation	of	the	unconstrained	minimization	problem,	equations	(4.3).	The	natural	finite	
element	spaces	are	𝒫𝔯

𝔪,∗𝔏!,	with	𝑟!! = 1	and	𝔪	does	come	into	play,	corresponding	to	1st-order	
continuous	Lagrange	elements	in	all	dimensions.	From	an	engineering	perspective,	a	similar	formulation	
has	been	described	in	[19],	we	refer	to	this	method	as	“Primal”	in	the	next	section.		

	

7. Computational example 
In	order	to	illustrate	the	concepts	discussed	in	the	preceding	sections,	we	will	continue	to	consider	
𝑘 = 𝑛,	and	thus	fractured	porous	media	as	a	computational	example,	using	the	three	numerical	
methods	obtained	using	the	lowest-order	elements	of	the	families	described	in	the	previous	section.		

The	example	consists	of	the	unit	square	with	two	fractures	crossing	through	the	domain,	intersecting	at	
a	right	angle,	as	illustrated	in	figures	3.		We	impose	unit	permeability	in	the	surroundings,	set	the	normal	
and	tangential	permeability	of	the	fractures	to	100	and	assume	the	apertures	of	both	fractures	as	
𝜖 = 10!!.	The	boundary	conditions	are	chosen	as	zero	pressure	at	the	bottom	and	no-flux	conditions	on	
the	sides.	Moreover,	a	boundary	pressure	of	one	is	imposed	on	the	fracture	crossing	the	top	boundary.	
All	computations	were	performed	with	the	use	of	FEniCS	[21].		
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Figure	3:	(Left)	Domain	of	computation	and	associated	boundary	conditions.	The	pressure	boundary	
condition	is	only	imposed	on	the	fracture	pressure.	(Right)	Example	of	calculated	solution	(pressure).		

The	results	show	that	all	three	methods	are	stable	and	convergent	(Table	1).	The	relative	errors	and	𝐿!-
convergence	rates	after	four	consecutive	refinements	(identified	by	the	characteristic	grid	size	ℎ)	are	
given	in	the	following	table.	Here,	we	compare	the	results	to	a	fine-scale	solution,	obtained	after	a	fifth	
refinement.	In	this	example,	all	grids	are	matching.		

	 	 Primal	 Mixed	Reduced	 Mixed	Full	
Domain	 Grid	

size	
Pressure	 Pressure	 Flux	 Pressure	 Flux	

	 ℎ	 Error	 Rate	 Error	 Rate	 Error	 Rate	 Error	 Rate	 Error	 Rate	

Ω!	
2!!	
2!!	
2!!	

2.66e-03	
8.45e-04	
2.15e-04	

1.53	
1.65	
1.97	

2.21e-03	
7.18e-04	
1.87e-04	

1.52	
1.62	
1.94	

N/A	 N/A	
2.89e-04	
8.99e-05	
2.26e-05	

1.61	
1.69	
1.99	

N/A	 N/A	

Ω!	
2!!	
2!!	
2!!	

2.54e-03	
9.57e-04	
3.23e-04	

1.46	
1.41	
1.57	

1.89e-02	
9.22e-03	
4.12e-03	

1.01	
1.04	
1.16	

6.32e-03	
2.49e-03	
7.82e-04	

1.22	
1.34	
1.67	

3.01e-04	
8.99e-05	
2.37e-05	

1.71	
1.74	
1.92	

1.84e-03	
7.44e-04	
2.61e-04	

1.28	
1.30	
1.51	

Ω!	
2!!	
2!!	
2!!	

4.25e-03	
1.36e-03	
3.60e-04	

1.53	
1.64	
1.92	

1.89e-02	
9.17e-03	
4.08e-03	

1.02	
1.05	
1.17	

8.21e-02	
4.75e-02	
2.47e-02	

0.74	
0.79	
0.94	

1.86e-02	
9.11e-03	
4.07e-03	

1.01	
1.03	
1.16	

3.16e-02	
1.87e-02	
1.04e-02	

0.75	
0.75	
0.86	

	Table	1:	Convergence	rates	for	the	three	FE	and	MFEM	discussed	for	the	fracture	problem	in	Section	6.	
With	reference	to	Figure	3,	the	domain	Ω!	is	the	intersection	point,	Ω!	represents	the	four	fracture	
segments,	while	Ω!	is	the	remaining	ambient	geometry.		

Each	method	captures	the	intersection	pressure	well,	with	second	order	convergence	over	all.	In	the	
surroundings,	the	pressure	convergence	with	second	order	for	the	primal	formulation	and	first	order	for	
both	mixed	formulations,	as	expected.	The	Mixed	Full	method	has	higher-order	elements	in	the	fracture,	
and	this	is	reflected	in	higher	convergence	rates	for	both	pressure	and	flux.		

0.25 0.75 0.
5 

1 0 

𝑝 =  0 

𝑢 ⋅ 𝑛 = 0 𝑢 ⋅ 𝑛 = 0 

𝑝! =  1 
𝑢 ⋅ 𝑛 = 0 
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Balancing Domain Decomposition by
Constraints algorithms for curl-conforming
spaces of arbitrary order

Stefano Zampini, Panayot Vassilevski, Veselin Dobrev and Tzanio Kolev

Abstract We construct Balancing Domain Decomposition by Constraints methods
for the linear systems arising from arbitrary order, finite element discretizations
of the H(curl) model problem in three-dimensions. Numerical results confirm that
the proposed algorithm is quasi-optimal in the coarse-to-fine mesh ratio, and poly-
logarithmic in the polynomial order of the curl-conforming discretization space.
Additional numerical experiments, including higher-order geometries, upscaled fi-
nite elements, and adaptive coarse spaces, prove the robustness of our algorithm. A
scalable three-level extension is presented, and it is validated with large scale exper-
iments using up to 16384 subdomains and almost a billion of degrees of freedom.

1 Introduction

We construct Balancing Domain Decomposition by Constraints (BDDC) methods
[8] for the linear systems arising from three-dimensional, arbitrary order finite ele-
ment discretizations of the H(curl) bilinear form∫

Ω
α ∇×uuu ·∇× vvv+β uuu · vvv dx, α ≥ 0, β > 0. (1)

The proposed algorithm is quasi-optimal in the coarse-to-fine mesh ratio, and poly-
logarithmic in the polynomial order of the finite element discretization space, which
is confirmed by the numerical results in Section 3. Our results will be equally valid
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for the Finite Element Tearing and Interconnecting Dual-Primal (FETI-DP) method
[12], due to the well known duality between BDDC and FETI-DP [25].

The bilinear form (1) originates from implicit time-stepping schemes of the
quasi-static approximation of the Maxwell’s equations in the time domain [30].
The coefficient α is the reciprocal of the magnetic permeability, assumed con-
stant, whereas β is proportional to the conductivity of the medium; positive definite
anisotropic tensor conductivities can be handled as well. We only present results
for essential boundary conditions, but the generalization of the algorithms to natu-
ral boundary conditions is straightforward. Magnetostatic problems with β = 0 are
not covered in the present work, and they can be the subject of future research. The
same bilinear form appears in block preconditioning techniques for the frequency
domain case [13], mixed form of Brinkman (Darcy-Stokes) [39], and in incompress-
ible magneto-hydrodynamics [24].

The operator ∇× is the curl operator, defined, e.g., in [4]; the vector fields belong
to H(curl), the Sobolev space of square-integrable vector fields having a square-
integrable curl. The space H(curl) is often discretized using Nédélec elements [26];
those of lowest order use polynomials with continuous tangential components along
the edges of the elements. While most existing finite element codes for electromag-
netics use lowest order elements, those of higher order have shown to require fewer
degrees of freedom (dofs) for a fixed accuracy [31, 13].

The design of solvers for edge-element approximations of (1) poses significant
difficulties, since the kernel of the curl operator is non-trivial. An even greater
challenge for domain decomposition solvers consists in finding logarithmically sta-
ble decompositions in three dimensions, due to the strong coupling that exists be-
tween the dofs located on the subdomain edges and those lying on the subdomain
faces. Among non-overlapping methods, it is worth citing the wirebasket algorithms
[9, 18, 19], Neumann-Neumann [32], and one-level FETI [36, 28]. Overlapping
Schwarz methods have also been studied [33, 6].

The edge-element approximation of (1) has also received a lot of attention by the
multigrid community; Algebraic Multigrid (AMG) methods have been proposed in
[29], [5], and [17]. For geometric multigrid, see [14]. Robust and efficient multigrid
solvers can be obtained combining AMG and auxiliary space techniques, that re-
quire some extra information on the mesh connectivity and on the dofs [15, 16, 22].

In this work, we follow the approach proposed by Toselli for three-dimensional
FETI-DP with the lowest order Nédélec elements [34], where a stable decomposi-
tion is obtained by using a change of basis for the dofs located on the subdomain
edges. The same approach has been pursued recently by Dohrmann and Widlund
[11], who were able to improve Toselli’s results, and obtain sharp and quasi-optimal
condition number bounds (in the lowest order case) by using the deluxe variant
of BDDC [10]. This is critical for obtaining iteration counts and condition num-
ber estimates independent of the jumps of α and β aligned with the subdomain
interface. Finally, it has to be noted that BDDC deluxe algorithms for high-order
Nédélec elements in two dimensions, and for the lowest order Nédélec elements in
three dimensions have been already presented by the first author in [40, 42].
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In Section 2, we complement the results in [34, 11] by proposing an algorithm
for the change of basis that does not make any assumption on the mesh, the asso-
ciated discretization space, and the domain decomposition. Inspired by the success
of the auxiliary space technique [15], we construct the change of basis by using the
so-called discrete gradient, a linear operator that maps gradients of scalar functions
to their representation in the curl-conforming discretization space. Numerical ex-
periments, provided in Section 3, confirm that the robustness of our approach is not
confined to the more standard Nédélec elements, but it also extends to the case of
elements with curved boundaries, and to upscaled H(curl) spaces constructed by
preserving the de Rham sequence on agglomerations of fine scale elements. Due to
page restrictions, we refer the interested reader to [23] for a thorough description of
these kind of elements.

2 Design of the algorithm

2.1 Domain decomposition and discrete spaces

We follow the framework of iterative substructuring [37, Chapters 4-6], and we
decompose the domain Ω into N non-overlapping open Lipschitz subdomains Ωi,

Ω =
N∪

i=1

Ω i, Γ :=
∪
i ̸= j

∂Ω j ∩∂Ωi,

with Γ the interface between the subdomains. We further assume that Ω and each Ωi
are simply connected (does not contain any holes). We denote by Vh(Ω) and Sh(Ω)
the curl- and H1- conforming finite element spaces of polynomial order p, respec-
tively, together with their subdomain counterparts V(i)

h :=Vh(Ωi) and S(i)h := Sh(Ωi).
We denote by W the global finite element space in which we seek the solution of
problems coming from the bilinear form (1), and by W(i) the corresponding sub-
domain spaces. We note that Vh coincides with W when using Nédélec elements;
however, our algorithm covers also the case Vh ⊂W, as it is the case of upscaled
finite elements that preserve the de Rham sequence [23], or of three-level extensions
of the BDDC algorithm for (1) (see Section 2.4).

The success of the algorithm depends on the analysis of the interface, that leads
to the detection of equivalence classes such as the subdomain faces, i.e. sets of con-
nected dofs shared by the same two subdomains, and the subdomain edges, i.e. sets
of connected dofs shared by 3 or more subdomains. We assume that a subdivision of
Γ in face and edge disjoint subsets has been found; moreover, we assume that each
subdomain edge has exactly two endpoints, and none of the edge endpoints lie in the
interior of another subdomain edge. As noted in [11, Section 5], this guarantees that
the change of basis (defined in the next section) leads to a new well-posed problem.
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2.2 BDDC method

The recipe for the construction of a BDDC preconditioner consists in the design of
a partially continuous interface space W̃Γ , the direct sum of a continuous primal
space WΠ and a discontinuous dual space W∆ , and in the choice of an averaging
operator ED for the partially continuous dofs, which drives the analysis and the
design of robust primal spaces [25].

Following Toselli [34], we characterize the primal space WΠ by using two primal
constraints per subdomain edge E as given by

s0,E(www) := 1
|E|
∫

E www · tttE ds, www ∈ Vh, (2)

s1,E(www) := 1
|E|
∫

E swww · tttE ds, www ∈ Vh, (3)

where tttE|e := ttte, with ttte the vector oriented in the direction of a fine mesh edge e
belonging to E. For implementation details of the primal space, see Remark 3.

2.3 Change of basis

As in [34, 11], we consider a change of basis for the dofs of Vh that are located on
each subdomain edge E, and we split a finite element function www into a constant
component ΦΦΦE and gradient components ∇ϕ jE associated with the nodal dofs of Sh
lying in the interior of the edge, i.e.

www|E = s0,E(www)ΦΦΦE +
nE−1

∑
j=1

w jE(www)∇ϕ jE +wwwEc,

with nE the number of Vh dofs on E, and wwwEc the finite element function (if any)
identified by the dofs of W that lie on E and are not in Vh.

The change of basis in BDDC methods is performed by projection as T T AT ,
where the columns of T represents the new basis in terms of the old dofs [21], and
A results from the discretization of the bilinear form (1). The structure of T for
three-dimensional curl-conforming spaces is as follows [34, 11, 40, 42]

T =


IC 0 0 . . . 0
0 IF TFE1 . . . TFEn

0 0 TE1E1 0 0

0 0 0
. . . 0

0 0 0 0 TEnEn

 ,

where IC and IF are identity matrices of appropriate sizes. Here, F denotes the set
of dofs of Vh that belong to the subdomain faces, and C denotes all the remaining
dofs of W that do not belong to F or to any of the subdomain edge dofs of Vh.
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Differently from a conventional change of basis in BDDC, the one used for curl-
conforming spaces is not local to the subdomain edges, as it also involves, through
the sparse off-diagonal blocks TFEi , the dofs of F that are located on the fine mesh
edges sharing a mesh vertex with any of the Ei.

In our code, we use T T AT as iteration matrix; however, in order to preserve a one-
to-one correspondence between old and new subdomain dofs, we construct the pre-
conditioner using the subdomain matrices Ã(i) := R(i)T T R(i)T A(i)R(i)T R(i)T , where
A(i) is the discretization matrix on W(i), and R(i) is the usual restriction operator
from W to W(i). Note that T T AT = ∑N

i=1(T
T R(i)T )A(i)(R(i)T ) ̸= ∑N

i=1 R(i)T Ã(i)R(i).
The functions ΦΦΦE and ∇ϕ jE are explicitly constructed in [34, 11]; however, the

procedures used therein possess strong limitations, as they need to access the under-
lying mesh and to understand how the edge dofs are related with the orientation of
the fine mesh edges; moreover, they are limited to the lowest order Nédélec space
only. In this work, we propose a construction of the change of basis by using the
information contained in the discrete gradient operator G, the matrix representation
of the mapping ϕ ∈ Sh→ ∇ϕ ∈ Vh, that is also used by the auxiliary space method,
see [15] and [22, Section 4]. We note that, when using Nédélec elements, there are
p dofs associated to each fine mesh edge, and that the number of nonzeros per row
of G is p+ 1, with p the polynomial order of the finite element space used for Sh.
For upscaled elements, the number pe of dofs of Vh associated to each fine mesh
edge e may vary from one fine mesh edge to another, but the number of nonzeros of
the corresponding rows of G is always pe +1.

For each subdomain edge E, we construct the corresponding column block of T
as follows. We first extract the matrix GEE̊ , where E̊ is the set of dofs of Sh that is
associated with those basis functions being nonzero on the nodes in the interior of
E; note that GEE̊ has full-column rank, and that nE = nE̊ +1. We then compute the
representation of the subdomain edge constant function ΦΦΦE in Vh as the eigenvector
corresponding to the nonzero eigenvalue of the orthogonal complement of GEE̊ , i.e.
I−GEE̊(G

T
EE̊

GEE̊)
−1GT

EE̊
. The dofs defining ∇ϕ jE are simply given by the columns

of G that correspond to E̊. The change of basis block relative to E is[
TFE
TEE

]
:=
[

0 GEcE̊
ΦΦΦE GEE̊

]
,

with E ∪Ec the set of row indices corresponding to the nonzero values in the E̊
columns.

Remark 1. The construction of our change of basis just needs sub-matrix extraction
operations and the computation of the orthogonal complement of GEE̊ , which can
be obtained by doing a singular value decomposition of the same matrix, of size
nE × nE̊ : note that nE is usually very small, on the order of ten, and we can thus
efficiently use algorithms for dense matrix storages. After having changed the basis,
the sparsity pattern of the local matrices is not spoiled, and optimal nested dissection
orderings for the direct solves of the subdomain problems can be found.
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Remark 2. For the lowest order Nédélec elements, G has two nonzeros per row;
the values are +1 or −1 depending on the orientation of the element edge. When
hexahedral meshes and box subdomains are considered, our change of basis is the
same as that proposed by Toselli [34].

Remark 3. The constraint given in eq. (2) is obtained by selecting the dofs corre-
sponding to each ΦΦΦE as primal; arithmetic averages for the remaining dofs on the
subdomain edges are used to impose the constraint (3), see also [11, Section 2.2].

Remark 4. Our algorithm does not require the user to input the mesh connectivity.
From G, we can infer the dofs connectivity which will lead to a well-posed change of
basis, since the sparsity pattern of the matrices GT G and GGT carry the information
of a vertex-to-vertex, and an edge-to-edge mesh connectivity graph, respectively.

2.4 Three-level extension of the algorithm

Three-level extensions of the algorithm [38] are crucial for large scale simulations,
as the solution of the coarse problem in BDDC (as with all two-level methods) can
become a bottleneck when many subdomains are considered, see [41, Section 3.6]
and the references therein for additional details. The minimal coarse space presented
in Section 2.2 can be naturally split in two disjoint subsets; the one arising from
the constraints given in eq. (2) resembles a lowest-order Nédélec space defined on
the coarse element (i.e., the subdomain). The rest of the coarse dofs are instead
generated by gradients of scalar functions, and a scalable coarse space can be thus
obtained by considering arithmetic averages defined on the coarse subdomain edges.

We thus propose an approximate coarse discrete gradient to obtain a stable de-
composition of the coarse dofs generated by eq. (2), obtained by projecting the fine
discrete gradient G on the ΦΦΦE functions. The resulting coarse discrete gradient will
have two nonzero entries per row, with entries given by GT

E∂EΦΦΦE , with ∂E the in-
dices of the basis functions of Sh associated with the two endpoints of E. We then
construct the primal space of the coarse problem as outlined in the previous sec-
tions. Numerical results confirm that such an approach provides an optimal coarse
space for the second level of the BDDC operator, and leads to scalable three-level
algorithms in terms of number of iterations. We note that multilevel extensions, with
an arbitrary number of levels, can be obtained by recursion arguments.

3 Numerical results

Here we present numerical experiments that confirm the robustness of our algo-
rithm; we test the quasi-optimality, the dependence on the polynomial order of the
curl-conforming spaces, and the proposed three-levels extension. In addition, we test
the case of elements with curved boundaries. We also provide results for adaptive
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enrichment (see [41] and the references therein) of the minimal coarse space given
by eqs. (2) and (3) in the presence of heterogeneous coefficients. As quality met-
rics, we consider the experimental condition number (denoted by κ) and the num-
ber of conjugate gradient iterations needed to reduce by eight orders of magnitude
the initial residual norm, starting from zero initial guess and randomly distributed
right-hand side. Unless otherwise stated, the primal space consists of two dofs per
subdomain edge as described in Section 2.2, α = β = 1, and Ω = [0,1]3.

All the numerical results have been obtained using the discretization packages
MFEM [1] (for Nédélec elements and high-order geometries) and ParElag [2] (for
upscaled finite elements) developed at Lawrence Livermore National Laboratory,
and by using the BDDC implementation developed by the first author in the PETSc
library [3, 41]. Irregular decompositions of tetrahedral (TET) or hexahedral (HEX)
meshes obtained from the graph partitioner ParMETIS [20] are always considered;
deluxe scaling is always used to accommodate for spurious eigenvalues of the pre-
conditioned operator arising from possibly jagged subdomain interfaces [7].

In Figure 1 we report the results of a quasi-optimality test, performed by consid-
ering successive uniform refinements of a mesh decomposed in 40 subdomains, and
by using Nédélec elements of order p = 1 (lowest-order) and p = 2. The domain
decomposition is kept fixed, in order to fix the value of the maximum subdomain di-
ameter H. The results show a (1+ logH/h)2 dependence in all the cases considered.
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refinements
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1 2 3
refinements
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κ

TET, p=1
TET, p=2
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HEX, p=2

Fig. 1: Quasi-optimality test. κ (left) and number of iterations (right) for successive uniform refine-
ments for Nédélec elements on hexahedra (HEX) and tetrahedra (TET); polynomial orders p = 1
and p = 2.

We then fix the mesh and the domain decomposition (i.e. H/h), and we increase
the polynomial order of the discretization spaces. Figure 2 contains results for the
Nédélec elements, going from p = 1 to p = 6; we note that we obtained the same
results when considering statically condensed spaces (relevant when p > 1 for the
HEX and p > 2 for the TET case, data not shown). In the same spirit, Figure 3
contains the results for upscaled curl-conforming elements, obtained by considering
two successive levels of structured aggregation (UP1 and UP2 respectively), and
with polynomial orders ranging from p = 1 to p = 4; results for Nédélec elements
(NED) on the same mesh are given for comparison. In both cases, Nédélec or up-
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scaled elements, our algorithm shows to be robust with the higher degree of the
polynomial space, and it leads to a poly-logarithmic convergence rate. The results
of this test, together with those related with the quasi-optimality, suggest a condition
number bound of the type (1+ log(p2H/h))2 for the preconditioned operator.

Fig. 2: Polynomial order test. κ and number of iterations as a function of the polynomial order for
Nédélec elements on hexahedra (HEX) and tetrahedra (TET).
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Fig. 3: Polynomial order test. κ and number of iterations as a function of the polynomial order
for Nédélec elements (NED), and upscaled curl-conforming elements. UP1 one level of element
aggregation with structured coarsening, UP2 two levels.
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Further numerical evidence for the robustness of our approach is given by the
results shown in Table 1, where condition numbers and number of iterations are
reported by testing against third-order geometries, in combination with Nédélec el-
ements of order p = 1,2. The meshes used to run the tests have been obtained from
2 levels of uniform refinements of those shown in Figure 4, and they are available
with the MFEM source code as escher-p3.mesh and fichera-q3.mesh.
The number of subdomains considered is 40.
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Fig. 4: Third-order meshes used for
the results in Table 1.

Table 1: High-order geometry test. Size of linear systems
(dofs), condition number, (κ) and number of iterations (it)
for Nédélec elements of degree 1 and 2 with the meshes
shown in Figure 4.

TET, p = 1 , TET, p = 2
dofs 27K 144K

κ 11.8 23.7
it 26 37

HEX, p = 1 , TET, p = 2
dofs 12K 92K

κ 5.7 8.4
it 21 26

We next consider the case of heterogeneous coefficients; we fix α = 1, and vary
the distribution of β as pictured in Figure 5. For this test, we adaptively enrich the
minimal coarse space by means of the adaptive selection of constraints algorithm
described in [41, 40]; results have been obtained using either tetrahedral or hexahe-
dral meshes, 40 subdomains, and with Nédélec elements of order p = 1 and p = 2.
The number of dofs in the tetrahedral case is approximately 200 thousand (K) for
p = 1, and 1.2 million (M) for p = 2; in the hexahedral case, the number of dofs
are 330K and 3.5M, respectively. Results are reported in Table 2, together with the
adaptive threshold used (λ ), and the ratio between the number of generated coarse
dofs and the number of interface dofs (C/Γ ).

Fig. 5: Heterogeneous β distribu-
tion used for testing adaptive coarse
spaces.

Table 2: Adaptive coarse spaces. Condition number (κ),
number of iterations (it) and coarse-to-fine ratio (C/Γ ) for
different eigenvalue thresholds λ .

TET, p = 1 TET, p = 2
λ - 10 5 2.5
κ 150.2 7.5 4.6 2.2
it 54 15 12 8

C/Γ 0.01 0.05 0.06 0.09

λ - 10 5 2.5
κ 413.3 5.9 4.3 2.3
it 113 15 12 9

C/Γ 0.01 0.02 0.02 0.04

HEX, p = 1 HEX, p = 2
λ - 10 5 2.5
κ 203.4 5.8 3.2 2.0
it 62 13 10 7

C/Γ 0.02 0.05 0.06 0.09

λ - 10 5 2.5
κ 330.8 5.1 3.4 2.0
it 97 14 11 8

C/Γ 0.01 0.01 0.02 0.04

Without adaptive coarse spaces, the algorithm performs poorly (as expected)
since the jumps in β are not aligned with the (irregular) subdomain boundaries;
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on the other hand, the number of iterations and the condition numbers are consis-
tently (and constantly) reduced when considering adaptive coarse spaces associ-
ated with smaller and smaller tolerances λ . The ratio of coarse-to-fine dofs remain
bounded for all the tolerance values considered; interestingly, the coarsening pro-
cedure is more effective for p = 2 than for p = 1, as also observed experimentally
with Raviart-Thomas vector fields [27, 43].

We close this section by reporting the results of a weak scalability test. Since we
consider unstructured domain decompositions, we obtain subdomain problems of
approximately the same size by using uniform refinements of an hexahedral mesh;
at each level of refinement, we multiply by eight the number of subdomains used. As
a consequence, we cannot guarantee that the shape of the subdomains remains the
same. The total number of dofs in the test ranges from 186K to 94M with Nédélec el-
ements of degree p = 1, and from 1.5M to 742M for p = 2. In Figure 6, we compare
the results using a standard two-level BDDC algorithm (2L) and a three-level ap-
proach (3L), where the coarse subdomains have been obtained by aggregating 32
fine subdomains using ParMETIS; the condition number of the coarse BDDC pre-
conditioned operator is also provided (κc, left panel, dashed lines). The number of
iterations are scalable up to 16384 subdomains in both cases; condition numbers and
number of iterations are slightly larger for the 3L case, but the algorithm preserves
the convergence properties of the 2L case.

Fig. 6: Weak scalability test. κ and number of iterations as a function of the number of subdomains
for two-level (2L) and three-level BDDC (3L). Coarse condition number (κc) is also shown.
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4 Conclusions

We have constructed BDDC methods for arbitrary order, finite element discretiza-
tions of the H(curl) model problem. Numerical results have shown that the pro-
posed algorithm leads to a poly-logarithmic condition number bound, with a mild
dependence on the polynomial order of the approximation space, of the type
(1+ log(p2H/h))2. The robustness of our approach has been confirmed for various
cases, including high-order geometries, upscaled curl-conforming finite elements,
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and heterogeneous distributions of the coefficients. A scalable, three-level exten-
sion of the method has also been proposed; large scale parallel experiments using
up to 16384 subdomains and almost a billion of dofs have been provided to validate
the algorithm.
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Restricted additive Schwarz method
for some inequalities perturbed by a
Lipschitz operator

Lori Badea1

1 Introduction

The first restricted additive Schwarz methods have been introduced for alge-
braic linear systems in Cai et al. [1998], Cai and Sarkis [1999] and Frommer
and Szyld [2001]. In Frommer et al. [2002] and Nabben and Szyld [2002] the
restricted variant of the multiplicative Schwarz method is also analyzed. Nu-
merical experiments have proven that these restricted methods, besides the
fact that they sometimes converge faster and also preserve the good proper-
ties of the usual additive methods, they reduce the communication time when
they are implemented on distributed memory computers. In Efstathiou and
Gander [2003], it is explained this fact by showing that even if the restricted
method is defined at the matrix level, it can be interpreted as an iteration
at the continuous level of the given problem. Restricted additive Schwarz
methods for complementarity problems have been introduced in Yang and Li
[2012], Zhang et al. [2015], Xu et al. [2014] and Xu et al. [2011].

In the above papers, the methods are approached by a matricial point of
view. In this paper, we introduce and analyze a restricted additive method
for inequalities perturbed by a Lipschitz operator in the functional frame-
work of the PDEs. Such an approach is not new in the case of the additive
and multiplicative Schwarz methods, including the multilevel and multigrid
methods for inequalities (see Badea [2008b], Badea [2015] and Badea [2008a],
for instance).

In the next section, like in Badea [2008a], we give an existence and unique-
ness result concerning the solution of the inequalities we consider¿ Also, we
introduce the method as a subspace correction algorithm, prove the con-
vergence and estimate the error in a general framework of a finite dimen-
sional Hilbert space. In Section 3, by introducing the finite element spaces,
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2 Lori Badea

we conclude that both the convergence condition and convergence rate are
independent of the mesh parameters, the number of subdomains and of the
parameters of the domain decomposition, but the convergence condition is
a little more restrictive than the existence and uniqueness condition of the
solution.

In a forthcoming paper, by considering the perturbing operator of a par-
ticular form, we introduce and analyze some restricted additive Schwarz-
Richardson methods for inequalities which do not arise from the minimization
of a functional. Also, we shall compare the convergence of these restricted ad-
ditive methods with the convergence of the corresponding additive methods.

2 Convergence result in a Hilbert space

Let V be finite dimensional real Hilbert space with the basis ϕj , j = 1, . . . , d,

and let cd and Cd be two constants such that, for any v =
∑d

j=1
vjϕj ∈ V ,

we have
cd

∑d
j=1

||vjϕj ||
2 ≤ ||v||2 ≤ Cd

∑d
j=1

||vjϕj ||
2 (1)

Also, let V1, . . . , Vm be some closed subspaces of V and K ⊂ V be a non
empty closed convex set. We consider a Gâteaux differentiable functional
F : V → R and assume that there exist two real numbers α, β > 0 for which

α||v − u||2 ≤ 〈F ′(v)− F ′(u), v − u〉 and ||F ′(v)− F ′(u)||V ′ ≤ β||v − u|| (2)

for any u, v ∈ V . Above, we have denoted by F ′ the Gâteaux derivative of
F . Following the way in Glowinski et al. [1981], we can prove that for any
u, v ∈ V , we have

〈F ′(u), v−u〉+
α

2
||v−u||2 ≤ F (v)−F (u) ≤ 〈F ′(u), v−u〉+

β

2
||v−u||2 (3)

Also, we consider an operator T : V → V ′ with the property that there exists
γ > 0 such that

||T (v)− T (u)||V ′ ≤ γ||v − u|| for any u, v ∈ V. (4)

By using the above functional F : V → R, we also introduce the functional
F : V → R defined as F(v) =

∑d
j=1

F (vjϕj). Evidently, the derivative F
′ of

F at u =
∑d

j=1
ujϕj in the direction v =

∑d
j=1

vjϕj is written as 〈F ′(u), v〉 =
∑d

j=1
〈F ′(ujϕj), vjϕj〉 and, in view of (3), we have

〈F ′(u), v − u〉+ α
2

∑d
j=1

||(vj − uj)ϕj ||
2 ≤ F(v)−F(u)

≤ 〈F ′(u), v − u〉+ β
2

∑d
j=1

||(vj − uj)ϕj ||
2

(5)
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for any u =
∑d

j=1
ujϕj , v =

∑d
j=1

vjϕj ∈ V . Evidently, from the convexity
of F we get that F is also a convex functional. Finally, we assume that
if K is not bounded then the functional F is coercive in the sense that
F(v)/||v|| → ∞ as ||v|| → ∞, v ∈ V .

Now, we define an operation ∗ : V × V → V by

u ∗ v =
∑d

j=1
ujvjϕj for any u =

∑d
j=1

ujϕj and v =
∑d

j=1
vjϕj ∈ V (6)

We fix some functions θi =
∑d

j=1
θijϕj ∈ Vi, i = 1, . . . ,m, and assume that

they have the property

0 ≤ θij ≤ 1 and
∑m

i=1
θij = 1 for any j = 1, . . . ,m (7)

i.e., in some sense, they supply a unity decomposition associated with the
subspaces V1, . . . , Vm. Also, we assume that the convex setK has the property

Property 1. If v, w ∈ K and θ =
∑d

j=1
θjϕj ∈ V with 0 ≤ θj ≤ 1, j = 1, . . . , d,

then θ ∗ v + (1̄− θ) ∗ w ∈ K.

Above and in what follows in this section,
∑d

j=1
ϕj is denoted by 1̄. Using

(6), we have 1̄ ∗ v = v for any v ∈ V . Finally, we consider the problem

u ∈ K : 〈F ′(u), v − u〉 − 〈T (u), v − u〉 ≥ 0, for any v ∈ K. (8)

which is a variational inequality perturbed by the operator T . Concerning
the existence and the uniqueness of the solution of this problem we have the
following result (see Badea [2008a], for the proof of a similar result).

Proposition 1. If γ
α
Cd < 1, then problem (8) has a unique solution.

Since the functional F is convex and differentiable, problem (8) is equivalent
with the minimization problem

u ∈ K : F(u)− 〈T (u), u〉 ≤ F(v)− 〈T (u), v〉, for any v ∈ K. (9)

We write the restricted additive algorithm for the solution of problem (8) as

Algorithm 1 We start the algorithm with an arbitrary u0 ∈ K. At iteration
n+1, having un ∈ K, n ≥ 0, we solve the inequalities: find wn+1

i ∈ Vi, u
n +

wn+1

i ∈ K such that

〈F ′(un + wn+1

i ), vi − wn+1

i 〉 − 〈T (un), vi − wn+1

i 〉 ≥ 0,
for any vi ∈ Vi, u

n + vi ∈ K,
(10)

for i = 1, . . . ,m, and then we update un+1 = un +
∑m

i=1
θi ∗ w

n+1

i .

Now we prove

Theorem 1. Let u be the solution of problem (8), and un, n ≥ 1, be its
approximations obtained from Algorithm 1. If γ

α
Cd ≤ ϑmax, where ϑmax is
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defined in (27), then Algorithm 1 is convergent for any initial guess u0 ∈ K
and the error estimates

F(un)− 〈T (u), un〉 − F(u) + 〈T (u), u〉

≤
(

C̃

C̃+1

)n
[

F(u0)− 〈T (u), u0〉 − F(u) + 〈T (u), u〉
] (11)

and
∑d

j=1
||(un

j − uj)ϕj ||
2 ≤ 2

α

(

C̃

C̃+1

)n
[

F(u0)− 〈T (u), u0〉

−F(u) + 〈T (u), u〉]
(12)

hold for any n ≥ 1, where constant C̃ is given in (28).

Proof. Using (5), (7) and (10), we get

F(un+1)−F(u) + 〈T (u), u− un+1〉+ α
2

∑d
j=1

||(un+1

j − uj)ϕj ||
2

≤ 〈F ′(un+1), un+1 − u〉+ 〈T (u), u− un+1〉
≤

∑m
i=1

〈F ′(un + wn+1

i )−F ′(un+1), θi ∗ (u− un) + (1̄− θi) ∗ w
n+1

i − wn+1

i 〉
−
∑m

i=1
〈T (un), θi ∗ (u− un) + (1̄− θi) ∗ w

n+1

i − wn+1

i 〉+ 〈T (u), u− un+1〉

Above, we have used the fact that θi∗(u−un)+(1̄−θi)∗w
n+1

i ∈ Vi and, in view
of Property 1, un+θi∗(u−un)+(1̄−θi)∗w

n+1

i = (1̄−θi)∗(u
n+wn+1

i )+θi∗u ∈
K and therefore, we can replace vi by θi ∗ (u− un) + (1̄− θi) ∗w

n+1

i in (10).
Consequently, we have

F(un+1)−F(u)− 〈T (u), un+1 − u〉+ α
2

∑d
j=1

||(un+1

j − uj)ϕj ||
2

≤
∑m

i=1
〈F ′(un + wn+1

i )−F ′(un+1), θi ∗ (u− un − wn+1

i )〉
+
∑m

i=1
〈T (u)− T (un), θi ∗ (u− un − wn+1

i )〉

(13)

In view of (2) and (7), we have
∑m

i=1
〈F ′(un + wn+1

i )−F ′(un+1), θi ∗ (u− un − wn+1

i )〉

≤ β
∑m

i=1

∑d
j=1

θij ||((1− θij)w
n+1

ij −
∑m

k=1, k 6=i θkjw
n+1

kj )ϕj ||

·||(uj − un+1

j − (1− θij)w
n+1

ij +
∑m

k=1, k 6=i θkjw
n+1

kj )ϕj ||

≤ β
∑m

i=1

∑d
j=1

θij

(

(1− θij)||w
n+1

ij ϕj ||+
∑m

k=1, k 6=i θkj ||w
n+1

kj ϕj ||
)

·
(

||(uj − un+1

j )ϕj ||+ (1− θij)||w
n+1

ij ϕj ||+
∑m

k=1, k 6=i θkj ||w
n+1

kj ϕj ||
)

≤ β
∑m

i=1

∑d
j=1

θij

[

(1 + 1

2ε1
)
(

(1− θij)||w
n+1

ij ϕj ||

+
∑m

k=1, k 6=i θkj ||w
n+1

kj ϕj ||
)2

+ ε1
2
||(uj − un+1

j )ϕj ||
2

]

≤ 2β(1 + 1

2ε1
)

·
∑m

i=1

∑d
j=1

θij(1− θij)
(

(1− θij)||w
n+1

ij ϕj ||
2 +

∑m
k=1, k 6=i θkj ||w

n+1

kj ϕj ||
2

)

+β ε1
2

∑d
j=1

||(uj − un+1

j )ϕj ||
2 = 2β(1 + 1

2ε1
)
∑m

i=1

∑d
j=1

θij(1− θij)

·(1− 2θij)||w
n+1

ij ϕj ||
2 + 2β(1 + 1

2ε1
)
∑m

i=1

∑d
j=1

θij(1− θij)

·
∑m

k=1
θkj ||w

n+1

kj ϕj ||
2 + β ε1

2

∑d
j=1

||(uj − un+1

j )ϕj ||
2

or
∑m

i=1
〈F ′(un + wn+1

i )− 4β(1

+ 1

2ε1
)
∑m

i=1

∑d
j=1

θij ||w
n+1

ij ϕj ||
2 + β ε1

2

∑d
j=1

||(uj − un+1

j )ϕj ||
2

(14)
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for any ε1 > 0. Also, from (4) and (1), we get
∑m

i=1
〈T (u)− T (un), θi ∗ (u− un − wn+1

i )〉 = 〈T (u)− T (un), u− un

−
∑m

i=1
θi ∗ w

n+1

i 〉 = 〈T (u)− T (un), u− un+1)〉 ≤ γ||u− un|| ||u− un+1||

≤ γ
(

||u− un+1||+ ||
∑d

j=1

∑m
i=1

θijw
n+1

ij ϕj ||
)

||u− un+1||

≤ γCd

(

(1 + ε2
2
)
∑d

j=1
||(uj − un+1

j )ϕj ||
2 + 1

2ε2

∑d
j=1

||
∑m

i=1
θijw

n+1

ij ϕj ||
2

)

i.e., using (7), we have

∑m
i=1

〈T (u)− T (un), θi ∗ (u− un − wn+1

i )〉 ≤ γCd

(

(1 + ε2
2
)

·
∑d

j=1
||(uj − un+1

j )ϕj ||
2 + 1

2ε2

∑d
j=1

∑m
i=1

θij ||w
n+1

ij ϕj ||
2

) (15)

for any ε2 > 0. From (13), (14) and (15), we get

F(un+1)−F(u)− 〈T (u), un+1 − u〉+
(

α
2
− β ε1

2
− γCd(1 +

ε2
2
)
)

·
∑d

j=1
||(un+1

j − uj)ϕj ||
2 ≤

[

4β(1 + 1

2ε1
) + γCd

1

2ε2

]

·
∑m

i=1

∑d
j=1

θij ||w
n+1

ij ϕj ||
2

(16)

for any ε1, ε2 > 0.
Now, by taking vi = (1̄− θi) ∗ w

n+1

i in (10), for i = 1, . . . ,m, we get

∑d
j=1

θij
[

〈F ′((un
j + wn+1

ij )ϕj),−wn+1

ij ϕj〉 − 〈T (un),−wn+1

ij ϕj〉
]

≥ 0 (17)

In view of (7), the convexity of F , (2) and the above equation, we have

F(un+1)−F(un) ≤
∑d

j=1

∑m
i=1

θij [F ((un
j + wn+1

ij )ϕj)− F (un
j ϕj)]

≤
∑d

j=1

∑m
i=1

θij
[

−α
2
||wn+1

ij ||2 − 〈F ′((un
j + wn+1

ij )ϕj),−wn+1

ij ϕj〉
]

=
∑d

j=1

∑m
i=1

θij
[

−α
2
||wn+1

ij ϕj ||
2 − 〈T (un),−wn+1

ij ϕj〉

−〈F ′((un
j + wn+1

ij )ϕj),−wn+1

ij ϕj〉+ 〈T (un),−wn+1

ij ϕj〉
]

≤
∑d

j=1

∑m
i=1

θij
[

−α
2
||wn+1

ij ϕj ||
2 − 〈T (un),−wn+1

ij ϕj〉
]

Consequently, we have

α
2

∑m
i=1

∑d
j=1

θij ||w
n+1

ij ϕj ||
2 ≤ F(un)−F(un+1)

+〈T (u), un+1 − un〉+ 〈T (un)− T (u), un+1 − un〉
(18)

With a proof similar to that of (15), we get

〈T (un)− T (u), un+1 − un〉 ≤ γCd

[

ε3
2

∑d
j=1

||(un+1

j − uj)ϕj ||
2

+(1 + 1

2ε3
)
∑m

i=1

∑d
j=1

θij ||w
n+1

ij ϕj ||
2

] (19)

for any ε3 > 0.
Consequently, from (18) and (19), we get

[

α
2
− γCd(1 +

1

2ε3
)
]

∑m
i=1

∑d
j=1

θij ||w
n+1

ij ϕj ||
2 ≤ F(un)−F(un+1)

+〈T (u), un+1 − un〉+ γCd
ε3
2

∑d
j=1

||(un+1

j − uj)ϕj ||
2

(20)
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for any ε3 > 0. Let us write

C1 = α
2
− γCd(1 +

1

2ε3
) (21)

For values of γ, α and ε3 such that C1 > 0, from (16) and (20), we have

F(un+1)−F(u)− 〈T (u), un+1 − u〉+ C2

∑d
j=1

||(un+1

j − uj)ϕj ||
2

≤ C̃
[

F(un)−F(un+1) + 〈T (u), un+1 − un〉
] (22)

where
C̃ = 1

C1

(

4β(1 + 1

2ε1
) + γCd

1

2ε2

)

(23)

and
C2 = α

2
− β ε1

2
− γCd(1 +

ε2
2
)− γCd

ε3
2
C̃ (24)

In view of (22), assuming that C2 ≥ 0, we easily get (11). Estimation (12)
follows from (11) and (3) and (8). Indeed, we have

F(un)−F(u)− 〈T (u), un − u〉 =
∑d

j=1
F (un

j ϕj)−
∑d

j=1
F (ujϕj)

−〈T (u), un − u〉 ≥
∑d

j=1
〈F ′(ujϕj), (u

n
j − uj)ϕj〉

+α
2

∑d
j=1

||(un
j − uj)ϕj ||

2 − 〈T (u), un − u〉 = 〈F ′(u), un − u〉

−〈T (u), un − u〉+ α
2

∑d
j=1

||(un
j − uj)ϕj ||

2 ≥ α
2

∑d
j=1

||(un
j − uj)ϕj ||

2

(25)

Using (23), (24) and (21), condition C2 ≥ 0 can be written as C2 = A −

4Bβ− β
2
(ε1+4 B

ε1
)− γCd

2
(ε2+

B
ε2
) ≥ 0 with A = α

2
− γCd and B =

γCd
ε3
2

A−γCd
1

2ε3

The maximum value of C2 is obtained for

ε1 = 2γCd

A
ε2 = ε3 = γCd

A
(26)

Consequently, for these values, we should have

C2max = α3

A2

[

1

2
( 1
2
− γCd

α
)( 1

2
− 2γCd

α
)− 2β

α
γCd

α
( 1
2
+ γCd

α
)
]

≥ 0, or

Cd
γ
α
≤ 1

√

16
β2

α2
+40

β

α
+1+4

β

α
+3

= ϑmax (27)

By a simple calculus, we see that if (27) holds, then condition C1 > 0 is
satisfied for the value of ε3 in (26). Finally, by replacing ε1, ε2 and ε3 in (23)
with their values in (26), we get

C̃ = 1 +
2β

α

6γCd

α
+ 1

γCd

α

(

1− 2γCd

α

) ≥ 1 +
2β

α

6ϑmax + 1

ϑmax (1− 2ϑmax)
(28)

It should be noted that the convergence condition and the convergence
rate are independent of the number m of subspaces.
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3 Restricted additive Schwarz method in a finite

element space

Let Ω be an open bounded domain in RN , N = 1, 2 or 3, and we consider
a simplicial regular mesh partition Th. We assume that domain Ω is decom-
posed in m subdomains, Ω =

⋃m
i=1

Ωi, and that Th supplies a mesh partition
for each subdomain Ωi, i = 1, . . . ,m. We associate to the mesh partition
Th the piecewise linear finite element space Vh ⊂ H1

0 (Ω) and to the domain
decomposition the subspaces V i

h ⊂ H1
0 (Ωi). We assume that the convex set

Kh ⊂ Vh has the following

Property 2. If v, w ∈ Kh, and if θ ∈ Vh, 0 ≤ θ ≤ 1, then Lh(θv + (1− θ)w) ∈
Kh.

Above and also in the following, we denote by Lh the P1-Lagrangian interpo-
lation operator which uses the function values at the nodes of the mesh Th.
It is easy to see that the convex sets of two-obstacle type have Property 2.

Now, we estimate Cd in (1). Given a triangle τ ∈ Th, let Jτ = {1 ≤ j ≤

d : τ ⊂ supp ϕj}. Then, for a v =
∑d

j=1
vjϕj ∈ Vh, and using the norm of

H1(Ω) we have

||v||2 =
∑

τ ||v||
2
τ =

∑

τ

(

∑

j∈Jτ
vjϕj ,

∑

j∈Jτ
vjϕj

)

τ
≤

∑

τ |Jτ |
∑

j∈Jτ
||vjϕj ||

2
τ ≤

∑

τ |Jτ |
∑d

j=1
||vjϕj ||

2
τ ≤ Cd

∑d
j=1

∑

τ ||vjϕj ||
2
τ

= Cd

∑d
j=1

||vjϕj ||
2

where we have denoted Cd = maxτ∈Th
|Jτ |. Since Th are simplicial meshes,

then maxτ |Jτ | is independent of the mesh parameters when h → 0. Therefore,
we can consider that Cd is independent of the domain or mesh parameters.

Finally, it is evident that ∗ in (6) can be written as u ∗ v = Lh(uv) for
any u, v ∈ Vh. Moreover, if {θ1, . . . , θm} ⊂ Vh is a unity partition associ-
ated with the domain decomposition, then (7) holds for any v ∈ Vh. Besides
that, in view of Property 2 of the convex set Kh, this convex set also has
Property 1. In the matricial description of the method, some restriction op-
erators, R0

1, . . . , R
0
m, are used instead of our unity partition {θ1, . . . , θm}. If

we associate to a v =
∑d

j=1
vjϕj ∈ Vh the vector (v1, . . . , vd) then θi ∗ v is

associated with R0
i (v1, . . . , vd). In general, these restriction operators supply

a minimum overlap i.e., with our notations, the components θij of the func-
tions θi =

∑m
j=0

θijϕj satisfy either θij = 1 or θij = 0. A PDEs definition of
the method using a unity partition associated to the domain decomposition
and which is very close to that introduced by us is given in Dolean et al.
[2015].

From (27), (28) and the above comments we can conclude that the con-
vergence condition and convergence rate of Algorithm 1 are independent of
the mesh parameters and of both the number of subdomains and the param-
eters of the domain decomposition, but the convergence condition is more
restrictive than the existence and uniqueness condition of the solution given
in Proposition 1.
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Does SHEM for Additive Schwarz
work better than predicted by its
condition number estimate ?

Petter E. Bjørstad2, Martin J. Gander1, Atle Loneland2, and Talal
Rahman3

1 Introduction and Model Problem

The SHEM (Spectral Harmonically Enriched Multiscale) coarse space is a
new coarse space for arbitrary overlapping or non-overlapping domain de-
composition methods. In contrast to recent new coarse spaces like GenEO
[13] or the one in [12] that improve certain Rayleigh quotients in the con-
vergence analysis of the underlying domain decomposition method, SHEM is
based on understanding the stationary iterates of the domain decomposition
method itself (see [6] for details), and can thus be constructed and used also
for domain decomposition methods which do not (yet) have such a conver-
gence analysis, like for example Restricted Additive Schwarz (RAS) [7], or
optimized Schwarz [4]. SHEM is based on the approximation of an optimal
coarse space which was discovered in [3], and further studied in [5, 4, 7], see
[6] for a general introduction, and also [9] for the specific case of Additive
Schwarz (AS). SHEM can use spectral information, as its name indicates,
but can also be constructed avoiding eigenvalue problems, for examples, see
[8]. If a convergence analysis for the domain decomposition method is avail-
able, SHEM can improve the corresponding convergence estimate, see [8] for
a condition number estimate when SHEM is used with AS. We are interested
here to test numerically if in this case

1. the hypothesis of small overlap (one or two mesh sizes) in the proof in [9]
is necessary for the condition number estimate to hold in practice;

2. the quadratic growth in the factor H/h in the condition number estimate
from [9] is really present when the method is used numerically.
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We consider as our model problem the following variational formulation of a
second order elliptic boundary value problem with Dirichlet boundary con-
ditions: find u ∈ H1

0 (Ω) such that

a(u, v) =

∫
Ω

α(x)∇u · ∇v dx =

∫
Ω

fv dx ∀v ∈ H1
0 (Ω), (1)

where Ω is a bounded convex domain in R2, f ∈ L2(Ω) and α ∈ L∞(Ω) such
that α ≥ α0 for some positive constant α0. Discretizing this problem using P1
finite elements from the finite element space Vh with associated mesh Th(Ω)
leads to the linear system

Au = f . (2)

Let Ω be partitioned into non-overlapping open, connected Lipschitz poly-
topes {Ωi : i = 1, . . . , N} such that Ω =

∪N
i=1Ωi, where each Ωi is assumed

to consist of elements from Th(Ω). We assume that this partitioning is shape-
regular. By extending each subdomain Ωi with a distance δ in each direction,
we create a further decomposition of Ω into overlapping subdomains {Ω′

i}Ni=1.
As usual, we assume that each point x ∈ Ω is contained in at most N0 sub-
domains (finite covering). The layer of elements in Ωi touching the boundary
∂Ωi is denoted by Ωh

i and we assume that the triangles corresponding to this
layer are shape regular with minimum diameter hi := min

K∈Th(Ωh
i )
hK , where hK

is the diameter of the triangle K. The interfaces between two subdomains,
Ωi and Ωj , are defined as Γ ij := Ωi ∩ Ωj . The sets of vertices of elements
in Th(Ω) (nodal points) belonging to Ω, Ωi, ∂Ω, ∂Ωi and Γij are denoted
by Ωh, Ωih, ∂Ωh, ∂Ωih and Γijh. With each interface we define the space of
finite element functions restricted to Γij and zero on ∂Γij as V 0

h (Γij).
We define the restriction of the bilinear form a(·, ·) to an interface Γij

shared by two subdomains as

aΓij
(u, v) :=

(
α|Γij

(x)Dτu,Dτv
)
L2(Γij)

,

where α|Γij
(x) := lim

y∈Ωi→x
α(y) and Dτ denotes the tangent derivative with

respect to Γij . In order to obtain continuous basis functions across subdomain
interfaces, we define a second bilinear form on each interface Γij ,

āΓij
(u, v) := (αij(x)Dτu,Dτv)L2(Γij)

,

where αij is taken as the maximum of α|Γij
and α|Γji

.

Given a partition of unity {χi}Ni=1 subordinate to the overlapping decom-
position defined above and corresponding restriction matrices Ri, as well as
a suitable coarse space V0 with restriction operator R0, the two-level additive
Schwarz method may be defined for i = 0, . . . N as
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M−1
AS,2 =

N∑
i=0

RT
i A

−1
i Ri where Ai := RiAR

T
i . (3)

Classically, coarse spaces for Additive Schwarz methods consist of finite ele-
ments on a coarser triangulation TH of Ω. This type of choice for the coarse
space, however, is not robust with respect to large variations in the coefficient
α.

2 The SHEM Coarse Space

SHEM is based on enriching a particular underlying coarse space, which in
the case of high contrast problems is the multiscale finite element coarse
space, see [1, 10]. We use the variant that generates the multiscale elements
by solving lower dimensional problems along the edges, and then extend-
ing the result harmonically into the interior of the element. In the case of
Laplace’s equation on a rectangular domain decomposition, this underlying
coarse space would just be Q1 finite elements on the subdomains, see [5]. Note
that SHEM is also interesting in this case, since it systematically improves
the overall convergence of the underlying domain decomposition method in
an optimized way, see [9]. We choose here for SHEM a harmonic enrichment
based on solutions of local eigenvalue problems along the interfaces between
subdomains1:

Definition 1 (Generalized Interface Eigenvalue Problem). For each
interface Γij , we define the generalized eigenvalue problem: find ψ and λ,
such that

āΓij (ψ, v) := λbΓij (ψ, v) ∀v ∈ V 0
h (Γij), (4)

where bΓij (ψ, v) := h−1
i

∑
k∈Γijh

βkψkvk and βk =
∑

K∈Th(Ω)
k∈dof(K)

αK .

We will test the following two types of SHEM coarse spaces:

• SHEMm, where m is an integer: here we choose the m eigenfunctions
associated with the smallest m eigenvalues of (4), and extend each of them
harmonically into the two subdomains Ωi and Ωj adjacent to the interface
Γij with zero Dirichlet boundary conditions on the remaining part of the
subdomain boundaries. These functions are then added to the underlying
multiscale coarse space to form SHEMm.

• SHEMτ , where τ is a given tolerance: here we choose adaptively on each in-
terface Γij to include all eigenfunctions associates with eigenvalues smaller

1 Any other Sturm Liuville problem could be used as well to get a different variant of
SHEM, for example more expensive Schur complements corresponding to the Dirichlet to

Neumann maps [11], or one could construct even cheaper interface basis functions without

eigenvalue problem, see [8].
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than τ , extend them harmonically like above and add them to the under-
lying multiscale coarse space to form SHEMτ .

Theorem 1 (Condition Number Estimate [8]). If the overlap is one or
two mesh sizes, then the condition number of the two level Schwarz operator
(3) with the SHEMm coarse space can be bounded by

κ(M−1
AS,2A) ⪯ C

2
0 (N0 + 1), (5)

where C2
0 ≃

(
1 + 1

λm+1

)
and λm+1 := min

i
min

Γij⊂∂Ωi

λijmij+1.

The restriction on the overlap size is necessary in the proof based on the
abstract Schwarz framework. The convergence estimate in Theorem 1 also
indicates a quadratic dependence of the condition number on the mesh ratio
H/h, even for the case without enrichment, because the inverse of the smallest
eigenvalues of (4) have a quadratic dependence on the ratio H/h. In the case
of Laplace’s equation and without enrichment, such that our coarse space
is just the normal Q1 coarse space, standard domain decomposition theory
says that the condition number of additive Schwarz should depend linearly
on the mesh ratio H/h. We investigate now numerically if these restrictions
are really also properties of SHEMm, or just artefacts in the analysis.

3 Numerical Investigation of the SHEM coarse space

We solve problem (1) with f = 1 on a unit square domain Ω = (0, 1)2, and the
coefficient α(x) represents various (possibly discontinuous) distributions. We
use AS with SHEMm as a preconditioner for the conjugate gradient method,
and stop the iteration when the l2 norm of the residual is reduced by a factor
of 10−6. If not stated otherwise, the coefficient α(x) is equal to 1 for all the
numerical examples, except in the areas marked with red where the value of
α(x) is equal to α̂. All the experiments were carried out using Matlab 9.0 on
a serial workstation. For the interface eigenvalue problems, we have in our
implementation exploited the fact that we are able to extract exactly the 1D
stiffness and mass matrix corresponding to the bilinear forms in Definition 1
algebraically from the global problem.

3.1 Is small overlap necessary for SHEM?

We start by studying the dependence on the overlap for the contrast func-
tion α(x) shown in Figure 1. For the case of overlap δ = 2h and δ = 8h,
we show the iteration counts and condition number estimates in Table 1 for
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Fig. 1 Distribution of α for a geometry with h = 1
128

, H = 16h. The regions marked with

red are where α has a large value α̂.

the classical multiscale coarse space (MS), SHEMm and the adaptive variant
SHEMτ=6e−3. We see that even though the theory only addressed small over-
lap, SHEMm works very well also with larger overlap, and overlap improves
the performance like usual. We even see that independence of the contrast
arrives for the large overlap already with two enrichment functions instead of
three. This is because the middle of the three channels crossing the interfaces
in Figure 1 is shorter, and for the large overlap case included in the overlap,
and thus not a convergence problem any more for the underlying AS; there
are therefore only two channels left the coarse space has to treat, see [6] pre-
sented at this conference. In the current adaptive variant SHEMτ=6e−3 it is
not clear how to take into account the overlap, and thus the same number of

MS SHEM1 SHEM2 SHEM3 SHEM4 SHEMτ=6e−3

dim. 49 161 273 385 497

α̂ #it. (κ) #it. (κ) #it. (κ) #it. (κ) #it. (κ) #it. (κ) dim.

100 21 (1.29e1) 16 (7.45e0) 15 (5.99e0) 13 (5.19e0) 13 (5.15e0) 21 (1.29e1) 49
102 122 (3.74e2) 70 (1.17e2) 47 (6.70e1) 19 (6.77e0) 16 (5.66e0) 25 (1.10e1) 233

104 367 (3.64e4) 248 (1.10e4) 187 (6.22e3) 19 (6.78e0) 17 (5.73e0) 25 (1.09e1) 233

106 610 (3.64e6) 423 (1.10e6) 290 (6.22e5) 19 (6.78e0) 17 (5.73e0) 25 (1.09e1) 233

100 16 (5.57e0) 15 (4,88e0) 15 (4.82e0) 15 (4.94e0) 15 (4.95e0) 16 (5.47e0) 49
102 47 (4.08e1) 28 (1.53e1) 19 (5.58e0) 18 (5.02e0) 18 (4.99e0) 21 (6.26e0) 233

104 145 (3.48e3) 55 (1.08e3) 20 (6.03e0) 18 (5.06e0) 18 (4.99e0) 21 (6.55e0) 233
106 241 (3.48e5) 78 (1.08e5) 20 (6.03e0) 18 (5.06e0) 18 (4.99e0) 21 (6.56e0) 233

Table 1 Top half: overlap δ = 2h. Bottom half: overlap δ = 8h. Iteration count and con-
dition number estimate for the channel distribution in Figure 1 for the classical multiscale

coarse space, SHEMm, m = 1, 2, 3, 4 and SHEMτ=6e−3 for h = 1
128

, H = 16h. Here ’dim’

denotes the dimension of the coarse space.
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Fig. 2 Distribution of α for a geometry with h = 1
128

, H = 16h. The regions marked with
red are where α has a large value α̂.

enrichment functions was chosen. Larger overlap can however also be taken
into account by a different construction of SHEM for AS, see [9].

We next perform the same test also on the irregular high contrast structure
shown in Figure 2. The corresponding results in Table 2 show that also in
this case SHEM works very well with larger overlap, and that difficulties can
be either remedied by increasing the overlap, or enriching the coarse space:
SHEM with one enrichment function is enough to get robust convergence with
large overlap, but with small overlap, SHEM needs 2-3 enrichment functions.

MS SHEM1 SHEM2 SHEM3 SHEM4 SHEMτ=6e−3

dim. 49 161 273 385 497

α̂ #it. (κ) #it. (κ) #it. (κ) #it. (κ) #it. (κ) #it. (κ) dim.

100 21 (1.29e1) 16 (7.45e0) 15 (5.99e0) 13 (5.19e0) 13 (5.15e0) 21 (1.29e1) 49
102 72 (1.09e2) 53 (6.49e1) 27 (1.52e1) 22 (9.47e0) 20 (6.45e0) 36 (2.14e1) 165

104 288 (9.43e3) 98 (5.46e3) 29 (1.60e1) 23 (9.60e0) 21 (6.54e0) 38 (2.44e1) 169
106 524 (9.41e6) 156 (5.49e5) 32 (1.60e1) 24 (9.59e0) 22 (6.28e0) 39 (2.44e1) 169

100 16 (5.57e0) 15 (4,88e0) 15 (4.82e0) 15 (4.94e0) 15 (4.95e0) 16 (5.47e0) 49
102 29 (1.31e1) 22 (7.75e0) 19 (5.54e0) 18 (5.10e0) 18 (5.05e0) 22 (7.89e0) 165

104 72 (7.56e2) 28 (1.36e1) 20 (5.68e0) 19 (5.12e0) 19 (5.07e0) 25 (9.97e0) 169
106 121 (7.50e4) 32 (1.43e2) 21 (5.41e0) 20 (5.05e0) 20 (5.02e0) 26 (1.01e1) 169

Table 2 Top half: overlap δ = 2h. Bottom half: overlap δ = 8h. Iteration count and

condition number estimate for the distribution in Figure 2 for the classical multiscale

coarse space, SHEMm, m = 1, 2, 3, 4 and SHEMτ=6e−3 for h = 1
128

, H = 16h. Here ’dim’
denotes the dimension of the coarse space.
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MS SHEM1 SHEM2 SHEM3 SHEM4
H
h

#it. (κ) #it. (κ) #it. (κ) #it. (κ) #it. (κ)

8 18 (7.67e0) 14 (5.36e0) 14 (5.02e1) 14 (5.07e0) 13 (5.12e0)

16 21 (1.29e1) 16 (7.45e0) 15 (5.99e0) 13 (5.19e0) 13 (5.15e0)

32 29 (2.37e1) 20 (1.22e1) 18 (8.97e5) 15 (7.52e0) 14 (6.55e0)
64 41 (4.52e1) 26 (2.23e1) 22 (1.56e1) 19 (1.32e1) 18 (1.03e1)

128 58 (8.85e1) 36 (4.25e1) 30 (2.88e1) 25 (2.23e1) 23 (1.82e1)
256 80 (1.75e2) 50 (8.83e1) 41 (5.57e1) 34 (4.24e1) 31 (3.42e1)

16 367 (3.64e4) 248 (1.10e4) 187 (6.78e3) 19 (6.78e0) 17 (5.73e0)

32 525 (7.47e4) 326 (2.32e4) 252 (1.32e4) 22 (9.33e0) 19 (7.74e0)
64 740 (1.51e5) 458 (4.76e4) 329 (2.72e4) 28 (1.70e1) 22 (1.25e1)

128 1062 (3.05e5) 665 (9.62e4) 457 (5.52e4) 38 (3.15e1) 29 (2.25e1)
256 1522 (6.12e5)∗ 980 (1.94e5)∗ 679 (1.11e5)∗ 52 (6.06e1) 41 (4.28e1)

16 288 (9.43e3) 98 (5.46e3) 29 (1.60e1) 23 (9.60e0) 21 (6.54e0)
32 443 (1.97e4) 129 (1.14e4) 38 (2.75e1) 28 (1.53e0) 23 (8.00e0)
64 612 (4.03e4) 170 (2.31e4) 51 (5.07e1) 36 (2.73e1) 29 (1.27e1)

128 856 (8.17e4) 232 (4.65e4) 70 (9.82e1) 48 (5.20e1) 38 (2.26e1)
256 1207 (1.64e5) 315 (9.33e4) 98 (1.94e2) 66 (1.02e2) 52 (4.30e1)

* Stagnation.

Table 3 Top: α = 1. Middle: Distribution of α from Figure 1 with α̂ = 104. Bottom:
Distribution of α from Figure 2 with α̂ = 104. Iteration count and condition number
estimate for the classical multiscale coarse space and SHEMm, m = 1, 2, 3, 4, solving

Problem 1 for decreasing h, H = 1
8
and overlap δ = 2h.

3.2 What is the condition number growth in H/h?

We now test numerically the dependence on the mesh ratio H/h for the case
where α = 1 and for the high contrast cases given in Figure 1 and 2 with
α̂ = 104. The iteration counts and condition number estimates are given
in Table 3 for decreasing h while the subdomain diameter is kept fixed at
H = 1/8. We clearly see that the convergence rate is linearly dependent
on the mesh ratio H/h, for both the constant coefficient case and the high
contrast cases. This confirms that the restrictions in the analysis in [9] are
not a property of SHEM itself, but rather restrictions of the analysis. We also
see that for very high contrast, SHEM can even fix stagnation when using
the appropriate amount of enrichment.

4 Conclusions

The numerical experiments we presented indicate that the first convergence
estimate for SHEM in Theorem 1 might not need the technical assumption
of small overlap, and also that the convergence bound with the square de-
pendence on the mesh ratio H/h is too pessimistic. Another important ob-
servation is that the dimension of the coarse space is not larger than the
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dimension of the largest subdomain in our experiments, and thus the coarse
space solve remains less expensive than the subdomain solves. Based on this
numerical investigation, we are currently carefully studying the technical es-
timates in the proof of Theorem 1 to see under which conditions on the high
contrast parameter α the overlap restriction and the quadratic dependence
on the mesh ratio in the condition number estimate can be removed. We are
also working on the extension to three dimensional problems, see [2], and on
a parallel implementation.
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Two-level preconditioners for the
Helmholtz equation

Marcella Bonazzoli1, Victorita Dolean1,2, Ivan G. Graham3, Euan A.
Spence3, and Pierre-Henri Tournier4

1 Introduction

Solving the Helmholtz equation −∆u − k2u = f is a challenging task be-
cause of its indefinite nature and its highly oscillatory solution when the
wavenumber k is high. Although there have been different attempts to solve
it efficiently, we believe that there is no established and robust precondi-
tioner, whose behavior is independent of k, for general decompositions into
subdomains. In Conen et al. [2014] a two-level preconditioner was intro-
duced, where the coarse correction involves local eigenproblems of Dirichlet-
to-Neumann (DtN) maps. This method proved to be very robust with re-
spect to heterogeneous coefficients compared to the reference preconditioner
based on plane waves, and its construction is completely automatic without
the need for parameter tuning. Another method was developed in Graham
et al. [2017b,a], where two-level domain decomposition approximations of the
Helmholtz equation with absorption −∆u− (k2 +iε)u = f were used as pre-
conditioners for the pure Helmholtz equation without absorption; there the
coarse correction is based on a coarse mesh with diameter constrained by k.
Our purpose is to compare numerically the performance of the latter with
the two-level method based on DtN maps, both in two and three dimensions.

2 Definition of the problem

Consider the interior Helmholtz problem of the following form: let Ω ⊂ Rd,
d = 2, 3, be a polyhedral, bounded domain; find u : Ω → C such that

1 Université Côte d’Azur, CNRS, LJAD, France, e-mail: marcella.bonazzoli@unice.fr
2 University of Strathclyde, Glasgow, UK, e-mail: Victorita.Dolean@strath.ac.uk
3 University of Bath, UK, e-mail: I.G.Graham@bath.ac.uk,E.A.Spence@bath.ac.uk
4 UPMC Univ Paris 06, LJLL, Paris, France, e-mail: tournier@ljll.upmc.fr
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−∆u− (k2 + iε)u = f in Ω, (1a)

∂u

∂n
− iηu = 0 on Γ = ∂Ω. (1b)

The wavenumber k is given by k(x) = ω/c(x), where ω is the angular fre-
quency and c is the speed of propagation that might depend on x ∈ Ω; we
take η = sign(ε)k if ε 6= 0, η = k if ε = 0,R2 as Robin boundary condition
parameter. We are interested in solving the problem in the case ε = 0, using ε
as a parameter when building the preconditioner. The variational formulation
of Problem (1) is: find u ∈ V = H1(Ω) such that aε(u, v) = F (v), ∀v ∈ V,
where aε(., .) : V × V → C and F : V → C are defined by

aε(u, v) =

∫
Ω

(
∇u · ∇v − (k2 + iε)uv

)
−
∫
Γ

iηuv, F (v) =

∫
Ω

fv.

Note that if ε 6= 0 and η = sign(ε)k, aε is coercive (see §2 in Graham et al.
[2017b]). We consider a discretization of the variational problem using piece-
wise linear finite elements on a uniform simplicial mesh Th of Ω. Denoting
by Vh ⊂ V the corresponding finite element space and by {φk}nk=1 its basis
functions, n := dim(Vh), the discretized problem reads: find uh ∈ Vh such
that aε(uh, vh) = F (vh), ∀vh ∈ Vh, that is, in matrix form,

Aεu = f , (2)

where the coefficients of the matrix Aε ∈ Cn×n and the right-hand side
f ∈ Cn are given by (Aε)k,l = a(φl, φk) and (f)k = F (φk). The matrix Aε is
complex, symmetric (but not Hermitian), and indefinite if ε = 0.

3 Two-level domain decomposition preconditioners

In the following we will define the domain decomposition preconditioners for
the linear system A0u = f resulting from the discretization of the Helmholtz
problem without absorption (ε = 0). These are two-level Optimized Re-
stricted Additive Schwarz (ORAS) algorithms, where “optimized” refers to
the use of Robin boundary conditions at the interface between subdomains.
In the terminology of Graham et al. [2017b], the prefix O is replaced with
Imp, which stands for impedance (i.e. Robin) boundary conditions.

First of all, consider a decomposition of the domain Ω into a set of over-
lapping subdomains {Ωj}Nsub

j=1 , with each subdomain consisting of a union of

elements of the mesh Th. Let Vh(Ωj) =
{
v|Ωj : v ∈ Vh

}
, 1 ≤ j ≤ Nsub, denote

the space of functions in Vh restricted to the subdomain Ωj . Let nj be the di-
mension of Vh(Ωj), 1 ≤ j ≤ Nsub.Let nj := # dof (Ωj), 1 ≤ j ≤ Nsub, where
dof(D) :=

{
k : supp (φk) ⊂ D

}
represents the degrees of freedom (dofs) of

Vh(Ωj).
R1 For 1 ≤ j ≤ Nsub, we define a restriction operator Rj : Vh →



Two-level preconditioners for the Helmholtz equation 3

Vh(Ωj) by injection, i.e. for u ∈ Vh we set (Rju) (xi) = u(xi) for all xi ∈ Ωj .
We denote by Rj the corresponding Boolean matrix in Rnj×n that maps coef-
ficient vectors of functions in Vh to coefficient vectors of functions in Vh(Ωj).
Let Dj ∈ Rnj×nj be a diagonal matrix corresponding to a partition of unity

in the sense that
∑Nsub

i=1 R̃Ti Ri = I, where R̃j := DjRj . Then the one-level
ORAS preconditioner (which is also the one-level ImpRAS ImpHRASR2 of
Graham et al. [2017b]) reads

M−11,ε :=

Nsub∑
j=1

R̃Tj A
−1
j,εRj . (3)

We define the matrices Aj,ε in (3) to be the matrices stemming from the
discretization of the following local Robin problems with absorption

−∆uj − (k2 + iε)uj = f in Ωj ,

∂uj
∂nj
− iηuj = 0 on ∂Ωj .

In order to achieve weak dependence on the wavenumber k and number of
subdomains, we add a coarse component to (3). The two-level preconditioner
can be written in a generic way as follows

M−12,ε = QM−11,εP + ZE−1Z∗, (4)

where ∗ denotes the conjugate transpose, M−11,ε is the one-level preconditioner
(3), Z is a rectangular matrix with full column rank, E = Z∗AεZ is the
so-called coarse grid matrix, Ξ = ZE−1Z∗ is the so-called coarse grid correc-
tion matrix. If P = Q = I this is an additive two-level preconditioner (which
would be called two-level ImpRAS in Graham et al. [2017b]). If P = I−AεΞ
and Q = I − ΞAε, this is a hybrid two-level preconditioner (ImpHRAS in
Graham et al. [2017b]), also called the Balancing Neumann Neumann (BNN)
preconditioner. Preconditioner (4) is characterized by the choice of Z, whose
columns span the coarse space (CS). We will consider the following two cases:

The grid coarse space The most natural coarse space would be one
based on a coarser mesh, we subsequently call it “grid coarse space”. Let
us consider THcoarse

a simplicial mesh of Ω with mesh diameter Hcoarse and
VHcoarse ⊂ V the corresponding finite element space. Let I0 : VHcoarse → Vh be
the nodal interpolation operator and define Z as the corresponding matrix.
Then Let R0 : Vh → VHcoarse

be the nodal interpolation operator and R0 the
corresponding matrix. Define Z = RT0 , thenR2 in this case E = Z∗AεZ is re-
ally the stiffness matrix of the problem (with absorption) discretized on the
coarse mesh. Related preconditioners without absorption are used in Kimn
and Sarkis [2007].
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The DtN coarse space This coarse space (see Conen et al. [2014]) is based
on local Dirichlet-to-Neumann (DtN) eigenproblems on the subdomain inter-
faces. For a subdomain Ωi, first of all consider a(i) : H1(Ωi)×H1(Ωi)→ R

a(i)(v, w) =

∫
Ωi

(
∇v · ∇w − (k2 + iε)vw

)
−
∫
∂Ωi∩∂Ω

iηuv.

Let (A(i))kl = a(i) (φk, φl), and let I and Γi be the sets of indices corre-
sponding, resp., to the interior and boundary dofs on Ωi, with nI and nΓi
their cardinalities. With the usual block notation, the subscripts I and Γi
for the matrices A and A(i) denote the entries of these matrices associated
with the respective dofs. Let MΓi =

(∫
Γi
φkφl

)
k,l∈Γi

be the mass matrix on

the interface Γi = ∂Ωi \ ∂Ω of subdomain Ωi. We need to solve the following
eigenproblem: find (u, λ) ∈ CnΓi × C, s.t.

(A
(i)
ΓiΓi
−AΓiIA−1II AIΓi)u = λMΓiu. (5)

Now, the matrix Z of the DtN coarse space is a rectangular, block-diagonal
matrix with blocks Wi, associated with the subdomain Ωi, 1 ≤ i ≤ Nsub,
given by Algorithm 3.1. If mi is the number of eigenvectors selected by the
automatic criterion in Line 2 of Algorithm 3.1, the block Wi has dimensions
ni×mi, and the matrix Z has dimensions n×

∑Nsub

j=1 mi. Due to the overlap
in the decomposition, the blocks may share some rows inside the matrix Z.

Algorithm 3.1 Construction of the block Wi of the DtN CS matrix Z

1: Solve the discrete DtN eigenproblem (5) on subdomain Ωi for the eigenpairs (λj ,g
j
i ).

2: Choose the mi eigenvectors gji ∈ CnΓi such that <(λj) < k, 1 ≤ j ≤ mi.
3: for j = 1 to mi do

4: Compute the discrete Helmholtz extension uji ∈ Cni to Ωi of gji as uji =

[−A−1
II AIΓig

j
i , gji ]

T .

5: end for
6: Define the matrix Wi ∈ Cni×mi as Wi =

(
Diu

1
i , . . . , Diu

mi
i

)
.

4 Numerical experiments

We solve (2) with ε = 0 on the unit square/cube, with a uniform simplicial
mesh of diameter h ∼ k−3/2, which is believed to remove the pollution effect.
The right-hand side is given by f = − exp(−100((x− 0.5)2 + (y − 0.5)2)) for
d = 2, f = − exp(−400((x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2)) for d = 3.

We use GMRES with right preconditioning (with a tolerance τ = 10−6),
starting with a random initial guess, which ensures, unlike a zero initial
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guess, that all frequencies are present in the error;R1 the stopping criterion
is based on the relative residual. We consider a regular decomposition into
subdomains (squares/cubes), the overlap for each subdomain is of size O(2h)
in all directions and the two-level preconditioner (4) is used in the hybrid
way. All the computations are done in the open source language FreeFem++
(http://www.freefem.org/ff++/). The 3d code is parallelized and run on
the TGCC Curie supercomputer. We assign each subdomain to one proces-
sor. So in our experiments the number of processors increases if the number
of subdomains increases. To apply the preconditioner, the local problems in
each subdomain (with matrices Aj,ε in (3)) and the coarse space problem
(with matrix E in (4)) are solved with a direct solver.

As in Graham et al. [2017b,a], in the experiments we take the subdo-
main diameter Hsub and the coarse mesh diameter Hcoarse constrained by k:
Hsub ∼ k−α and Hcoarse ∼ k−α

′
, for some choices of 0 < α,α′ <= 1 detailed

in the following; if not differently specified, we take α = α′, which is the set-
ting of all numerical experiments in Graham et al. [2017b]. Note that Hcoarse

does not appear as a parameter in the DtN coarse space. We denote by nCS

the size of the coarse space. For the grid coarse space nCS = (1/Hcoarse +1)d,
the number of dofs for the nodal linear finite elements in the unit square/cube.

For the DtN coarse space nCS =
∑Nsub

j=1 mi, the total number of computed
eigenvectors for all the subdomains. While we solve the pure Helmholtz prob-
lem without absorption, both the one-level preconditioner (3) and the two-
level preconditioner (4) are built from problems which can have non zero
absorption given by εprec = kβ . In the experiments we put β = 1 or β = 2.

In the following tables we compare the one-level preconditioner, the two-
level preconditioners with the grid coarse space and with the DtN coarse
space in terms of number of iterations of GMRES and size of the coarse
space (nCS), for different values of the wavenumber k and of the parameters
α, β. We also report the number of subdomains Nsub, which is controlled by
k and α as mentioned above. Since h ∼ k−3/2, the dimension n of the linear
system matrix is of order k3d/2; for 3d experiments we report n explicitly.
Tables 1, 2 concern the 2d problem, Table 3 the 3d problem.

In Table 1, we let the DtN coarse space size be determined by the au-
tomatic choice criterion in Line 2 of Algorithm 3.1 (studied in Conen et al.
[2014]) and the grid coarse space size by Hcoarse ∼ k−α. We see that the DtN
coarse space is much larger than the grid coarse space and gives fewer iter-
ations. The preconditioners with absorption εprec = k2 perform much worse
than those with absorption εprec = k independently of nCS. For εprec = k,
when α = 1 the number of iterations grows as k0.9, respectively k1.1, for
the grid coarse space, respectively DtN coarse space (excluding the first two
values for k small where the asymptotic behaviour is not reached yet) the
number of iterations grows mildly with the wavenumber k for both coarse
spaces (but at the cost of an increasing coarse space size),R2 while the one-
level preconditioner performs poorly (for k = 80 it needs more than 500
iterations to converge)R2. When α < 1, i.e. for coarser coarse meshes, the
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β = 1

α = 0.6

k Nsub 1-level grid CS nCS DtN CS nCS

10 9 22 19 16 11 39
20 36 48 46 49 26 204

40 81 78 98 100 37 531

60 121 109 114 144 43 1037
80 169 139 138 196 93 1588

α = 0.8

k Nsub 1-level grid CS nCS DtN CS nCS

10 36 35 19 49 10 122

20 100 71 35 121 13 394
40 361 158 88 400 22 1440
60 676 230 187 729 39 2700

80 1089 304 331 1156 68 4352

α = 1

k Nsub 1-level grid CS nCS DtN CS nCS

10 100 65 26 121 11 324

20 400 122 26 441 14 1120

40 1600 286 33 1681 20 4640
60 3600 445 45 3721 29 10560
80 6400 >500 62 6561 44 18880

β = 2

α = 0.6

1-level grid CS nCS DtN CS nCS

28 27 16 23 40
67 56 49 40 220

121 114 100 72 578

169 165 144 109 920
223 216 196 126 1824

α = 0.8

1-level grid CS nCS DtN CS nCS

39 27 49 28 86

83 51 121 41 362
182 95 400 71 1370
268 150 729 103 2698

355 214 1156 138 4350

α = 1

1-level grid CS nCS DtN CS nCS

57 30 121 23 324

130 49 441 42 1120

296 80 1681 72 4640
455 112 3721 101 10560
>500 149 6561 134 18880

Table 1: (d = 2) Number of iterations (and coarse space size nCS) for the one-
level preconditioner and the two-level preconditioners with the grid coarse
space/DtN coarse space, with Hsub = Hcoarse ∼ k−α, εprec = kβ .

growth with k is higher, and for α = 0.6 the two-level preconditioner is not
much better than the one-level preconditioner because the coarse grid prob-
lem is too coarse; for α = 0.8 with the DtN coarse space the growth with k
degrades less than with the grid coarse space.

We have seen in Table 1 that the DtN coarse space gives fewer iterations
than the grid coarse space, but their sizes differed significantly. Therefore, in
Table 2 we compare the two methods forcing nCS to be similar. On the left,
we force the DtN coarse space to have a smaller size, similar to the one of the
grid coarse space, by taking just mi = 2 eigenvectors for each subdomain. On
the right, we do the opposite, we force the grid coarse space to have the size
of the DtN coarse space obtained in Table 1, by prescribing a smaller coarse
mesh diameter Hcoarse, while keeping the same number of subdomains as in
Table 1 with Hsub ∼ k−α. We can observe that for smaller coarse space sizes
(left) the grid coarse space gives fewer iterations than the DtN coarse space,
while for larger coarse space sizes (right) the result is reversed.

We have seen that the coarse mesh obtained with Hcoarse ∼ k−α
′
, α′ = α

can be too coarse if α = 0.6. At the same time, for α = 1 the number of
subdomains gets quite large since Hsub ∼ k−α, especially in 3d; this is not
desirable because in our parallel implementation we assign each subdomain
to one processor, so communication among them would prevail and each



Two-level preconditioners for the Helmholtz equation 7

nCS forced by grid CS

α = 0.6

k Nsub grid CS nCS DtN CS nCS

10 9 19 16 18 18
20 36 46 49 44 72

40 81 98 100 85 162

60 121 114 144 109 242
80 169 138 196 140 338

α = 0.8

k Nsub grid CS nCS DtN CS nCS

10 36 19 49 26 72

20 100 35 121 61 200
40 361 88 400 139 722
60 676 187 729 191 1352

80 1089 331 1156 250 2178

α = 1

k Nsub grid CS nCS DtN CS nCS

10 100 26 121 52 200

20 400 26 441 43 800

40 1600 33 1681 157 3200
60 3600 45 3721 338 7200
80 6400 62 6561 >500 12800

nCS forced by DtN CS

α = 0.6

grid CS nCS DtN CS nCS

17 36 11 39
24 196 26 204

50 529 37 531

104 841 43 1037
173 1521 93 1588

α = 0.8

grid CS nCS DtN CS nCS

15 121 10 122

20 361 13 394
35 1369 22 1440
52 2601 39 2700

78 4225 68 4352

α = 1

grid CS nCS DtN CS nCS

17 324 11 324

23 1089 14 1120

22 4624 20 4640
26 10404 29 10560
30 18769 44 18880

Table 2: (d = 2) Number of iterations (and coarse space size nCS) for the
two-level preconditioners with the grid coarse space/DtN coarse space forcing
similar nCS, with Hsub ∼ k−α, εprec = k.

processor would not be fully exploited since the subdomains would become
very small. Therefore, to improve convergence with the grid coarse space
while maintaining a reasonable number of subdomains, we consider separate
Hcoarse and Hsub, taking α′ 6= α. For load balancing (meant as local prob-
lems having the same size as the grid coarse space problem), in 3d we choose
α′ = 3/2 − α. The DtN coarse space is still built by keeping the eigenvec-
tors verifying the automatic choice criterion; note that in 3d the number of
selected eigenvectors is larger than in 2d, but we only keep a maximum of 20
eigenvectors in each subdomain.The DtN coarse space size is still determined
by the automatic choice criterion (among 20 computed local eigenvectors)
in each subdomain.R2 In Table 3 we report the results of this experiment.
As expected, for the grid coarse space the best iteration counts are obtained
for α = 0.5 because then α′ = 1 gives the coarse mesh with the small-
est diameter among the experimented ones: the number of iterations grows
slowly, with O(k0.61) ∼= O(n0.13). With higher α the iteration counts get
worse quickly, and α = 0.8 is not usable. For the DtN coarse space, the larger
coarse space size is obtained by taking α bigger (recall that α′ is not a pa-
rameter in the DtN case): for α = 0.8 the number of iterations grows slowly,
with O(k0.2) ∼= O(n0.04), but this value may be optimistic, there is a decrease
in iteration number between k = 20 and 30. We believe that for the other



8 M. Bonazzoli, V. Dolean, I.G. Graham, E.A. Spence, P.-H. Tournier

α = 0.5, α′ = 1

k n Nsub 1-level grid CS nCS DtN CS nCS

10 39304 27 25 12 1331 14 316
20 704969 64 39 17 9261 31 1240

30 5000211 125 55 21 29791 54 2482

40 16194277 216 74 29 68921 80 4318

α = 0.6, α′ = 0.9

k n Nsub 1-level grid CS nCS DtN CS nCS

10 39304 27 25 15 512 14 316

20 912673 216 61 24 3375 41 2946
30 4826809 343 73 34 10648 65 6226
40 16194277 729 98 48 21952 108 13653

α = 0.7, α′ = 0.8

k n Nsub 1-level grid CS nCS DtN CS nCS

10 46656 125 34 19 343 11 896

20 912673 512 73 35 1331 18 4567

30 5929741 1000 103 57 4096 65 12756
40 17779581 2197 139 89 8000 116 30603

α = 0.8, α′ = 0.7

k n Nsub 1-level grid CS nCS DtN CS nCS

10 50653 216 39 23 216 19 1354
20 1030301 1000 46 86 729 23 7323

30 5929741 3375 137 116 1331 21 26645
40 28372625 6859 189 200 2744 27 54418

Table 3: (d = 3) Number of iterations (and coarse space size nCS) for the one-
level preconditioner and the two-level preconditioners with the grid coarse
space/DtN coarse space, with Hsub ∼ k−α, Hcoarse ∼ k−α

′
, εprec = k.

values of α, where the iteration counts are not much better or worse than
with the one-level preconditioner, we did not compute enough eigenvectors
in each subdomain to build the DtN coarse space.

5 Conclusion

We tested numerically two different coarse space definitions for two-level do-
main decomposition preconditioners for the pure Helmholtz equation (dis-
cretized with piecewise linear finite elements), both in 2d and 3d, reaching
more than 15 million degrees of freedom in the resulting linear systems. The
preconditioners built with absorption εprec = k2 appear to perform much
worse than those with absorption εprec = k. We have seen that in most cases
for smaller coarse space sizes the grid coarse space gives fewer iterations than
the DtN coarse space, while for larger coarse space sizes the grid coarse space
gives generally more iterations than the DtN coarse space. The best itera-
tion counts for the grid coarse space are obtained by separating the coarse
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mesh diameter Hcoarse ∼ k−α
′

from the subdomain diameter Hsub ∼ k−α,
taking α′ > α. Both for the grid coarse space the coarse grid spaceR2 and the
DtN coarse space, for appropriate choices of the method parameters we have
obtained iteration counts which grow quite slowly with the wavenumber k.
Further experiments to compare the two coarse spaces the two definitions of
coarse spaceR2 should be carried out in the heterogenous case.
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A two-level domain-decomposition
preconditioner for the time-harmonic
Maxwell’s equations

Marcella Bonazzoli1, Victorita Dolean1,2, Ivan G. Graham3, Euan A.
Spence3, and Pierre-Henri Tournier4

1 Introduction

The construction of fast iterative solvers for the indefinite time-harmonic
Maxwell’s system at mid- toR2 high-frequency is a problem of great current
interest. Some of the difficulties that arise are similar to those encountered
in the case of the mid- toR2 high-frequency Helmholtz equation. Here we
investigate how domain-decomposition (DD) solvers recently proposed for
the high-frequencyR2 Helmholtz equation work in the Maxwell case.

The idea of preconditioning discretisations of the Helmholtz equation with
discretisations of the corresponding problem with absorption was introduced
in Erlangga et al. [2004]. In Graham et al. [2017a], a two-level domain-
decomposition method was proposed that uses absorption, along with a
wavenumber dependent coarse space correction. Note that, in this method,
the choice of absorption is motivated by the analysis in both Graham et al.
[2017a] and the earlier work Gander et al. [2015].

Our aim is to extend these ideas to the time-harmonic Maxwell’s equations,
both from the theoretical and numerical points of view. These results will
appear in full in the forthcoming paper Bonazzoli et al. [2017].

Our theory will apply to the boundary value problem (BVP){
∇× (∇×E)− (k2 + iκ)E = J in Ω

E× n = 0 on Γ := ∂Ω
(1)

where Ω is a bounded Lipschitz polyhedron in R3 with boundary Γ and
outward-pointing unit normal vector n, k is the wave number, and J is the
source term. The PDE in (1) is obtained from Maxwell’s equations by as-
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suming that the electric field E is of the form E(x, t) = <(E(x)e−iωt), where
ω > 0 is the angular frequency. The boundary condition in (1) is called Per-
fect Electric Conductor (PEC) boundary condition. The parameter κ dictates
the absorption/damping in the problem; in the case of a conductive medium,
κ = kσZ, where σ is the electrical conductivity of the medium and Z the
impedance. If σ = 0, the solution is not unique for all k > 0 but a sufficient
condition for existence of a solution is ∇ · J = 0.

We will also give numerical experiments for the BVP (1) where the PEC
boundary condition is replaced by an impedance boundary condition, i.e. the
BVP {

∇× (∇×E)− (k2 + iκ)E = J in Ω
(∇×E)× n− i k n× (E× n) = 0 on Γ := ∂Ω

(2)

In contrast to the PEC problem, the solution of the impedance problem
is unique for every k > 0. There is large interest in solving (1) and (2)
both when κ = 0 and when κ 6= 0. We will consider both these cases, in
each case constructing preconditioners by using larger values of κ. Indeed, a
higher level of absorption makes the problems involved in the preconditioner
definition more “elliptic” (in a sense more precisely explained in Bonazzoli
et al. [2017]), thus easier to solve. Note that the absorption cannot increase
too much, otherwise the problem in the preconditioner is “too far away” from
the initial problem.R1

2 Variational formulation and discretisation

Let H0(curl;Ω) := {v ∈ L2(Ω),∇ × v ∈ L2(Ω),v × n = 0}. We introduce
the k-weighted inner product on H0(curl;Ω):

(v,w)curl,k = (∇× v,∇×w)L2(Ω) + k2(v,w)L2(Ω).

The standard variational formulation of (1) is: Given J ∈ L2(Ω), κ ∈ R and
k > 0, find E ∈ H0(curl;Ω) such that

aκ(E,v) = F (v) for all v ∈ H0(curl;Ω), (3)

where

aκ(E,v) :=

∫
Ω

∇×E · ∇ × v − (k2 + iκ)

∫
Ω

E · v (4)

and F (v) :=
∫
Ω
J ·v. When κ > 0, it is well-known that the sesquilinear form

is coercive (see, e.g., Bonazzoli et al. [2017] and the references therein) and
so existence and uniqueness follow from the Lax–Milgram theorem.

Nédélec edge elements are particularly suited for the approximation of
electromagnetic fields. They provide a conformal discretisation of H(curl, Ω),
since their tangential component across faces shared by adjacent tetrahedra
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of a simplicial mesh T h is continuous. We therefore define our approximation
space Vh ⊂ H0(curl;Ω) as the lowest-order edge finite element space on the
mesh T h with functions whose tangential trace is zero on Γ . More precisely,
over each tetrahedron τ , we write the discretised field as Eh =

∑
e∈τ cewe,

a linear combination with coefficients ce of the basis functions we associ-
ated with the edges e of τ , and the coefficients ce will be the unknowns of
the resulting linear system. The Galerkin method applied to the variational
problem (3) is

find Eh ∈ Vh such that aκ(Eh,vh) = F (vh) for all vh ∈ Vh. (5)

The Galerkin matrix Aκ is defined by (Aκ)ij := aκ(wei ,wej ) and the
Galerkin method is then equivalent to solving the linear system AκU = F,
where Fi := F (wei) and Uj := cej .

3 Domain decomposition

To define appropriate subspaces of Vh, we start with a collection of open
subsets {Ω̃` : ` = 1, . . . , N} of Rd of maximum diameter Hsub that form an

overlapping cover of Ω, and we set Ω` = Ω̃` ∩ Ω. Each Ω` is assumed to be
non-empty and is assumed to consist of a union of elements of the mesh Th.
Then, for each ` = 1, . . . , N , we set

V` := Vh ∩H0(curl, Ω`),

where H0(curl, Ω`) is considered as a subset of H0(curl;Ω) by extending
functions in H0(curl, Ω`) by zero, thus the tangential traces of elements of
V` vanish on the internal boundary ∂Ω`\Γ (as well as on ∂Ω` ∩ Γ ). Thus a
solve of the Maxwell problem (3) in the space V` involves a PEC boundary
condition on ∂Ω` (including any external parts of ∂Ω`). When κ 6= 0, such
solves are always well-defined by uniqueness of the solution of the BVP (1).

Let Ih be the set of interior edges of elements of the triangulation; this set
can be identified with the degrees of freedom of Vh. Similarly, let Ih(Ω`) be
the set of edges of elements contained in (the interior of) Ω` (corresponding to
degrees of freedom on those edges). We then have that Ih = ∪N`=1Ih(Ω`). For
e ∈ Ih(Ω`) and e′ ∈ Ih, we define the restriction matrices (R`)e,e′ := δe,e′ .
We will assume that we have matrices (D`)

N
`=1 satisfying

N∑
`=1

RT` D`R` = I; (6)

such matrices (D`)
N
`=1 are called a partition of unity.
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For two-level methods we need to define a coarse space. Let {T H} be a
sequence of shape-regular, tetrahedral meshes on Ω, with mesh diameter H.
We assume that each element of T H consists of the union of a set of fine
grid elements. Let IH be an index set for the coarse mesh edges. The coarse
basis functions {wH

e } are taken to be Nédélec edge elements on T H with
zero tangential traces on Γ . From these functions we define the coarse space
V0 := span{wH

ep : p ∈ IH}, and we define the “restriction matrix”

(R0)pj := ψej (wH
ep)=

∫
ej

wH
ep · t, j ∈ Ih, p ∈ IH , (7)

where ψe are the degrees of freedom on the fine mesh.
With the restriction matrices (R`)

N
`=0 defined above, we define

Aκ,` := R`AκR
T
` , ` = 0, . . . , N

For ` = 1, . . . , N , the matrix Aκ,` is then just the minor of Aκ correspond-
ing to rows and columns taken from Ih(Ω`). That is Aκ,` corresponds to
the Maxwell problem on Ω` with homogeneous PEC boundary condition on
∂Ω`\Γ . The matrix Aκ,0 is the Galerkin matrix for the problem (1) discre-
tised in V0. In a similar way as for the global problem it can be proven that
matrices Aκ,`, ` = 0, . . . , N , are invertible for all mesh sizes h and all choices
of κ 6= 0.

In this paper we consider two-level preconditioners, i.e. those involving
both local and coarse solves, except if ‘1-level’ is specified in the numerical
experiments. The classical two-level Additive Schwarz (AS) and Restricted
Additive Schwarz (RAS) preconditioners for Aκ are defined by

M−1κ,AS :=

N∑
`=0

RT` A
−1
κ,`R` M−1κ,RAS :=

N∑
`=0

RT` D`A
−1
κ,`R`. (8)

In the numerical experiments we will also consider two other precondition-
ers: (i) M−1κ,ImpRAS, which is similar to M−1κ,RAS, but the solves with Aκ,` are
replaced by solves with matrices corresponding to the Maxwell problem on
Ω` with homogeneous impedance boundary condition on ∂Ω`\Γ , and (ii) the
hybrid version of RAS

M−1κ,HRAS := (I −ΞAκ)

(
N∑
`=1

RT` D`A
−1
κ,`R`

)
(I −AκΞ) +Ξ, Ξ = RT0 A

−1
κ,0R0.

(9)
In a similar manner we can define M−1κ,HAS, M−1κ,ImpHRAS, the hybrid versions
of AS and ImpRAS.
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4 Theoretical results

The following result is the Maxwell-analogue of the Helmholtz-result in [Gra-
ham et al., 2017b, Theorem 5.6] and appears in Bonazzoli et al. [2017]. We
state a version of this result for κ ∼ k2, but note that Bonazzoli et al. [2017]
contains a more general result that, in particular, allows for smaller values of
the absorption κ.

Theorem 1 (GMRES convergence for left preconditioning with κ ∼
k2). Assume that Ω is a convex polyhedron. Let Ck be the matrix representing
the (·, ·)curl,k inner product on the finite element space Vh in the sense that
if vh, wh ∈ Vh with coefficient vectors V,W then

(vh, wh)curl,k = 〈V,W〉Ck
. (10)

Consider the weighted GMRES method where the residual is minimised in the
norm induced by Ck. Let rm denote the mth residual of GMRES applied to
the system Aκ, left preconditioned with M−1κ,AS. Then

‖rm‖Ck

‖r0‖Ck

.

(
1−

(
1 +

(
H

δ

)2)−2)m/2
, (11)

provided the following condition holds:

max {kHsub, kH} ≤ C1
(

1 +

(
H

δ

)2)−1
. (12)

where Hsub and H are the typical diameters of a subdomain and of the coarse
grid, δ denotes the size of the overlap, and C1 is a constant independent of
all parameters.

As a particular example we see that, provided κ ∼ k2, H ∼ Hsub ∼ k−1 and
δ ∼ H (“generous overlap”), then GMRES will converge with a number of
iterations independent of all parameters. This property is illustrated in the
numerical experiments in the next section. A result analogous to Theorem 1
for right-preconditioning appears in Bonazzoli et al. [2017].

5 Numerical results

In this section we will perform several numerical experiments in a cube
domain with PEC boundary conditions (Experiments 1-2) or impedance
boundary conditions (Experiments 3-4). The right-hand side is given by
J = [f, f, f ], where f = − exp(−400((x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2)).
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We solve the linear system with GMRES with right preconditioning, start-
ing with a random initial guess, which ensures, unlike a zero initial guess,
that all frequencies are present in the error; the stopping criterion, with a
tolerance of 10−6, is based on the relative residual. The maximum num-
ber of iterations allowed is 200. We consider a regular decomposition into
subdomains (cubes), the overlap for each subdomain is of size O(2h) (ex-
cept in Experiment 1, where we take generous overlap) in all directions.
All the computations are done in FreeFem++, an open source domain spe-
cific language (DSL) specialised for solving BVPs with variational methods
(http://www.freefem.org/ff++/). The code is parallelised and run on the
TGCC Curie supercomputer and the CINES Occigen supercomputer. We as-
sign each subdomain to one processor. Thus in our experiments the number
of processors increases if the number of subdomains increases. To apply the
preconditioner, the local problems in each subdomain and the coarse space
problem are solved with a direct solver (MUMPS on one processor). In all
the experiments the fine mesh diameter is h ∼ k−3/2, which is believed to
remove the pollution effect.

In our experiments we will often choose Hsub ∼ H and our precondition-
ers are thus determined by choices of H and κ, which we denote by Hprec

and κprec. The absorption parameter of the problem to be solved is denoted
κprob. The coarse grid problem is of size ∼ H−2prec and there are ∼ H−2prec local
problems of size (Hprec/h)2 (case Hsub ∼ H). In the tables of results, n de-
notes the size of the system being solved, nCS the size of the coarse space, the
figures in the tables denote the GMRES iterations corresponding to a given
method (e.g. #AS is the number of iterations for the AS preconditioner),
whereas Time denotes the total time (in seconds) including both setup and
GMRES solve timesR2. For some of the experiments we compute (by linear
least squares) the approximate value of γ so that the entries of this column
grow with kγ . We also compute ξ so that the entries of the column grow with
nξ (here ξ = γ · 2/9, because n ∼ (h3/2)3 = k9/2).

Experiment 1. The purpose of this experiment is to test the theoretical
result which says that even with AS (i.e. when solving PEC local problems),
provided H ∼ Hsub ∼ k−1, δ ∼ H (generous overlap), κprob = κprec = k2, the
number of GMRES iterations should be bounded as k increases. In Table 1 we
compare three two-level preconditioners: additive Schwarz, restricted additive
Schwarz, and the hybrid version of restricted additive Schwarz. Note that in
theory we would expect AS to be eventually robust, although its inferiority
compared to the other methods is to be expected Graham et al. [2017a].

Experiment 2. In this experiment (Table 2) we set κprob = κprec = k2

and H ∼ Hsub ∼ k−0.8 and the overlap is O(2h) in all directions. As we are
not in the case Hprec ∼ k−1 and we do not have generous overlap, we do
not expect a bounded number of iterations here. Nevertheless, the method
still performs well. Not surprisingly, the best method is ImpHRAS, as better
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k n Nsub nCS #AS #RAS #HRAS

10 4.6 ×105 1000 7.9×103 53 26 12

15 1.5 ×106 3375 2.6×104 59 28 12
20 1.2 ×107 8000 6.0×104 76 29 17

Table 1 δ ∼ H (generous overlap), H ∼ Hsub ∼ k−1, κprob = κprec = k2.

transmission conditions at the interfaces between subdomains are used in the
preconditioner. It is important to note that the time is growing very much
slower than the dimension of the problem being solved.

k n Nsub nCS #RAS (#HRAS) #ImpRAS (#ImpHRAS) Time ImpHRAS

10 3.4 × 105 216 1.9×103 34 (23) 27 (20) 11.0
20 7.1 × 106 1000 7.9×103 43 (31) 35 (28) 42.6
30 4.1 × 107 3375 2.6×104 47 (34) 39 (32) 100.9
40 1.3 × 108 6859 5.1×104 49 (36) 42 (35) 264.5

γ 4.5 2.23

Table 2 δ ∼ 2h, H ∼ Hsub ∼ k−0.8, κprob = κprec = k2.

Experiment 3 In this case we take κprob = k. Moreover, we take
impedance boundary conditions on ∂Ω. We take H ∼ Hsub ∼ k−α, κprec =
kβ , and we use ImpHRAS as a preconditioner.

α = 0.6 α = 0.8

k n Nsub nCS #2-level n Nsub nCS #2-level

10 2.6 × 105 27 2.8×102 31 3.4 × 105 216 1.8 × 103 29

20 6.3 × 106 216 1.9 × 103 87 7.1 × 106 1000 7.9 × 103 60
30 3.3 × 107 343 2.9 × 103 148 4.1 × 107 3375 2.5 × 104 90
40 1.1 × 108 729 5.9 × 103 200 1.3 × 108 6859 5.1 × 104 154

β = 1 β = 2

k n Nsub nCS #2-level(Time) #2-level(Time)

10 3.4 × 105 216 1.8 × 103 29 (12.9) 37 (13.1)
20 7.1 × 106 1000 7.9 × 103 60 (63.7) 70 (69.8)
30 4.1 × 107 3375 2.5 × 104 90 (200.4) 101 (221.2)

40 1.3 × 108 6859 5.1 × 104 154 (771.7) 137 (707.6)

γ 4.5 2.4 1.2 (2.9) 0.94 (2.8)

ξ 1.0 0.5 0.3 (0.6) 0.2 (0.6)

Table 3 κprob = k, δ ∼ 2h,H ∼ Hsub ∼ k−α, κprec = kβ ; Top:Left:R2 β = 2, α = 0.6, 0.8;

Bottom:Right:R2 α = 0.8, β = 1, 2.

In Table 3 on the bottom we see that the dimension of the coarse space is

nCS = (k−0.8)−3 = k2.4 = O(n0.5).
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This is reflected in the γ and ξ figures in the nCS column. For this method
the reduction factor nCS/n is substantial (about 3.9 × 10−4 when k = 40).
The computation time grows only slightly faster than the dimension of the
coarse space, showing (a) weak scaling and (b) MUMPS is still performing
close to optimally for Maxwell systems of size 5× 104. Iteration numbers are
growing with about n0.3 at worst. Note that the iteration numbers may be
improved by separating the coarse grid size from the subdomain size, making
the coarse grid finer and the subdomains bigger.

Experiment 4. Here we solve the pure Maxwell problem without ab-
sorption, i.e. κprob = 0, with impedance boundary conditions on ∂Ω. In
the preconditioner we take κprec = k. Results are given in Table 4, where

Hsub ∼ k−α, H ∼ k−α
′
. These methods are close to being load balanced in

the sense that the coarse grid and subdomain problem size are very similar
when α+ α′ = 3/2.

Out of the methods tested, the 2-level method (ImpHRAS) with (α, α′) =
(0.6, 0.9) gives the best iteration count, but is more expensive. The method
(α, α′) = (0.7, 0.8) is faster but its iteration count grows more quickly, so
its advantage will diminish as k increases further. We have no explanation
for the curious reduction in iterations in the 2-level method as k increases
for (α, α′) = (0.6, 0.9).MB For (α, α′) = (0.6, 0.9) the coarse grid size grows
with O(n0.64) while the time grows with O(n0.65)O(n0.80)MB. For (α, α′) =
(0.7, 0.8) the rates are O(n0.54) and O(n0.69)O(n0.75)MB. The subdomain
problems are solved on individual processors so the number of processors
used grows as k increases. In the current implementation a sequential direct
solver on one processor is used to factorize the coarse problem matrix, which
is clearly a limiting factor for the scalability of the algorithm. The timings
could be significantly improved by using a distributed direct solver, or by
adding a further level of domain decomposition for the coarse problem solve.

Acknowledgement This work has been supported in part by the French Na-
tional Research Agency (ANR), project MEDIMAX, ANR-13-MONU-0012.
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A Coarse Space to Remove the Logarithmic
Dependancy in Neumann-Neumann Methods

Faycal Chaouqui1, Martin J.Gander1, and Kévin Santugini-Repiquet2

1 Introduction

Domain Decomposition Methods are the most widely used methods for solving
large linear systems that arize from the discretization of partial differential equa-
tions. The one level versions of these method are in general not scalable1, since
communication is just between neighboring subdomains, as it was pointed out al-
ready in [15], and one must add an additional coarse correction in order to share
global information between subdomains. Examples of early such coarse corrections
are proposed in [5, 6] for the additive Schwarz method, and in [12, 13, 14, 12, 7] for
Neumann-Neumann and FETI methods, for a comprehensive treatement, see [16].

We are interested here in Neumann-Neumann methods, for which the one level
condition number κ1 and the two-level condition number κ2 with a piecewise con-
stant coarse space satisfy the estimates

κ1 ≤
C
H2

(
1+ log2(

H
h
)

)
, κ2 ≤C

(
1+ log2(

H
h
)

)
, (1)

where H is the typical size of a subdomain, h is the mesh size, and the constant
C is indepandent of h and H, see [4, 12, 13]. These condition number estimates
guarantee robust convergence when Neumann-Neumann is used as a preconditioner
for a Krylov method, up to the logarithmic term.

We are interested here in understanding precisely where this logarithmic term
is coming from, and how it can be removed using an appropriately chosen coarse
space. To this end, we study the Neumann-Neumann method directly as an itera-
tive method, not as a preconditioner, and consider the Laplace equation and two

1 Université de Genève, Section de mathématiques, e-mail: {Faycal.Chaouqui}{Martin.
Gander}@unige.ch ·2 Université Bordeaux, IMB, CNRS UMR5251, MC2, INRIA Bordeaux
- Sud-Ouest, e-mail: Kevin.Santugini@math.u-bordeaux1.fr

1 Notable exceptions are the time dependent wave equation with finite speed of propagation [8],
and the Laplace equation in certain molecular simulations with specific geometry [2, 3].
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Fig. 1: Left: Strip decomposition. Right: Decomposition with a cross point

specific decompositions: a strip decomposition into a one dimensional sequence of
subdomains, and a decomposition including cross points, see Figure 1.

For the strip decomposition, we will show that in the case of Dirichlet boundary
conditions, the one level iterative Neumann-Neumann algorithm is convergent and
can be weakly scalable, even without coarse grid, for a specific setting, and there
are no polylogarithmic terms in the convergence estimate. In the case of Neumann
boundary conditions, a coarse space of constant functions is needed to make the
Neumann-Neumann method weakly scalable, and again there are no polylogarith-
mic terms in the convergence estimate. For a decomposition with cross points, we
show that the iterative Neumann-Neumann algorithm does not converge, due to log-
arithmically growing modes at the cross point, and following ideas in [9, 11, 10],
we enrich the coarse space with the corresponding modes to obtain a convergent
iterative Neumann-Neumann algorithm without polylogarithmic growth.

2 Neumann-Neumann algorithm for a strip decomposition

We start by studying the convergence and weak scalability of the Neumann-Neumann
algorithm for the Laplace equation,

−∆u = f , in Ω ,
u(a, ·) = 0, u(b, ·) = 0,
u(·,0) = 0, u(·,L) = 0,

(2)

on the rectangular domain Ω := (a,b)× (0,L) decomposed into strips, as shown in
Figure 1 on the left, where a j = a+ jH for j = 0, . . . ,N, and Ω j :=(a j−1,a j)×(0,L)
for j = 1, . . . ,N. Given an initial guess g0

j at the interfaces, where we define gn
0 =

gn
N = 0 for convenience, the Neumann-Neumann algorithm computes for iteration

index n = 0,1, . . . first solutions of the Dirichlet problems

−∆un
j = f j in Ω j,

un
j(a j−1, ·) = gn

j−1, un
j(a j, ·) = gn

j ,
(3)
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with outer boundary conditions un
j(·,0) = un

j(·,L) = 0, followed by solving Neu-
mann problems on interior domains Ω j, j = 2,3, . . . ,N−1, given by

−∆ψn
j = 0 in Ω j,

∂xψn
j (a j−1, ·) = (∂xun

j(a j−1, ·)−∂xun
j−1(a j−1, ·))/2,

∂xψn
j (a j, ·) = (∂xun

j(a j, ·)−∂xun
j+1(a j, ·))/2,

(4)

and on the left and right most subdomains the Neumann problems are

−∆ψ
n
1 = 0 in Ω1,

ψ
n
1 (a, ·) = 0, ∂xψ

n
1 (a1, ·) = (∂xun

1(a1, ·)−∂xun
2(a1, ·)/2,

−∆ψ
n
N = 0 in ΩN ,

ψ
n
N(b, ·) = 0, ∂xψ

n
N(aN−1, ·) = (∂xun

N(aN−1, ·)−∂xun
N−1(aN−1, ·))/2,

all with outer boundary conditions ψn
j (·,0) = 0 and ψn

j (·,L) = 0, j = 1, . . . ,N. The
new interface traces are then obtained by the updating formula

gn+1
j := gn

j − (ψn
j (a j, ·)+ψ

n
j+1(a j, ·))/2, j = 1, . . . ,N−1. (5)

To study the convergence of this iterative Neumann-Neumann method, it suffices by
linearity to apply the algorithm to Equation (2) with f = 0, and to study the conver-
gence of the approximate solution un to the zero solution. Since the subdomains are
rectangles, the iterates can be expanded in a sine series,

un
j(x,y) =

∞

∑
m=1

ûn
j(x,m)sin(kmy), ψ

n
j (x,y) =

∞

∑
m=1

ψ̂
n
j (x,m)sin(kmy), (6)

where km := mπ

L , which allows us to study the convergence based on the Fourier
coefficients.

Lemma 1. Let ûn(m) =
[
ûn

1(a1,m), ûn
2(a2,m), . . . , ûn

N−1(aN−1,m)
]T ∈ RN−1, then

for2 N ≥ 3 we have ûn(m) = T (m,H)ûn−1(m), where T (m,H) ∈ R(N−1)×(N−1) is
given by

T (m,H) =− 1
4sinh2(kmH)



1 1
cosh(kmH) −1 0 · · · · · · 0

0 2 0 −1
. . .

...

−1 0 2 0 −1
. . .

...

0
. . .

. . .
. . .

. . .
. . . 0

...
. . .

. . .
. . . 2 0 −1

...
. . . −1 0 2 0

0 · · · · · · 0 −1 1
cosh(kmH) 1


.

2 For N = 2 the structure of T (m,H) is not the same since there are no inner subdomains.
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Proof. For each m≥ 1 and j = 2, . . . ,N−1, un
j(x,m) and ψn

j (x,m) satisfy

k2
mûn

j −∂xxûn
j = 0, k2

mψ̂n
j −∂yyψ̂n

j = 0,
ûn

j(a j−1,m) = ĝn
j−1(m), ψ̂n

j (a j−1,m) = (∂xun
j(a j−1,m)−∂xun

j−1(a j−1,m))/2,
ûn

j(a j,m) = ĝn
j(m), ψ̂n

j (a j,m) = (∂xun
j(a j,m)−∂xun

j+1(a j,m))/2.

The solution of the Dirichlet problems on interior subdomains are thus

ûn
j(x,m) = ĝn

j(m)
sinh(km(x−a j−1))

sinh(kmH)
+ ĝn

j−1(m)
sinh(km(a j− x))

sinh(kmH)
, j = 2, . . . ,N−1,

and on the subdomains on the left and right we get

ûn
1(x,m) = ĝn

1(m)
sinh(km(x−a0))

sinh(kmH)
, ûn

N(x,m) = ĝn
N−1(m)

sinh(km(aN− x))
sinh(kmH)

.

Similarly for the Neumann problems on the interior subdomains, we obtain

ψ̂
n
j (x,m) =

(
2 ĝn

j(m)
cosh(kmH)

sinh(kmH)
−

ĝn
j−1(m)

sinh(kmH)
−

ĝn
j+1(m)

sinh(kmH)

)
cosh(km(x−a j−1))

2sinh(kmH)

+

(
2 ĝn

j−1(m)
cosh(kmH)

sinh(kmH)
−

ĝn
j−2(m)

sinh(kmH)
−

ĝn
j(m)

sinh(kmH)

)
cosh(km(a j− x))

2sinh(kmH)
,

and for the first and last subdomains we find

ψ̂
n
1 (x,m) =

(
2 ĝn

1(m)
cosh(kmH)

sinh(kmH)
−

ĝn
2(m)

sinh(kmH)

)
sinh(km(x−a0))

2cosh(kmH)
,

ψ̂
n
N(x,m) =

(
2 ĝn

N−1(m)
cosh(kmH)

sinh(kmH)
−

ĝn
N−2(m)

sinh(kmH)

)
sinh(km(aN− x))

2cosh(kmH)
.

Using now (5) and the fact that ûn
j(a j,m) = ĝn

j(m) for each m≥ 1, we get the stated
recurrence relation.

Lemma 2. If H/L > ln(1+
√

2)/π then for any m≥ 1 we have ‖T (m,H)‖∞ < 1.

Proof. It is straightforward to see that ‖T (m,H)‖∞≤ 1
sinh2 (kmH)

for each m and since

m 7→ 1
sinh2 (kmH)

is strictly decreasing for m≥ 1, we have that 1
sinh2 (kmH)

< 1
sinh2 (k1H)

which is strictly smaller than 1 if H/L > ln(1+
√

2)/π , which concludes the proof.

Theorem 1. For N ≥ 3 Neumann-Neumann satisfy the L2 error bound(
N−1

∑
j=1
‖un

j(a j, ·)‖2
2

)1/2

≤ 1
sinh2n (k1H)

(
N−1

∑
j=1
‖u0

j(a j, ·)‖2
2

)1/2

.
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Proof. Since for N ≥ 3 we have that ‖T (m,H)‖2 ≤
√
‖T (m,H)‖∞‖T (m,H)‖1 ≤

1
sinh2 (k1H)

, and using the Parseval identity ‖un
j(a j, ·)‖2

2 =
L
2 ∑

∞
m=1 ûn

i (a j,m)2, we get
the result stated.

Theorem 1 shows that under a minimal assumption, the one level Neumann-
Neumann algorithm for the strip decomposition is weakly scalable, provided H re-
mains fixed, i.e. more and more subdomains of the same size are added, see also
[2, 3] for the corresponding Schwarz scaling. If the original Laplace problem (2)
has however Neumann conditions at x = 0 and x = L, then the interior subdomains
become floating in the Neumann-Neumann algorithm, and a minimal coarse space
consisting of piecewise constant functions is required in order to remove the kernel,
and this is sufficient to make the algorithm weakly scalable as in previous case with
an L2 bound as in Theorem 1, see [1].

3 Neumann-Neumann algorithm with cross points

We now study the convergence properties of the iterative Neumann-Neumann algo-
rithm for decompositions with cross points, like the one shown in Figure 1 on the
right. Since in this case the algorithm might be undefined at the continuous level due
to possible discontinuity at the cross point, we study numerically the convergence
of the fixed point iteration

un+1 = Bun + f, (7)

where B ∈Rd×d and f ∈Rd are obtained by discretizing the Neumann-Neumann al-
gorithm using five-points stencil central finite differences. We first show in Figure 2
on the left the three largest (double) eigenvalues in modulus of B when the mesh
is refined. We clearly see logarithmic growth, and the iterative Neumann-Neumann
method will diverge as soon as the mesh size h is small enough, in our example
h = 0.12. Hence, in contrast to the classical alternating and parallel Schwarz meth-
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Fig. 3: Left: dominant eigenfunction of B. Right: second eigenfunction of B.

ods, the Neumann-Neumann method can then not be used as an iterative solver. We
note however also that the logarithmic growth of the first dominant eigenvalue is
faster than the second and the third one. On the right in Figure 2, we show how the
growth rate (the slope) of these diverging modes depends on the eigenvalue index k.
We see that the growth decays very rapidly, like 1/kα with α = 10/3, so when h goes
to zero, there are only O(k) divergent modes (those with corresponding eigenvalues
greater than 1 in the absolute value), where 1/kα log2(h). 1, i.e k ∼ (log2(h))1/α .

We next show in Figure 3 the two corresponding dominant eigenmodes of B for a
mesh size h = 0.01. Since their eigenvalues are double eigenvalues, we chose from
the two dimensional subspace of eigenfunctions the one vanishing at the interface
aligned with the x axis; the other eigenmode has the same shape, just rotated by 90
degrees. We see that the cross point causes the iterative Neumann-Neumann method
to generate eigenmodes with a singular behavior at the cross point, and these modes
lead to divergence of the iterative Neumann-Neumann method.

To avoid such logarithmic growth, and obtain an convergent iterative Neumann-
Neumann method, one can remove the few divergent modes using an enriched
coarse space. Let F be a subspace of Rd and F⊥ its orthogonal complement with
standard inner product. Then we can use the reordering

B =

[F F⊥

F B̃ C
F⊥ G B̂

]
, u =

[
F ũ
F⊥ û

]
, f =

[
F f̃
F⊥ f̂

]
, (8)

and the iterative Neumann-Neumann algorithm (7) becomes

[
ũn+1
ûn+1

]
=

[
B̃ C
G B̂

] [
ũn
ûn

]
+

[
f̃
f̂

]
. (9)

To correct the problem of the divergent modes, we propose to use the iteration
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Fig. 4: Left: error of iteration (10) for different dimension of F . Right: same, but
using orthogonal iteration to approximate F .

ûn+1 = B̂ûn + f̂+Gũn, (10a)

(I− B̃)ũn+1 =Cûn+1 + f̃, (10b)

where (10b) is solved exactly.

Theorem 2. If F consists of all eigenfunctions of B with respective eigenvalues
greater than 1 in absolute value, then iteration (10) converges for any u0 ∈ Rd .

Proof. From (10), we obtain

ûn+1 = (B̂+G(I− B̃)−1C)ûn + f̂+G(I− B̃)−1̃f,

ũn+1 = (I− B̃)−1(Cûn+1 + f̃),

and hence the method is convergent iff ρ(B̂+G(I− B̃)−1C)< 1. Since F consists of
the divergent eigenmodes of B we have that G is zero and the condition for conver-
gence becomes ρ(B̂) < 1, which is satisfied since B̂ does not contain the divergent
eigenmodes of B.

We show in Figure 4 on the left the error of iteration (10) with a random initial
guess u0 as a function of the iteration number n for different choices of the dimen-
sion of F , using the same mesh size h = 0.01 in a semi-log scale. We see that with
dim(F) = 2, the iterations start already to converge while without correction the
iteration diverges. Increasing the dimension of F improves convergence further. Us-
ing just orthogonal iterations to approximate F gives already satisfactory results, as
shown on the right in Figure 4.

4 Conclusion

We showed that the logarithmic growth in the condition number estimate of the
Neumann-Neumann method comes from modes which are generated at cross points
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in the decomposition. Without cross points, the iterative Neumann-Neumann method
is convergent and can be made scalable just using a constant per subdomain in the
coarse space. With cross points, one can add the logaritmically divergent modes to
the coarse space to obtain a convergent iterative Neumann-Neumann method, with-
out logarithmic term in the convergence estimate. We also showed that orthogonal
iteration permits already to include such modes numerically, and we are currently
trying to determine these coarse functions analytically.
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A Crank-Nicholson domain decomposition
method for optimal control problem of parabolic
partial differential equation

Jixin Chen and Danping Yang

Abstract A parallel domain decomposition algorithm is considered for solving an
optimal control problem governed by a parabolic partial differential equation. The
proposed algorithm relies on non-iterative and non-overlapping domain decompo-
sition, which uses some implicit sub-domain problems and explicit flux approxima-
tions at each time step in every iteration. In addition, outer iterations are introduced
to achieve the parallelism. Numerical experiments are supplied to show the efficien-
cy of our proposed method.

1 Introduction

In [1], Dawson and Dupont presented non-overlapping domain decomposition
schemes to solve parabolic equation by some explicit flux exchange on inner bound-
aries and implicit conservative Galerkin procedures in each sub-domain. Here, ex-
plicit flux prediction are simple to compute for the unit outward normal vector (see
definition in Section 2). A time step limitation, which is less severe than that of a
fully explicit method, is induced to maintain stability because of the explicit pre-
diction. Recently, an improved strategy was considered in [2] to avoid the loss of
H−

1
2 factor for space variable in the work of Dawson and Dupont. We would like to

mention that another two calculation methods on inner boundaries were studied by
Ma and Sun (see [6] and sequent research papers) based on the integral mean value
or extrapolation. In previous work [3], we have shown that explict/implict domain
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decomposition method in [2] could be applied in optimal control problems governed
by partial differential equations. The main goal of this paper is to develop the cor-
responding results for second order procedures based on the analysis and schemes
designed to solve single PDE in [4].

2 Model problem and optimality condition

We consider the following distributed convex optimal control problems

min
u∈K

{∫ T

0

(
‖y− yd‖2

L2(Ω)+‖u‖
2
L2(Ω)

)
dt
}

(1)

subject to  ∂ty−∆y = f +u, in Ω , 0 < t ≤ T ;
y = 0, on ∂Ω , 0 < t ≤ T ;
y = y0, in Ω , t = 0,

(2)

where u ∈ K is the control and K is a convex admissible set for control, y is
the state variable, yd is the observation, y0 is the initial function. Fix V = H1

0 (Ω)
and U = L2(Ω). In the following, we will write state space W = {y ∈ L2(0,T ;V );
yt ∈ L2(0,T ; H−1(Ω))} and the control space U = L2(0,T ;U). In addition, K is a
closed convex set in U and K = L2(0,T ;K) is a closed convex set in the space U .

2.1 Optimality Condition and discretization

We use standard notation for Sobolev spaces. Define A(u,v) : V ×V → R to be a
bilinear form satisfying

A(u,v) = (∇u,∇v) ∀ u,v ∈V. (3)

Then the optimal control problem can be transformed into optimality condition in
the following lemma:

Theorem 1. A pair (y,u) in W ×K is the solution of (1)-(2) if and only if there is a
co-state p ∈W such that the triplet (y, p,u) in W ×W ×K satisfies the following
optimality conditions:{

(∂ty,w)+A(y,w) = ( f +u,w), ∀ w ∈V ;
y|t=0 = y0;

(4)

{
− (∂t p,q)+A(q, p) = (y− yd ,q), ∀ q ∈V ;
p|t=T = 0;

(5)
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0
(u+ p,v−u)≥ 0, ∀ v ∈K . (6)

Here only the case K = {u ≥ 0} are considered. Therefore, the third inequality in
the optimality conditions is equivalent to

(u+ p,v−u)≥ 0, ∀ v ∈ K, 0≤ t ≤ T. (7)

In general, for time-dependent optimal control problems, optimality condition,
which is a large scale of nonlinear coupled system with respect to time and spacial
variables, contains forward and backward PDEs with the variational inequality un-
der consideration. It is very difficult and challenging to solve directly this non-linear
system. Domain decomposition method, which could save huge time in calculation
by solving the question at the same time, is especially suitable for this kind of com-
plicated problem. To use domain decomposition method, we divide Ω into many
non-overlapping sub-domains {Ωi}I

i=1 such that Ω̄ =
⋃I

i=1 Ω̄i. Set Γi = ∂Ωi\∂Ω

and Γ =
⋃I

i=1 Γi, which is the set of inner boundaries of sub-domains. We recall
some definitions which are necessary for deriving the discrete form of (4)-(6). In-
troduce

φ(x) =


(x−2)/12, 1≤ x≤ 2,
−5x/4+7/6, 0≤ x≤ 1,
5x/4+7/6, −1≤ x≤ 0,
−(x+2)/12, −2≤ x≤−1,
0. |x|> 2.

For some H > 0, define

φ(τ) = H−1
ϕ
( τ

H

)
, τ ∈ R1.

where H is the width of the local averaging interval, which plays an important role
for stability of explicit/implicit scheme. Following Dawson-Dupont’s idea, we do
not use the exact normal derivative along inner boundaries. A proper approximation
is (see [1, 2]):

B(ψ)(xxx) =−
∫ 2H

−2H
φ
′(τ)ψ(xxx+ τnnnΓ )dτ, x ∈ Γi∩Γj, 1≤ i < j ≤ I. (8)

From definitions above, we note that function v has a well-defined jump

[v](xxx) = v(xxx+)− v(xxx−), ∀ xxx on Γ (9)

where
v(xxx±), lim

t→0±
v(xxx+ tvvvΓ ) (10)

Make a time partition: 0 = t0 < t1 < · · · < tN = T and set ∆ tn = tn − tn−1 and
∆ t = max

1≤n≤N
∆ tn. For simplicity, we may take ∆ tn = ∆ t for n = 1,2, . . . ,N. For a

given function g(xxx, t), let gn = g(xxx, tn) and
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∂̄tgn =
gn−gn−1

∆ t
, ḡn− 1

2 =
gn +gn−1

2
,

ĝn− 1
2 = 2ḡn− 3

2 − ḡn− 5
2 , g̃n+ 1

2 = 2ḡn+ 3
2 − ḡn+ 5

2 .

For i = 1,2, . . . , I, denote Mh
i ⊂V be the corresponding continuous piecewise linear

finite element space associated with conforming trangualtion T h
i . Let Mh be the

subspace of V such that wh ∈ Mh if and only if wh|Ωi ∈ Mh
i for each 1 ≤ i ≤ I.

Similarly, we can define piecewise constant finite element space UhU ⊂U for control
variable u. Let KhU = K

⋂
UhU . Then the discrete form that we want to solve is:

Y 0 = y0; Y 1 = y0 +∆ t( f 0 +∆y0 +U0); Y 2 = y0 +2∆ t( f 0 +∆y0 +U0);

(∂̄tY n,V )+A(Y n− 1
2 ,V )− (B(Ŷ n− 1

2 ), [V ])Γ − (B(V ), [Ŷ n− 1
2 ])Γ

= ( f̄ n− 1
2 +Ūn− 1

2 ,V ), ∀ V ∈Mh, n = 3,4, . . . ,N;
(11)

PN = 0; PN−1 = ∆ t(Y N− yN
d ); PN−2 = 2∆ t(Y N− yN

d );

− (∂̄tPn−2,V )+A(V, P̄n− 5
2 )− (B(P̃n− 5

2 ), [V ])Γ − (B(V ), [P̃n− 5
2 ])Γ

= (Ȳ n− 5
2 − ȳ

n− 5
2

d ,V ), ∀ V ∈Mh, n = N,N−1, . . . ,3;

(12)

(Ūn− 1
2 + P̄n− 5

2 , Z̄n− 1
2 −Ūn− 1

2 )≥ 0, ∀ Z ∈ KhU , n = 3,4, . . . ,N; (13)

U0 = max{0,−P0}, U1 = max{0,−P1}, U2 = max{0,−P2}. (14)

We see that the original optimal control problem (4)-(6), which is normally large
in size, is now decomposed into a set of subproblems with much smaller sizes. In
fact, discrete solution of (11)-(14) does not always exist. One could use contraction
mapping principle to ensure the existence and uniqueness of system. Taking the
limitation of the length into consideration, we will give a rigorous analysis on this
and convergence of the following iterative algorithm in a forthcoming paper [5]. In
addition, a priori estimates will also be included.

2.2 Parallel iterative algorithm

We note that discrete system (11)-(14) is still a nonlinear system of a forward sys-
tem for the state variable and a backward system for the co-state variable, which
are coupled by the control variable. We introduce outer iterations to decouple the
system. Thus, the proposed algorithm could be performed in parallel once domain
decomposition is used. Then, fully parallel iterative algorithm is formulated as fol-
lows:
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PARALLEL DOMAIN DECOMPOSITION ITERATIVE ALGORITHM (PDDIA)

Step 1. Given initial approximation {Un
0 }N

n=1 ⊂ UhU and Y 0 ∈ Mh. Take the
ε > 0 as a tolerance and set k := 0.

Step 2. Update {Y n
k+1}N

n=0 ⊂Mh in parallel on each Ωi for 1≤ i≤ I:
Y 0

k+1 = Y 0; Y 1
k+1 = Y0 +∆ t( f 0 +∆Y 0 +U0

k ); Y 2
k+1 = Y0 +2∆ t( f 0 +∆Y 0 +U0

k );

(∂̄tY n
k+1,V )+A(Y

n− 1
2

k+1 ,V )− (B(Ŷ
n− 1

2
k+1 ), [V ])Γ − (B(V ), [Ŷ

n− 1
2

k+1 ])Γ

= ( f̄ n− 1
2 +Ū

n− 1
2

k ,V ), ∀ V ∈Mh, n = 3,4, . . . ,N;
(15)

Step 3. Update {Pn
k+1}N

n=0 ⊂Mh in parallel on each Ωi for 1≤ i≤ I:
PN

k+1 = 0; PN−1
k+1 = ∆ t(Y N− yN

d ); PN−2
k+1 = 2∆ t(Y N− yN

d );

− (∂̄tPn−2
k+1 ,V )+A(V, P̄

n− 5
2

k+1 )− (B(P̃
n− 5

2
k+1 ), [V ])Γ − (B(V ), [P̃

n− 5
2

k+1 ])Γ

= (Ȳ
n− 5

2
k+1 − ȳ

n− 5
2

d ,V ), ∀ V ∈Mh, n = N,N−1, . . . ,3;

(16)

Step 4. Update {Ūn− 1
2

hU ,k+1}
N
n=1 ⊂UhU such that

Ū
n− 1

2
k+ 1

2
= (1−ρ)Ū

n− 1
2

k −ρP̄
n− 5

2
k+1 ,

Ū
n− 1

2
k+1 = QhU Ū

n− 1
2

k+ 1
2
.

n = 3,4, . . . ,N; (17)

where ρ is a constant with 0 < ρ < 1 and QhU is the projection from UhU to KhU .

Define U0
k+1, U1

k+1 and U2
k+1 such that

U0
k+1 = max{0,−P0

k+1}, U1
k+1 = max{0,−P1

k+1}, U2
k+1 = max{0,−P2

k+1},
(18)

Step 5. Compute the iterative error:

eps =
N

∑
n=0

(
‖Ūn− 1

2
k −Ū

n− 1
2

k+1 ‖L2(Ω)+‖Ȳ
n− 1

2
k − Ȳ

n− 1
2

k+1 ‖L2(Ω)+‖P̄
n− 1

2
k − P̄

n− 1
2

k+1 ‖L2(Ω)

If eps≤ ε , then stop the iteration and output

Un =Un
k+1, Y n = Y n

k+1, Pn = Pn
k+1, n = 0,1,2, . . . ,N. (19)

Else set k := k+1 and return step 2 to restart new iteration.
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Compared to first order scheme proposed in [3], the computation on Γ requires
explicitly the value of three-level solutions, while only little computational cost will
be added. We also remark that the algorithm PDDIA is fully parallel.

3 Numerical experiments

In this section, we test the performance and convergence of the proposed PDDIA
with respect to the exact solutions:

y = sin(2πx)sin(2πy)t,
p = sin(2πx)sin(2πy)(T − t),
u = max(−p,0),

yd = y+
∂ p
∂ t

+∆ p,

f =−u+
∂y
∂ t
−∆y.

Let T = 0.5. Domain Ω = [0,2]× [0,1] is partitioned into two uniform non-
overlapping areas with the inner-domain boundary are Γ = {1}× [0,1]. The mesh
in the x-axis and y-axis varies uniformly from 1/36, 1/49, 1/64 to 1/81 in each
sub-domain, respectively.

Table 1 L2(0,T ;L2(Ω))-norm error for PDDIA (r = 1)

Grids y−Y order u−U order p−P order

36×36 1.625×10−3 7.324×10−3 1.597×10−3

49×49 8.770×10−4 2.00 5.382×10−3 0.99 8.473×10−4 2.06
64×64 5.294×10−4 1.89 4.153×10−3 0.97 5.020×10−4 1.96
81×81 3.376×10−4 1.91 3.283×10−3 1.00 3.129×10−4 2.01

For domain decomposition, we set ∆ t = 0.1h and H2 = rh to balance error accu-
racy, where parameter r is a constant. The algorithm stops after that error of adjacent
iterative step defined in step 5 of the algorithm is less than 10−6.

In all of the numerical tests, the state variable y and co-state variable p are ap-
proximated by using piecewise linear functions while control solution u are treated
with piecewise constant functions. Compared to the scheme proposed in [3], the
number presented in Table 1 to Table 3 are the sum of average value of two neigh-
bouring layer, which is a good approximation for exact solution evaluating at the
middle of two adjacent time layer. We present numerical simulations in Table 1 for
r = 1. The L2-norm error of the numerical solutions are listed in Table 2 for r = 4.
We present the corresponding results when r = 9 in Table 3.
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Table 2 L2(0,T ;L2(Ω))-norm error for PDDIA (r = 4)

Grids y−Y order u−U order p−P order

36×36 4.835×10−3 8.069×10−3 4.856×10−3

49×49 2.525×10−3 2.11 5.654×10−3 1.15 2.523×10−3 2.12
64×64 1.389×10−3 2.24 4.258×10−3 1.06 1.379×10−3 2.26
81×81 8.077×10−4 2.30 3.325×10−3 1.05 7.952×10−4 2.34

Inferred from the tables, we can see that the error of the state variable y and co-
state variable p are the second order accuracy with respect to the time and space
sizes, whereas the error of the control variable u is only first order to the spatial
variable because of the modeling space.

Table 3 L2(0,T ;L2(Ω))-norm error for PDDIA (r = 9)

Grids y−Y order u−U order p−P order

36×36 1.939×10−2 1.588×10−2 1.964×10−2

49×49 1.173×10−2 1.63 1.006×10−2 1.48 1.186×10−2 1.63
64×64 7.137×10−3 1.86 6.623×10−3 1.57 7.202×10−3 1.87
81×81 4.429×10−3 2.03 4.678×10−3 1.47 4.453×10−3 2.04

In addition, we could get a brief relationship about the ∆ t-H constraint. Because
one can take more larger H than h for keeping the optimal order accuracy for the
spatial variable, the constraint ∆ t = O(H2) is less severe than that for fully explicit
algorithms.

4 Conclusion

In this paper, an efficient domain decomposition algorithm for an optimal control
problem governed by a linear parabolic partial differential equation has been pro-
posed. The algorithm can solve coupled optimality condition accurately and effi-
ciently based on the non-overlapping domain decomposition scheme given in [4].
The efficient calculation strategy on the inner boundaries and the outer iterations en-
able excellent extensibility and usability in parallel. Because of the implict/explict
strategy, it is necessary to preserve stability from the explicit prediction, but less
severe than that for fully explicit algorithms. Further, second order convergence in
time allow us to use larger time step in calculations.
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Partition of Unity Methods for Heterogeneous
Domain Decomposition

Gabriele Ciaramella and Martin J. Gander

1 Heterogeneous problems and partition of unity decomposition

We are interested in solving linear PDEs of the form

L (u) = f in Ω , u = g̃ on ∂Ω , (1)

where Ω is a bounded domain in Rd with d = 1,2, L is a linear (elliptic) differential
operator, f and g̃ are the data, and u is the solution to (1). The weak form of (1) with
a Hilbert space (V,〈·, ·〉) of functions v : Ω → R is

a(u,v) = `(v) ∀v ∈V0, with u = g̃ on ∂Ω , (2)

where V0 := {v ∈ V : v = 0 on ∂Ω}, a : V ×V → R is the bilinear form corre-
sponding to the operator L , and ` : V → R is the linear functional induced by f .
We assume that (2) has a unique solution u ∈ {v ∈ V : v = g̃ on ∂Ω}, and that u
is “heterogeneous”, behaving very differently in different parts of Ω . Typical ex-
amples are advection-diffusion problems, where there are advection dominated and
diffusion dominated regions (subdomains), and the boundaries in between are not
clearly defined, see [8, 10] and references therein. Apart from the χ-method [6, 1],
there are no methods to determine such subdomain decompositions, and our goal is
to present and study a new such method. We thus introduce (see [18, 11])

Definition 1 (Membership function). Let Ω ⊂Rd be a set. A membership function
ϕ is a map ϕ : Ω → [0,1], and its support S⊂Ω is S := {x ∈Ω : ϕ(x) 6= 0}.

Given two membership functions ϕ1,ϕ2 : Ω→ [0,1] that form a partition of unity on
Ω , ϕ1(x)+ϕ2(x) = 1 for all x ∈Ω , their supports provide then a domain decompo-
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M. J. Gander
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sition Ω = suppϕ1∪ suppϕ2. We introduce the approximation udd := ϕ1u1+ϕ1u2 ≈
u, where u1 and u2 represent two different possible behaviors of u, and we assume
that udd = g̃ on ∂Ω . We proceed as follows to define the spaces that udd , u1 and u2
are to be sought in: first, we introduce two approximate problems,

L1(u1) = f1 in Ω , B1(u1, g̃) = g, and L2(u2) = f2 in Ω , B2(u2, g̃) = 0. (3)

Here L j are approximation operators of L , f j are approximations of f , and B j are
operators to define the boundary conditions of (3), see Section 3 for concrete exam-
ples. The function g represents a control and belongs to an appropriate Hilbert space
W . Notice that g is different from the actual boundary data g̃: the latter is defined
on ∂Ω , while we will define the former only on a subset of ∂Ω . We assume1 that
(3) (left) is uniquely solvable in V for any g ∈W and (3) (right) has a unique solu-
tion u2 ∈ V . To reformulate (3) (left), we introduce two operators A : V → V ∗ and
Bg̃ : W →V ∗, such that (3) (left) becomes Au1 = Bg̃g+ f1. Notice that Bg̃ represents
the boundary conditions of (3) (left) and takes into account also g̃. This problem is
formally solved by u1 = A−1Bg̃g+A−1 f1, where A−1 is well defined if (3) (left) is
well posed. Now, we define the spaces V1 := {v ∈ V : v = A−1(Bg̃q+ f1), q ∈W},
and V2 := {u2}. Here V1 represents the space of all possible solutions to the first
problem in (3) generated by all the possible (control) functions in W , while V2
is a singleton containing only the unique solution u2 to (3) (right). Finally, we
use the definition of a “partition of unity method” space (PUM-space [2, 13])
VPUM := ϕ1V1+ϕ2V2 ⊂V , where ϕ1,ϕ2 are membership functions. VPUM , V1 and V2
are the spaces that the approximations udd , u1 and u2 have to be sought in. In particu-
lar, for the approximation udd the functions ϕ1, ϕ2 and g have to be computed. These
are defined as solutions to optimal control problems, as described in Section 2. Here
we need to remark that our approach could be computationally expensive. However,
it is motivated by applications in astrophysics governed by hyperbolic equations like
the Boltzmann equation. In many cases, like for supernova explosion, physical phe-
nomena are modeled using two different (limiting) regimes. However, this would
require an a-priori knowledge of the transition regime; see, e.g. [8, 3, 11] and ref-
erences therein. This is exactly the role of the partition of unity functions obtained
by our computational framework. In practice, one could use our computationally
expensive approach to obtain the partition of unity functions for one representative
case and then reuse them (as approximations) in a domain decomposition fashion to
compute approximate solutions of other cases of interest.

1 This specific approximation is motivated by asymptotic expansion techniques providing in gen-
eral two problems, one that is uniquely determined and a second one that is determined up to some
constants for asymptotic matching [15].
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2 Optimal control approaches

To compute ϕ1, ϕ2 and g, we embed the PUM formulation into an optimal control
framework. We begin by inserting udd into (2) and obtain the bounded linear func-
tional r : V → R defined by r(v) := a(ϕ1u1 +ϕ2u2,v)− `(v), where v ∈ V . In the
case that v = ϕ1w and v = ϕ2w with w ∈V , we get the functionals

r j(w) := r(ϕ jw) = a(ϕ1u1 +ϕ2u2,ϕ jw)− `(ϕ jw) ∀w ∈V, for j = 1,2.

Since w ∈V 7→ r j(w), j = 1,2, are bounded linear functionals, they are elements in
V ∗, and by the Riesz representation theorem [7], there exist R1 and R2 in V such that

〈R j,v〉= a(ϕ1u1 +ϕ2u2,ϕ jv)− `(ϕ jv) ∀v ∈V0, j = 1,2, (4)

where we used V0, since udd is exact on ∂Ω and thus R1 and R2 must vanish there.
Now, we define ϕ := ϕ1 with ϕ2 = 1−ϕ , and recall that ‖r j‖V ∗ = ‖R j‖V . Minimiz-
ing the norms of the residuals ‖R j‖V leads to the optimal control problem

min
R1,R2,u1,g,ϕ

J(R1,R2,g,ϕ) :=
1
2
‖R1‖2

V +
1
2
‖R2‖2

V +
α

2
‖ϕ‖2

V +
β

2
‖g‖2

W

s.t. 〈R1,v〉= a(ϕu1 +(1−ϕ)u2,ϕv)− `(ϕv) ∀v ∈V0,

〈R2,v〉= a(ϕu1 +(1−ϕ)u2,(1−ϕ)v)− `((1−ϕ)v) ∀v ∈V0,

Au1 = Bg̃g+ f1, g ∈W, u2 ∈V2, ϕ ∈V, 0≤ ϕ ≤ 1 a.e. in Ω ,

(5)

where α,β > 0 are two regularization parameters used to tune the cost of ϕ and g,
and f1 is the same approximation to f introduced in (3).

Solving (5) by an iterative procedure [5, 17] requires at each iteration to solve
the two equations (4) for R1 and R2, and (3) for u1. A less expensive optimal control
problem is obtained by summing (4) for j = 1,2, and we obtain with R := R1 +R2

〈R,v〉= a(ϕu1 +(1−ϕ)u2,v)− `(v) ∀v ∈V0, (6)

which is a Petrov-Galerkin type equation that we could have obtained directly ap-
plying a Petrov-Galerkin method to (2) using VPUM and V as trial and test spaces.
Using (6), we get the less expensive optimal control problem

min
R,u1,g,ϕ

J(R,g,ϕ) :=
1
2
‖R‖2

V +
α

2
‖ϕ‖2

V +
β

2
‖g‖2

W

s.t. 〈R,v〉= a(ϕu1 +(1−ϕ)u2,v)− `(v) ∀v ∈V0,

Au1 = Bg̃g+ f1, g ∈W, u2 ∈V2, ϕ ∈V, 0≤ ϕ ≤ 1 a.e. in Ω .

(7)
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Fig. 1 Example of a boundary decomposition ∂Ω = ∂Ω1∪∂Ω2.

3 Optimal control for elliptic boundary-layer problems

As main test cases we consider elliptic problems of the form

L (u) :=−µ∆u+a ·∇u+ cu = f in Ω , u = g̃ on ∂Ω , (8)

where Ω is a bounded domain in Rd , for d = 1,2, g̃ ∈ C(∂Ω), f is sufficiently
smooth, and the components of a are assumed to be strictly-positive. The assump-
tion on a is restrictive, but it simplifies the presentation below and can be relaxed.
The corresponding weak problem is to find a u ∈

{
v ∈ H1(Ω) |v = g̃ on ∂Ω

}
such

that

a(u,v) :=
∫

Ω

µ∇u ·∇v+a ·∇uv+ cuvdx =
∫

Ω

f vdx =: `(v) ∀v ∈ H1
0 (Ω).

We also assume that Ω is such that the boundary ∂Ω can be decomposed into ∂Ω =
∂Ω1∪∂Ω2, where the intersection ∂Ω1∩∂Ω2 has a non-zero measure, as illustrated
in Figure 1. To obtain udd = ϕu1 +(1−ϕ)u2 ≈ u, we define Γ := ∂Ω \ ∂Ω1 and
introduce the operator L1 :=−µ∆ +c. Then, as in (3), for any choice of the control
g ∈ H1

0 (Γ ) the corresponding approximate problem for u1 is∫
Ω

µ∇u1 ·∇v+cu1 vdx = 0 ∀v ∈ H1
0 (Ω),

u1 ∈
{

w ∈ H1(Ω) |w = g̃ on ∂Ω1, w = g̃+g on Γ , τ(w) ∈C(∂Ω)
}
,

(9)

where τ is the trace operator on ∂Ω . Notice that we have chosen f1 = 0. As be-
fore, we introduce the operator A : H1(Ω)→ H−1(Ω) defined as 〈Au,v〉H−1,H1 :=∫

Ω
µ∇u ·∇v+ cuvdx for all v ∈ H1

0 (Ω), and the operator Bg̃ : H1
0 (Γ )→ H−1(Ω)

such that v 7→ (Bg̃g)(v) is a bounded linear functional in H−1(Ω). The operator Bg̃
represents the Dirichlet boundary conditions of (9). Au1 = Bg̃g is then equivalent to
(9). The corresponding set V1 is given by

V1 = {v ∈ H1(Ω) : Av = Bg̃q for any q ∈ H1
0 (Γ )}.

Now, consider the operator L2 := a ·∇+ c and f2 = f . The problem for u2 is then

L2(u2) = a ·∇u2 + cu2 = f in Ω , u2 = g̃ on ∂Ω2, (10)
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which we assume uniquely solvable in H1(Ω)∩C(Ω). Notice that (10) is a pure
advection problem and the subset ∂Ω2 is given as the set of points where the char-
acteristic curves enter the domain Ω . This is the main assumption we make on ∂Ω2
for the problem (10) to be well posed. The set V2 contains only the solution to (10),
i.e. V2 = {u2}. The approximation udd ≈ u is then obtained as udd = ϕ1u1 +ϕ2u2,
where the membership functions ϕ1 = ϕ,ϕ2 = 1−ϕ ∈ H1(Ω) form a partition of
unity, and ϕ is such that

ϕ(x) ∈


{1} if x ∈ ∂Ω \∂Ω2,

[0,1] if x ∈ ∂Ω1∩∂Ω2,

{0} if x ∈ Γ ,

(11)

with τ(ϕ) ∈C(∂Ω). Notice that this definition of ϕ makes udd exact on the bound-
ary ∂Ω , τ(udd) = τ(ϕ1u1 +ϕ2u2) = g̃.

In what follows, we study the control problem (7) ((5) would have a similar
structure) to optimize ϕ and g for computing the approximation udd to the solution
to (8). In particular, we first show well-posedness, and then we derive the first-
order optimality system. We consider directly a 2-dimensional problem (d = 2),
since the analysis of the 1-dimensional version is simpler and relies on the same
arguments. To define our optimal control problem, as in (7), we consider the cost
functional J(R,g,ϕ) := 1

2‖R‖
2
H1(Ω)

+ α

2 ‖ϕ‖
2
H1(Ω)

+ β

2 ‖g‖
2
H1(Γ )

. Now, we introduce
the control-to-state maps g 7→ u1(g) and (g,ϕ) 7→ R(u1(g),ϕ), where u1(g) and
R(u1(g),ϕ) solve (9) and

〈R,v〉H1(Ω) =
∫

Ω

µ∇udd ·∇v+a ·∇udd v+ cudd v− f vdx ∀v ∈ H1
0 (Ω). (12)

Notice that the left-hand side of (12), that is 〈R,v〉H1(Ω) =
∫

Ω
∇R ·∇v+Rvdx, is of

a similar form to the left-hand side in (9). These maps are well defined according
to the lemmas below and allow us to define the reduced cost functional J̃(g,ϕ) :=
J(R(u1(g),ϕ),g,ϕ) and the optimal control problem

min
g,ϕ

J̃(g,ϕ) s.t. 0≤ ϕ(x)≤ 1 in Ω and (11) holds. (13)

For well-posedness of this optimization problem, we need four Lemmas:

Lemma 1. Let z ∈ H1(∂Ω) with Ω ⊂ R2 convex and ∂Ω Lipschitz. Then the prob-
lem ∫

Ω

µ∇u1 ·∇v+ cu1 vdx = 0 ∀v ∈ H1
0 (Ω) (14)

with u1 = z on ∂Ω is uniquely solvable by u1 ∈ H1(Ω)∩C(Ω), and there exists a
positive constant c such that ‖u1‖H1(Ω) ≤ c‖z‖H1(∂Ω).

Proof. To show that there exists a unique u1 ∈ C(Ω), we define w as the har-
monic extension of z in Ω . Recalling the embedding H1 ↪→C for one-dimensional
domains, we have that z ∈ C(∂Ω). Therefore, since Ω is a Lipschitz domain,
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w ∈C2(Ω)∩C(Ω); see, e.g., [12]. Now, consider the problem −µ∆v+ cv = −cw
in Ω with v = 0 on ∂Ω . Since Ω is convex, Theorems 3.2.1.2-3 in [14] ensure
that this problem is uniquely solved by v ∈ H2(Ω)∩H1

0 (Ω). Since Ω ⊂ R2, the
Sobolev embedding H2(Ω) ↪→ C(Ω) [7] ensures that v ∈ C(Ω). Noticing that the
function w+ v solves (14), u1 ∈C(Ω) and is unique by the linearity of (14). Next,
we show that u1 ∈H1(Ω) with ‖u1‖H1(Ω)≤ c‖z‖H1(∂Ω). Consider the trace operator
τ : H1(Ω)→H1/2(∂Ω). Since Ω is a Lipschitz domain, by [16, Theorem 3.37, page
102] this operator has a bounded right-inverse τ−1 : H1/2(∂Ω)→H1(Ω). Now, we
define w := τ−1z and note that w ∈ H1(Ω). So, if we decompose u1 as u1 = w+ ṽ,
then ṽ must solve in a weak sense the problem −µ∆ ṽ+ cṽ = −(−µ∆w+ cw) in
Ω with ṽ = 0 on ∂Ω . By the Lax-Milgram theorem we have that the unique solu-
tion is ṽ ∈ H1

0 (Ω) and there exists a constant C such that ‖ṽ‖H1(Ω) ≤ C‖w‖H1(Ω).
Therefore, u1 ∈H1(Ω) and using the decomposition u1 =w+ ṽ we get ‖u1‖H1(Ω) ≤
(1+C)‖w‖H1(Ω) = (1+C)‖τ−1z‖H1(Ω) ≤ K‖z‖H1(∂Ω), for some positive constant
K, where we used the boundedness of τ−1 [16].

Lemma 2. Let ϕ ∈ H1(Ω) such that 0≤ ϕ(x)≤ 1 a.e. in Ω . Then for any function
v ∈ H1(Ω)∩C(Ω) it holds that ϕv ∈ H1(Ω).

Proof. An application of Theorem 1 in [9, page 247] shows that ∇(vϕ) = v∇ϕ +
ϕ∇v. Then a simple estimate of the norm ‖∇(vϕ)‖L2(Ω) allows us to obtain the
result.

Lemma 3. Let {zn}n be a sequence that converges weakly in H1(∂Ω) to a weak
limit ẑ ∈ H1(∂Ω), i.e. zn ⇀ ẑ in H1(∂Ω). Define the sequence {u1,n}n by u1,n :=
u1(zn), where u1(zn) solves (14) with u1 = zn on ∂Ω . Then there exists a subse-
quence u1,n j that converges weakly in H1(Ω) and strongly in L2(Ω) to the limit
û1 = u1(ẑ) ∈ H1(Ω), i.e., u1,n j ⇀ û1 in H1(Ω) and u1,n j → û1 in L2(Ω).

Proof. Since the sequence {zn}n converges weakly in H1(∂Ω), it is bounded in the
norm ‖ · ‖H1(∂Ω). By Lemma 1, we have that ‖u1,n‖H1(Ω) ≤ c‖zn‖H1(∂Ω) ≤ K, for
some positive constant K, and the sequence u1,n is bounded in H1(Ω). Since H1(Ω)
is reflexive, there exists a weakly convergent subsequence u1,n j ⇀ û1 in H1(Ω).
Now, from (14), we have that for any v ∈ H1

0 (Ω)∫
Ω

µ∇u1,n j ·∇v+ cu1,n j vdx→
∫

Ω

µ∇û1 ·∇v+ c û1 vdx.

Moreover, the weak convergence zn j ⇀ ẑ and the continuity of the trace operator
τ : H1(Ω)→H1/2(∂Ω) [16, Theorem 3.37] implies that zn j = τ(u1,n j)⇀ τ(û1) = ẑ,
weakly in H1/2(∂Ω). Therefore, û1 = u1(ẑ). We conclude by recalling the Sobolev
compact embedding H1(Ω)b L2(Ω); see, e.g., [7].

Lemma 4. Let {u1,n}n be the sequence defined in Lemma 3 such that u1,n j ⇀ û1

(weakly) in H1(Ω). Consider a sequence {ϕn}n in H1(Ω) such that 0≤ ϕn(x)≤ 1
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and ϕn ⇀ ϕ̂ (weakly) in H1(Ω) with 0 ≤ ϕ̂(x) ≤ 1. Then there exist two subse-
quences {ϕn j} j and {u1,n j} j such that ϕn j → ϕ̂ and u1,n j → û1 (strongly) in L2(Ω),
and for any v ∈ H1

0 (Ω)∫
Ω

∇(ϕn j u1,n j) ·∇v+ϕn j u1,n j vdx→
∫

Ω

∇(ϕ̂ û1) ·∇v+ ϕ̂ û1vdx.

Proof. The existence of the subsequences {ϕn j} j and {u1,n j} j such that ϕn j → ϕ̂

and u1,n j → û1 (strongly) in L2(Ω) follows from the fact that ϕn ⇀ ϕ̂ (weakly in
H1(Ω)), Lemma 3, and the Sobolev (compact) embedding H1(Ω) b L2(Ω) [7].
Now, recalling Lemma 1 and according to the proof of Lemma 2 it holds that
∇(u1,n j ϕn j) = u1,n j ∇ϕn j +ϕn j ∇u1,n j . Therefore, to treat the products of sequences
û1.n j ∇ϕ̂n j , ϕn j ∇u1,n j , and ϕn j u1,n j , we use [7, Theorem 5.12-4] to obtain for any
v ∈ H1

0 (Ω) that∫
Ω

∇(ϕn j u1,n j )∇v+ϕn j u1,n j vdx=
∫

Ω

u1,n j ∇ϕn j ∇v+ϕn j ∇u1,n j ∇v+ϕn j u1,n j vdx

→
∫

Ω

û1∇ϕ̂∇v+ϕ̂∇û1∇v+û1 ϕ̂vdx=
∫

Ω

∇(ϕ̂ û1)·∇v+ϕ̂ û1v+û1 ϕ̂vdx.

We are now ready to prove that (13) is well posed.

Theorem 1. Let α,β > 0, then there exists a solution to problem (13).

Proof. Consider a minimizing sequence {(Rn,ϕn,u1,n,gn)}n, where gn is extended
by zero on ∂Ω . Since J is coercive in ϕ and g we have the bounds ‖ϕn‖H1(Ω) ≤ c
and ‖gn‖H1(∂Ω) ≤ c′, for two positive constants c,c′; see, e.g., [17]. The reflexivity
of H1(Ω) and H1(∂Ω) ensures the existence of weakly convergent subsequences:
ϕn j ⇀ ϕ̂ in H1(Ω) and gn j ⇀ ĝ in H1(∂Ω). By the Sobolev (compact) embedding
H1(Ω)b L2(Ω) [7], the sequence {ϕn j} j converges strongly in L2(Ω) to ϕ̂ . Since
the set {v ∈ L2(Ω) : 0 ≤ v(x) ≤ 1 a.e. in Ω} is (weakly) closed in L2(Ω) [17],
we have 0 ≤ ϕ̂(x) ≤ 1. Consider now the sequence {u1,n}n and the corresponding
subsequence u1,n j = u1(gn j). By Lemma 3, we have that u1,n j ⇀ û1 = u1(ĝ) weakly
in H1(Ω) and u1,n j → û1 = u1(ĝ) strongly in L2(Ω). Consider the sequence {Rn}n.
Since Rn satisfies

〈Rn,v〉H1(Ω) =
∫

Ω

µ∇udd,n ·∇v+a ·∇udd,n v+ cudd,n v− f vdx ∀v ∈ H1
0 (Ω),

where udd,n = ϕnu1,n + (1− ϕn)u2, from the Lax-Milgram theorem we have that
‖Rn‖H1(Ω)≤K(‖u1,n‖H1(Ω),‖ϕn‖H1(Ω)), where the constant K depends on ‖u1,n‖H1(Ω)

and ‖ϕn‖H1(Ω), which are bounded. Therefore, Rn is bounded as well, and by
Lemma 4, one can show that Rn j ⇀ R̂ = R(û1, ϕ̂) weakly in H1(Ω). Now, the weak-
lower semi-continuity of J implies the claim [17, 4].

To obtain the first-order optimality system, we rely on the Lagrange multiplier
approach and work in the reduced space of solutions of constraint and adjoint equa-
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tions; see, e.g., [5, 17]. We first recall the control-to-state maps g 7→ u1(g) and
(g,ϕ) 7→ R(u1(g),ϕ) and the reduced cost functional J̃(g,ϕ). Then we notice that
its derivatives, for δg ∈ H1

0 (Γ ) and δϕ ∈ H1
0 (Ω), are

Dg J̃(g,ϕ)(δg)=〈βg+Rg ,δg〉H1 (Γ ) , Dϕ J̃(w,ϕ)(δϕ)=〈αϕ+Rϕ ,δϕ〉H1 (Ω) .
(15)

Here Rg is the solution of the problem

〈Rg,δg〉H1
0 (Γ ) = 〈Bg̃δg,λ 〉H−1,H1 , (16)

where 〈·, ·〉H−1,H1 : H−1(Ω)×H1
0 (Ω)→ R denotes the duality pairing, and Rϕ is

the Riesz representative of the linear functional

δϕ 7→
∫

Ω

µ∇
[
(u1−u2)δϕ

]
·∇Rdx+a ·∇

[
(u1−u2)δϕ

]
R+ c(u1−u2)δϕ Rdx.

In (16), λ ∈ H1
0 (Ω) is a Lagrange multiplier that solves the adjoint equation∫

Ω

∇λ ·∇v+ cλ vdx =
∫

Ω

µ∇(vϕ) ·∇R+a ·∇(vϕ)R+ cvϕ Rdx, (17)

for all v ∈ H1
0 (Ω). Therefore, the first-order optimality system is given by (9), (12),

(17) and (16) together with the conditions [4, 17]

DgJ̃(g,ϕ)(δg) = 0,

for all δg ∈ H1
0 (Γ ), and for any arbitrary θ > 0

ϕ = PVad

(
ϕ−θ

(
αϕ +Rϕ

))
,

where PVad is the projection onto Vad := {v ∈ H1(Ω) : 0≤ v(x)≤ 1 a.e. in Ω}.

4 Numerical experiments

We present now numerical experiments for the one-dimensional elliptic problem

−µ∂xxu−∂xu = 1 in (0,1), with u(0) = 0, u(1) = 0, (18)

for given µ = 0.01, computing udd = ϕ1u1 +ϕ2u2, with

−µ∂xxu1 = 0 in (0,1),
u1(0) = 0, u1(1) = g,

and
−∂xu2 = 1 in [0,1),
u2(1) = 0.

We solve both the PUM and Petrov-Galerkin optimality systems discretized by lin-
ear finite-elements with a projected-LBFGS method with stopping tolerance 5 ·10−5
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Fig. 2 Comparison of the Petrov and PUM approaches: Left: partition of unity functions ϕ and
1−ϕ . Middle: exact solution and approximations. Right: Decay of the cost functional.

on the (relative) residual norm. The regularization parameters are α = β = 10−7. In
Figure 2 (left) we see that the ϕ and 1−ϕ obtained by the two approaches are very
similar, and catch well the boundary layer on the left. The small bumps in the right
part (close to x = 1) are due numerical effects and we checked that they disappear
for smaller tolerances. In Figure 2 (middle) the exact solution is compared with the
two approximations udd , and we see good agreement. In Figure 2 (right), we show
the decay of the cost functional with respect to the number of iterations, and we see
that the Petrov-Galerkin approach converges a bit faster.
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Integral equation based optimized
Schwarz method for electromagnetics

Xavier Claeys1, Bertrand Thierry2, and Francis Collino3

1 Introduction

The optimized Schwarz method (OSM) is recognized as one of the most
efficient domain decomposition strategies without overlap for the solution to
wave propagation problems in harmonic regime. For the Helmholtz equation,
this approach originated from the seminal work of Després [4, 5], and led to
the development of an abundant literature offering more elaborated but more
efficient transmission conditions, see [1, 6, 7, 8] and references therein. Most
contributions focus on transmission conditions based on local operators.

In [2, 9, 10], the authors introduced non-local transmission conditions that
can improve the convergence rate of OSM. In [9, Chap.8] the performance of
this strategy was shown to remain robust up to GHz frequency range. Such
an approach was proposed only for the Helmholtz equation, and has still not
been adapted to electromagnetics.

In the present contribution we investigate such an approach for Maxwell’s
equations in a simple spherical geometry that allows explicit calculus by
means of separation of variables. We study an Optimized Schwarz Method
(OSM) where the transmission conditions are based on impedance type
traces. The novelty lies in our impedance operator that we choose to be
non-local. More precisely, it is chosen as a variant of the so-called Electric
Field integral operator (see [11, §5.5]) where the wave number is purely imag-
inary. We show that the iterative solver associated to our strategy converges
at an exponential rate.
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2 Maxwell’s equations in harmonic regime

As a model problem we consider an electromagnetic transmission problem
stemming from Maxwell’s equations in harmonic regime where the whole
space R3 is partitioned in two sub-domains R3 = Ω+ ∪ Ω− with Ω− being
the unit open ball centered at 0, and Ω+ = R3 \Ω−. Denote by nσ the vector
field normal to Γ directed toward the exterior of Ωσ, σ = ±. With a constant
wave number κ > 0, this is written

curl(E±)− ıκH± = 0, curl(H±) + ıκE± = 0 in Ω±,

lim
ρ→∞

∫
∂Bρ

|H+ × x̂−E+|2dσρ = 0,

γ+t (E) = + γ−t (E) + gt , with γ±t (E) := n± × (E±|Γ × n±),
γ+r (H) = −γ−r (H) + gr , with γ±r (H) := n± ×H±|Γ ,

(1)

with Bρ := {x ∈ R3, |x| < ρ} and x̂ := x/|x|. In this problem, gt, gr

are given source terms assumed to be supported on Γ only. Considering
some invertible impedance operator Z that we shall define in Section 4, the
transmission conditions in (1) can be reformulated as

γ+t (E) + Zγ+r (H) = γ−t (E)−Zγ−r (H) + gt + Zgr,

γ−t (E) + Zγ−r (H) = γ+t (E)−Zγ+r (H)− gt + Zgr.
(2)

For any tangential vector field v and σ = ± define the magnetic-to-electric
operator Tσ(v) := γσt (U) where (U,V) is the unique solution to curl(U)−
ıκV = 0 in Ωσ, curl(V)+ıκU = 0 in Ωσ and γσr (V) = v (and Silver-Müller’s
radiation condition if σ = +). Taking uσ = γσt (E) + Zγσr (H), σ = ± as
unknowns of our iterative procedure, Problem (1) is then equivalent to

u−σ = Aσ(uσ) + fσ, σ = ±,
with Aσ := (Tσ −Z)(Tσ + Z)−1,

(3)

and f± := (Z(gr) ± gt). An optimized Schwarz strategy to solve Problem
(1) now consists in a fixed point iterative method applied to (3), using the

approximation u± = γ±t (E) + Zγ±r (H) = limn→∞ u
(n)
± where u

(n)
± follows

the recurrence[
u
(n+1)
+

u
(n+1)
−

]
=

[
1− r rA+

rA− 1− r

]
·

[
u
(n)
+

u
(n)
−

]
+

[
rf+

rf−

]
. (4)

In this iterative method, r > 0 is a relaxation parameter whose effective value
shall be discussed in the sequel.
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3 Separation of variables on the sphere

To study the convergence of (4), we rely on the spherical symmetry of
our model problem, and decompose the fields by means of vector spheri-
cal harmonics. According to e.g. [11, Thm.2.4.8], any tangential vector field
u ∈ L2

t(Γ ) := {v : Γ → C,
∫
Γ
|v|2dσ < +∞, x · v(x) = 0 on Γ} can be

decomposed as

u(x) =

+∞∑
n=0

∑
|m|≤n

udn,mXd
n,m(x) + ucn,mXc

n,m(x),

with Xd
n,m := 1√

n(n+1)
∇ΓYm

n , Xc
n,m := x̂×Xd

n,m,

where x̂ := x/|x| and ∇Γ is the surface gradient. Denoting (θ, φ) ∈ [0, π] ×
[0, 2π] the spherical coordinates on Γ , spherical harmonics are defined by

Ym
n (θ, φ) :=

√
2n+ 1

4π

√
(n− |m|)!
(n+ |m|)!

P|m|n (cos θ)eımφ,

where P
|m|
n (t) are the associated Legendre functions, see e.g. [3, §2.3]. The

tangent fields Xd
n,m,X

c
n,m, 0 ≤ |m| ≤ n yield an orthonormal Hilbert basis

of L2
t(Γ ). The operators T± are diagonalized by the functions Xd

n,m,X
c
n,m.

Indeed we have T±(X?
n,m) = t?n,±X

?
n,m for ? = d,c where, according to

Formula (53) in [13],

tdn,− = 1/tcn,− = +ıJ′n(κ)/Jn(κ),

tdn,+ = 1/tcn,+ = −ıH′n(κ)/Hn(κ).
(5)

Here Jn(x) :=
√
πx/2 Jn+1/2(x) with Jn(x) denoting the Bessel function

of the first kind of order n, and Hn(x) :=
√
πx/2 H

(1)
n+1/2(x) with H

(1)
n (x)

denoting the Hankel function of the first kind of order n. The following result
follows from [11, Thm.5.3.5].

Proposition 1.
We have <e{

∫
Γ
u T−(u)dσ} = 0 and <e{

∫
Γ
u T+(u)dσ} > 0 for all u ∈

L2
t(div, Γ ) \ {0} where L2

t(div, Γ ) := {v ∈ L2
t(Γ ), divΓ (v) ∈ L2(Γ ) }.

This result is related to energy balance in Ω±. With <e{
∫
Γ
u T−(u)dσ} = 0,

the energy coming in Ω− equals the outgoing energy. On the other hand, in
Ω+, there is energy radiated toward infinity as <e{

∫
Γ
u T+(u)dσ} > 0. A

direct consequence in terms of separation of variables is

<e{t?n,+} > <e{t?n,−} = 0 for ? = d,c, ∀n ≥ 0. (6)
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That <e{t?n,−} = 0 can also be seen directly from expression (5) since the
Jn(z) are proportional to Bessel functions hence real valued. Assuming that
the impedance is chosen so that Z(X?

n,m) = z?nX
?
n,m for ? = d,c and n ≥ 0

where zn,? ∈ C, we have

A±(X?
n,m) = a?n,±X?

n,m with a?n,σ =
t?n,σ − z?n
t?n,σ + z?n

. (7)

The exponential convergence of the optimized Schwarz method is guaranteed
provided that the spectral radius %osm of the iteration operator in (4) is
strictly smaller than 1,

%osm = sup
n≥0

%n < 1, with %n := max
σ=±,?=d,c

|1− r ± r
√
a?n,+a

?
n,−|. (8)

First observe that, for any r ∈ (0, 1), we have |1 − r + rλ| < 1 as soon as
λ 6= 1 and |λ| ≤ 1. Since |(z − 1)/(z + 1)| ≤ 1 if and only if <e{z} ≥ 0,
a necessary condition of convergence is that %n < 1 for each n which boils
down to <e{t?n,σ/z?n} ≥ 0 for each n, σ, ?. According to (6), the later condition
holds provided that z?n ∈ (0,+∞).

4 Non-local impedance operator

Now let us discuss our construction of the impedance operator Z. Compared
to existing literature on optimized Schwarz strategies in the context of elec-
tromagnetics, the peculiarity of the present contribution lies in our choice of
Z that is non-local. We choose

Z(u) := α

∫
Γ

Gα(x− y)u(y)dσ(y)− 1

α
∇Γ
∫
Γ

Gα(x− y)divΓu(y)dσ(y) (9)

where the kernel Gα(x) := exp(−α|x|)/(2π|x|) satisfies −∆Gα + α2Gα = 2δ0
in R3, and α > 0 is a parameter whose value shall be discussed later. The
operator given by (9) is a classical object of potential theory that can be
understood as a dissipative version of the so-called Electric Field Integral
operator (EFIE). Defined in this manner, the operator Z is diagonalized by
the X?

n. According to Formula (54) in [13] we have

zdn = 2J′n(ıα)H′n(ıα) and zcn = 2Jn(ıα)Hn(ıα). (10)

According to Rayleigh’s formulas, see [12, Chap.10], we have Jn(ıx) = (ıx)n+1

(x−1∂x)n(sinh(x)/x) and Hn(ıx) = −(ıx)n+1(x−1∂x)n(exp(−x)/x). It is
clear from (10) that zdn, z

c
n > 0 for all n ≥ 0.
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Satisfying %n < 1 for each n is necessary but not sufficient for (8) to be
fulfilled. We must also verify that lim supn→∞ %n < 1. Let us study the
asymptotic behaviour of %n for n → ∞. First, observe that (5) and (10)
provide explicit expressions for z?n and t?n,σ where ? = d,c and σ = ±.
According to [3, §2.4], we have Jn(x) ∼ xn+1n!2n/(2n + 1)! and Hn(x) ∼
−ıx−n(2n)!/(n!2n) for n→ +∞, and these asymptotics hold for both x ∈ R
and x ∈ ıR. Plugging this inside (5) and (10) yields, for n→ +∞,

zdn ∼
n→∞

n

α
, zcn ∼

n→∞

α

n
and tdn,± ∼

n→∞

ın

κ
.

We also deduce the asymptotics of tcn,± = 1/tdn,±. From this we obtain
tdn,±/z

d
n ∼ ıα/κ and tcn,±/z

c
n ∼ −ıκ/α. With (7) we conclude that

lim
n→∞

adn,± = +φ(α/κ) and lim
n→∞

acn,± = −φ(α/κ) where φ(γ) :=
ıγ − 1

ıγ + 1
.

Now we have limn→∞ %n = max | 1−r±rφ(α/κ) |. A natural idea for choosing
the parameters r and α consists in minimizing this quantity. The minimum
is obtained for α = κ and r = 1/2 and we have in this case (note that this
limit does not depend on κ)

lim
n→∞

%n = 1/
√

2 for α = κ, r = 1/2. (11)

The control of %n when n goes to infinity is crucial to obtain geometrical
convergence. It cannot be obtained when the impedance operator is a combi-
nation of local operators (with Padé approximants of the true impedance for
instance). The use of non-local and positive impedance operator is the price
to pay to achieve geometrical convergence.

5 Numerical illustration

Below we illustrate our analysis with effective numerical calculation1 of the
eigenvalues of the iteration operator of (4), taking systematically α = κ. In
Fig.1 below, we plot these eigenvalues for κ = 10. We see that the whole
spectrum is contained in the unit disc. The values ±ı clearly appear as the
accumulation points of the spectrum with no relaxation (r = 1).

For eigenvalues associated to the relaxation parameter r = 1/2, we see
that the accumulation points are located at (1/2,±1/2) whose modulus is
1/
√

2, which agrees with (11). Next, in Fig.2 we show the same plots at
higher frequency κ = 100. Once again, the whole spectrum is contained in
the unit disc.

1 Matlab scripts are available at: http://gitlab.lpma.math.upmc.fr/IEOSM/Matlab
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Fig. 1: Iteration eigenvalues with κ = 10 for r = 1 (left) and r = 1/2 (right)
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Fig. 2: Iteration eigenvalues with κ = 100 for r = 1 (left) and r = 1/2 (right)

Finally in Fig.3 we plot the values %n versus the modal index n for κ =
10, 30, 100. For low modal indices, it oscillates with growing amplitude until
it reaches a pick located around n ∼ κ. Then %n smoothly decays to 1/

√
2.

This scenario does not change as κ grows.
Although limn→∞ %n remains independent of κ, the spectral radius supn≥0 %n

(reached around n = κ) does depend on κ, and we see in Fig.3 that this max-
imum grows closer to 1 as κ → ∞. This suggests us that the values α = κ
and r = 1

2 may not be the optimal choice.

6 Conclusion

We have shown the convergence of the domain decomposition algorithm based
on a dissipative EFIE transmission condition. How to choose the parameter
α in a more optimal way should be further investigated. Moreover, it would
be worth examining variants of the transmission operator (9). Augmenting
it with additional local terms based on Padé approximants, in the manner of
[6], seems promising.
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Fig. 3: Values of %n versus n with r = 0.5 for κ = 10, 30, 100.

Besides, in a finite element context, the use of a non-local operator is ex-
pensive in terms of both CPU time and memory storage. Various approaches
could be considered for overcoming this problem. A possible solution may
consist in truncating the Green kernel so as to (quasi)-localize the operator.
The choice of the truncation and how it impacts the iteration operator should
then be further investigated.

Other extensions of the present work are possible. For non-spherical in-
terfaces, using the approach developed in [2], a convergent strategy would
be obtained by choosing the impedance operator according to (9). This re-
mark also holds in the case of multiple sub-domains, as long as there is no
junction point at interfaces. Our strategy can also be adapted to the case of
piecewise constant material characteristics. For this case also, the theory in
[2] suggests that our method is convergent although, this time, a choice of
impedance operator that varies according to the sub-domains may be more
optimal. Finally the case of fully heterogeneous media seems to be still a
widely open question.

Acknowledgment This work received support from the ANR research
Grant ANR-15-CE23-0017-01.
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Analysis of the shifted Helmholtz expansion
preconditioner for the Helmholtz equation

Pierre-Henri Cocquet1, Martin J. Gander2

1 Introduction

Solving Helmholtz problem numerically is challenging [?] mainly because of the
lack of coercivity of the continuous operator or highly oscillatory solutions. Krylov
subspaces methods like GMRES are still used in regards of their robustness but they
require a good preconditioner1 to be fast enough. Among many proposed precon-
ditioners like Incomplete LU, Analytic ILU or domain decomposition based pre-
conditioner, the shifted Helmholtz preconditioner [?, ?, ?, ?] has received a lot of
attention over the last decade thanks to its simplicity and its relevance to heteroge-
neous media.

This paper focus on the recent idea of expansion preconditioner [?, ?] which is
based on the fact that the inverse of the discrete Helmholtz operator can be writ-
ten as a superposition of inverse of discrete shifted Helmholtz operator only. This
is achieved using the Taylor’s expansion, around β = 0, of the matrix-valued func-
tion f (β ) = (−∆h− (1+ iβ )k2)−1, where ∆h corresponds to a finite difference dis-
cretization of the usual Laplace operator. The expansion-preconditioner is then de-
fined as the truncation of the Taylor’s series hence converging to the exact inverse
of the discrete Helmholtz operator if the Taylor series actually converges. They also
proposed to compute each inverse of shifted Helmholtz with some iteration of multi-
grid which is known to converge with a number of iterations independent of the
wavenumber (see e.g. [?, ?]). We emphasize that the rate of convergence of the ex-
pansion preconditioner toward A−1

0 = f (0) is computed in [?] and is given to be a
O(β n). However, the latter does not involves bounds on the higher derivative of f
which can deteriorate the performance of the proposed preconditioner and no addi-
tional analysis is performed.

(1) Université de la Réunion, PIMENT, 2 rue Joseph Wetzell, 97490 Sainte-Clotilde.
(2) University of Geneva, 2-4 rue du Lièvre, CP 64, 1211 Genève, Switzerland,
{martin.gander@unige.ch}{pierre-henri.cocquet@univ-reunion.fr}
1 For a linear system Cx = y, a good preconditioner refer to a matrix B for which the spectrum of
B−1C is clustered around 1 (see e.g Elman’s estimate [?]).
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The goal of this paper is to give a theoretical insight of the performances of the
expansion preconditioner and to extend its definition to Finite Element discretiza-
tion. We first build the expansion preconditioner using the generalized resolvent
formula and study its performances. We next show, as proved in [?], that it is manda-
tory to have a shift of the order of the wavenumber to get wavenumber independant
convergence of GMRES. This paper ends with some numerical simulations.

2 General analysis of the expansion preconditioner

Let Ω be a convex polygon of Rd , with d = 1,2,3. The shifted Helmholtz equation
with impedance boundary conditions is{

−∆u(x)− (k2 + iε)u(x) = f (x), x ∈Ω ,
∂nu− iηu = 0, on ∂Ω ,

(1)

where n is the unitary normal vector directed outward ∂Ω , ε > 0 is the so-called
shift, and η > 0 is the impedance parameter. The Helmholtz equation with approx-
imate radiation condition is recovered from (??) by setting ε = 0 and η = k.

The variational form of (??) is given below{
Find u ∈ H1(Ω) such that for all v ∈ H1(Ω) :

aη(u,v) :=
∫

Ω

∇u ·∇v− (k2 + iε)uvdx− iη
∫

∂Ω

uvdσ =
∫

Ω

f vdx. (2)

Let Vl be the finite element space obtained with piecewise linear polynomials

Vl =
{

v ∈ C (Ω) | v|T ∈ P1 for all T ∈Tl
}
= Span(φ1, · · · ,φN),

where
{

φ j
}N

j=1 is the finite element nodal basis. The discrete problem is then{
Find ul ∈ Vl such that :

aε(ul ,vl) =
∫

Ω

f vldx, ∀vl ∈ Vl .
(3)

The latter is equivalent to the linear system Aε zl = bl where ul =Fhzl is the Galerkin
solution and

Fh : x = (x1, · · · ,xN) ∈ CN 7→
N

∑
j=1

x jφ j ∈ Vh.

Denoting by S, M, N respectively the stiffness, mass and boundary mass matrix,
one gets

Aε = S− (k2 + iε)M− iηN.

We denote by A0 the discrete Helmholtz operator obtained with ε = 0 and η =
k. We emphasize that this matrix is invertible thanks to the impedance boundary
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condition. Also, if Dirichlet or Neumann’s boundary conditions are used, we assume
throughout this paper that A0 is invertible.

We now give a generalized resolvent formula whose proof can be done by routine
computations.

Lemma 1. Let A,B ∈Hom(Cn) with B invertible and p,z ∈C be two complex num-
bers in the resolvent set of AB−1. Let R(z) = (A−zB)−1 be the generalized resolvent
of A. The following formula then holds

R(p)−R(z) = (z− p)R(z)BR(p).

Using Neumann’s series, Lemma ?? allow to rewrite the inverse of the discrete
Helmholtz operator as a superposition of discrete shifted Helmholtz operator.

Theorem 1. The inverse of the discrete Helmholtz operator is given as follows

A−1
0 =

(
∑
j≥0

(−iε) j (A−1
ε M

) j
)

A−1
ε ,

where the serie converges with respect to the norm ‖x‖M =
√
〈Mx,x〉= ‖Fhx‖L2(Ω) .

Proof. Lemma ?? applied with A = A0, B = M, p = 0 and z = iε yields

A−1
0 = (Id + iεA−1

ε M)−1A−1
ε .

Note that A−1
ε M = (M−1Aε)

−1. Let z ∈ CN such that Aε z = Mb for some b ∈ CN .
From the definition of the mass matrix M, the operator Fh and Aε , one gets

aη(Fhz,Fhz) = 〈Mb,z〉=
(
Fhb,Fhz

)
L2(Ω)

.

Cauchy-Schwartz inequality and the next lower bound

|aη(Fhz,Fhz)|> |I aη(Fhz,Fhz)|= ε ‖Fhz‖2
L2(Ω)+η ‖Fhz‖2

L2(∂Ω) ,

show that ‖z‖M < ‖b‖M ε−1, and thus
∥∥εA−1

ε M
∥∥

M < 1. Finally, (Id + iεA−1
ε M)−1

can be expanded as a Neumann’s serie and the proof is finished.

Remark 2 The mass matrix is symmetric and positive definite so it admits a square
root M1/2. For any B ∈ Hom(CN), the matrix norm induced by ‖·‖M is then defined
by ‖B‖M =

∥∥M1/2BM−1/2
∥∥

2. This yields∥∥εA−1
ε M

∥∥
M = ε

∥∥∥M1/2A−1
ε M1/2

∥∥∥
2
= ε

∥∥A−1
ε M

∥∥
2 < 1,

and thus the series from Theorem ?? converges with respect to the 2-norm as well.

Following [?], the expansion preconditioner of order n ∈ N∗ is defined as a trun-
cation of the Neumann’s serie given in Theorem ??
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EX(n) =

(
n−1

∑
j=0

(−iε) j (A−1
ε M

) j+1
)

M−1 =

(
n−1

∑
j=0

(−iε) j (A−1
ε M

) j
)

A−1
ε . (4)

The preconditioned problem is thus given as follow

EX(n)A0zl = EX(n)bl . (5)

From Elman’s estimate (see e.g. Theorem 1.8 [?]), the rate of convergence of
GMRES used for solving Cx = y only depend on the upper bound of ‖I−C‖2. We
now compute this term for the expansion preconditioner.

Theorem 3. For any shift ε > 0, impedance parameter η > 0, meshsize h and n∈N,
the expansion preconditioner satisfies the following bounds

N (Id−EX(1)A0)≤ εN
(
A−1

ε M
)
,

∀n≥ 1, N (Id−EX(n)A0)≤
1+ εN

(
A−1

ε M
)

1− εN
(
A−1

ε M
) (εN

(
A−1

ε M
)
)n,

where N (B) denotes any matrix norm or ρ(B).

Proof. The first item follows from I−EX(1)A0 = I−A−1
ε A0 = iεA−1

ε M. For the
second one, we compute

I−EX(n)A0 = (A−1
0 −EX(n))A0 =

(
∑
j≥n

(−iε) j(A−1
ε M) j

)
A−1

ε A0.

Note that A−1
ε A0 = Id + iεA−1

ε M and thus A−1
ε A0 and A−1

ε M commute. Now, using
that ερ(A−1

ε M) ≤ ε
∥∥A−1

ε M
∥∥

2 < 1, we can use Gelfand’s formula to get the con-
vergence of the Neumann series with respect to any matrix norm. Majoring and
expanding using geometric serie then give

N (I−EX(n)A0) ≤ N
(
Id + iεA−1

ε M
)
(εN

(
A−1

ε M
)
)n

∑
j≥0

(εN
(
A−1

ε M
)
) j

≤
1+ εN

(
A−1

ε M
)

1− εN
(
A−1

ε M
) (εN

(
A−1

ε M
)
)n.

Remark 4 The construction of the expansion preconditioner as well as Theorem ??
hold without any changes for high order Finite Element discretization.

The upper bound from Theorem ?? involves only εN
(
A−1

ε M
)
. If the latter is

bounded away from 1, the expansion preconditioner can greatly reduce the number
of GMRES iterations by considering a large enough n.



Expansion preconditioner for Helmholtz equation 5

3 Wavenumber-independance convergence of GMRES

We show in this section that, as proved in [?], taking ε ∼ k is mandatory to ensure
wavenumber-independant convergence of GMRES when using an expansion pre-
conditioner. This is done in the next result for two types of meshes: one for which
one has pollution-free FEM2 and one for h∼ k−2.

Theorem 5. Assume that one of the following assumptions holds
(A1) η ∼ k and k3h2 ≤C0 holds with C0 small enough.
(A2) η . k, k ≥ k0 for a given k0 > 0 and kh

√
|k2− ε| ≤C0 holds with C0 small

enough.
Then there exists a constant C2 > 0 depending only on Ω such that for any ε > 0

with εC2 < k, one has

∀ n≥ 1, N (Id−EX(n)A0)≤
(

C2ε

k

)n k+C2ε

k−C2ε
,

where N (.) = ρ(.) if (A1) hold and N (.) = ‖.‖2 if (A2) hold.

Proof. Assume that (A1) hold. Let λ ∈ C be an eigenvalue of M−1Aε = (A−1
ε M)−1

and v ∈ CN the associated eigenvector. One has

M−1Aε v =
(
M−1(S− iηN)− (k2 + iε)IN

)
v = λv.

Therefore, the spectrum of M−1Aε is given by

σ(M−1Aε) =
{

λ j + iε | λ j ∈ σ(M−1A0)
}
,

from which we infer that

ερ(A−1
ε M) = max

λ j∈σ(M−1A0)

ε

|λ j + iε|
(6)

Let b ∈ CN be fixed and ϕh ∈ CN be the solution to A0vh = Mb. Note that ϕh =
Fhvh ∈ Vh corresponds to the FEM discretization of the solution to (??) with f =
Fhb. Since f ∈ L2(Ω) and Ω is assumed to be convex, the solution to the Helmholtz
equation (??) belongs to H2(Ω). Since (A1) hold, one can apply [?, Corollary 4.4
p.12] to get

‖∇ϕh‖L2(Ω)+ k‖ϕh‖L2(Ω) . ‖ f‖L2(Ω) . (7)

Then (??) shows that

‖Fhvh‖L2(Ω) .
1
k
‖Fhb‖L2(Ω) .

Using [?, Eq. (4.2) p. 24], one has ‖Fh‖CN→Vh
∼ hd/2 which gives

‖vh‖2 =
∥∥A−1

0 Mb
∥∥

2 .
‖b‖

k
.

2 According to [?] no pollution effect occurs if k3h2 ≤C0 holds with C0 small enough.
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The above estimate holds for any b ∈ CN and thus∥∥A−1
0 M

∥∥
2 .

1
k
. (8)

The upper bound (??) proves that, for any µ ∈ σ(A−1
0 M), |µ| . k−1. Since any

λ ∈ σ(M−1A0) can be written as λ = 1/µ , one gets k . |λ |. We finally infer that
there exists C2 > 0 depending only on Ω such that

ρ(A−1
ε M)≤ C2

k
. (9)

Assuming now that (A2) hold allow to apply [?, Lemma 3.5 p.595] that gives the
quasi-optimality of the bilinear form aε on Vh with respect to the weighted norm
‖u‖2

1,k = ‖∇u‖2
L2(Ω)+ k2 ‖u‖2

L2(Ω). Using this, they proved [?, Lemma 4.1 p. 598]
that there exists a constant C2 depending only on Ω such that∥∥A−1

ε M
∥∥

2 ≤
C2

k
. (10)

Using now (??) and (??) together with the bound proved in Theorem ?? ends the
proof.

4 Numerical simulations

5 Conclusions
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A finite difference method with optimized
dispersion correction for the Helmholtz equation

Pierre-Henri Cocquet, Martin J. Gander, Xueshuang Xiang

1 Introduction

We propose a new finite difference method (FDM) with optimized dispersion cor-
rection for the Helmholtz equation

Lku :=−∆u− k2u = f , inΩ ⊂ R2, (1)

where ∆ is the Laplacian, k is the wave number, and we assume boundary conditions
such that the problem is well posed. The Helmholtz equation has important applica-
tions in many fields of science and engineering, e.g., acoustic and electromagnetic
waves, and obtaining more accurate numerical discretizations has attracted signifi-
cant research interest, see [2, 1, 8, 9, 12] and the references therein.

It is well known that all grid based numerical methods, e.g. finite element or fi-
nite difference methods, suffer from the so called pollution effect, which can not
be eliminated [2], and the wave number of the numerical solution is different from
that of the exact solution, leading to numerical dispersion [7, 6]. To keep the pollu-
tion effect and numerical dispersion under control, classical discretizations require a
very fine mesh, which leads to very large discrete systems, especially when the fre-
quency increases. To reduce the numerical dispersion of the standard 5-point finite
difference scheme, a rotated 9-point FDM was proposed in [8] which minimizes the
numerical dispersion, see also [3, 10, 13, 4] for more recent such approaches. Min-
imizing numerical dispersion is also important for effective coarse grid corrections
in domain decomposition and for constructing efficient multigrid solvers: in 1D it is

Pierre-Henri Cocquet
Université de la Réunion, PIMENT, 2 rue Joseph Wetzell, 97490 Sainte-Clotilde e-mail: Pierre-
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even possible to obtain perfect multigrid efficiency using dispersion correction [5],
see also [11] for an approximation in higher dimensions.

We develop here a new dispersion minimizing FDM for the Helmholtz equation
(1) using as a new idea a modified wave number. Compared with the finite difference
scheme of [8] which minimizes already the numerical dispersion, our new scheme
using the same stencil, but a modified wave number, has substantially less dispersion
error and thus much more accurate phase speed. Our examples also indicate that for
plane wave solutions, our new FDM is sixth-order accurate.

2 Dispersion correction for standard FDM

We first recall the definition of the dispersion relation and some notation. Given an
operator P, e.g. the continuous operator Lk in (1) or any finite difference approxi-
mation for Lk, its symbol is

σP(ξ ) := e−iξ ·x(Peiξ ·x). (2)

The dispersion relation of the operator P is then defined to be the set

{ξ ∈ R2|σP(ξ ) = 0}, (3)

where ξ = (ξ1,ξ2) denotes the wave vector. A direct computation using (2) gives for
the continuous operator Lk in (1) the dispersion relation set {ξ ∈R2|ξ 2

1 +ξ 2
2 = k2}.

For ξ such that σP(ξ ) = 0, the number ν = k
‖ξ‖ is called the (normalized) phase

speed associated with a plane wave with angle θ given by tanθ = ξ2/ξ1. For the
operator Lk in (1), the phase speed is equal to 1 for any angle. For any discretization
scheme, we will consider the phase speed as a function of a dimensionless quantity,
the number of points per wavelength G = 2π

kh , or its inverse 1/G.
For any discretization Lh

k of Lk, numerical dispersion can be defined as the dif-
ference between the dispersion relation of Lk and Lh

k . The numerical dispersion can
also be evaluated by the difference of phase speed of Lh

k and 1 for different angles.
A key idea for dispersion correction is to use a different numerical wave number
k̂ in the discretized operator Lh

k̂
to minimize the numerical dispersion [5]. Take for

example the 1D Helmholtz equation

−∂ 2u
∂x2 − k2u = f , (4)

where the dispersion relation is {ξ | |ξ |= k}. The standard 3-point FDM of (4) is

(Lh, f d3
k u)i = h−2(2ui−ui−1−ui+1)− k2ui. (5)

Using (2), the dispersion relation of Lh, f d3
k is {ξ ∈ R |2h−2(1− cos(ξ h)) = k2},

which is quite different from {ξ | |ξ | = k}. In order to make (5) have the same dis-
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Fig. 1 Phase speed curves for 5-point FDM. Left: no dispersion correction. Right: dispersion cor-
rection for θ = 20◦.

persion as (4), it was proposed in [5] to use a different wave number in (5), denoted
by k̂. Choosing k̂ = |

√
2h−2(1− cos(kh))| implies

{ξ ∈ R |2h−2(1− cos(ξ h)) = k̂2}= {ξ | |ξ |= k},

and hence there is no numerical dispersion!
We investigate now if a similar approach can be used for the 2D Helmholtz equa-

tion (1), whose standard 5-point FDM is given by

(Lh, f d5
k u)i, j = h−2(4ui, j−ui−1, j−ui+1, j−ui, j−1−ui, j+1)− k2ui, j, (6)

Using (2), its dispersion relation of Lh, f d5
k can readily be computed to be

{ξ ∈ R2|h−2(4−2cos(hξ1)−2cos(hξ2)) = k2}. (7)

We show in Figure 1 (left) the phase speed v f d5 we computed using (7) for the
angles 0◦,15◦,30◦ and 45◦ when k = 10. We can clearly see that the numerical dis-
persion increases as we decrease the number of points per wavelength G. Using the
dispersion correction idea from the 1D Helmholtz equation, we can do dispersion
correction as well, but only for a specific direction. Given an angle θ , for wave
number k and mesh size h, we choose the numerical wave number to be

k̂(θ ,k,h) = |
√

h−2(4−2cos(khcos(θ))−2cos(khsin(θ)))|. (8)

The 5-point FDM with dispersion correction is then given by

(Lh, f d5
k̂

u)i, j = h−2(4ui, j−ui−1, j−ui+1, j−ui, j−1−ui, j+1)− k̂2ui, j, (9)

and its dispersion relation is

{ξ ∈ R2|h−2(4−2cos(hξ1)−2cos(hξ2)) = k̂2}. (10)
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Fig. 2 Dispersion relation of operator L, fd5 and fd5-dc with dispersion correction for angle 15◦

and G = 4 (left) and G = 2.5 (right).

By the definition of k̂ in (8), one can see that the dispersion correction is used to
ensure that the phase speed v f d5−dc = 1 for the specific angle θ , i.e. there is no
dispersion error in that direction. However, for other angles, we still have numerical
dispersion, as shown in Figure 1 (right), where we did dispersion correction for
θ = 15◦, and then computed the phase speed v f d5−dc for the angles 0◦,15◦,30◦

and 45◦ when k = 10. In Figure 2, we show the dispersion relation of L, Lh, f d5
k

and Lh, f d5
k̂

, where k̂ is again the dispersion correction with θ = 15◦. We see that
the discrete corrected dispersion relation is much closer to that of the continuous
operator Lk than the uncorrected one. However, numerical dispersion still exists, it
is not possible to make the phase speed v f d5−dc = 1 for all angles using a modified
wave number alone.

3 An optimized 9-point FDM with dispersion correction

To improve dispersion errors, a parametrized 9-point FDM was introduced in [8],
where −∆ is discretized by a tensor product of a 1D mass matrix with stencil
[(1− a)/2,a,(1− a)/2]T and the standard second order difference with stencil
[−h−2,2h−2,−h−2]T , and the the mass term −k2 is discretized by the symmetric
9-point stencil (1−b− c)/4 c/4 (1−b− c)/4

c/4 b c/4
(1−b− c)/4 c/4 (1−b− c)/4

 .
This leads with α = [a,b,c] and our numerical wave number k̂ to the new 9-point
FDM

(Lh,α
k̂

u)i, j = ( 4a
h2 − k̂2b)ui, j +( 1−2a

h2 − k̂2c
4 )(ui−1, j +ui+1, j +ui, j−1 +ui, j+1)

−( 1−a
h2 + k̂2 1−b−c

4 )(ui−1, j−1 +ui+1, j−1 +ui−1, j+1 +ui+1, j+1).
(11)
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Computing its dispersion relation {ξ ∈ R2|(e−iξ ·x)i, j(L
h,α
k̂

eiξ ·x)i, j = 0} gives

(4ah−2− k̂2b)+2( 1−2a
h2 − k̂2c

4 )(cos(hξ1)+ cos(hξ2))

−2( 1−a
h2 + k̂2 1−b−c

4 )(cos(h(ξ1 +ξ2))+ cos(h(ξ1−ξ2))) = 0.
(12)

For a vector ξ that satisfies the dispersion relation (12), we define

η
α

k̂ := ‖ξ‖, (13)

which is a function that depends on θ . Then the phase speed of the operator Lh,α
k̂

is
vα

k̂
= k

ηα

k̂
. For the phase speed vα

k̂
to be close to 1, we need that ηα

k̂
is close to k. We

thus would need to solve the L2 minimization problem1

min
α,k̂

∫ 2π

0
(ηα

k̂ (θ)− k)2dθ . (14)

Because we can not explicitly compute (13) from the transcendental relation (12),
we propose a different minimization approach based on the reasonable

Assumption 3.1 Given a mesh size h, there exist sets K and P such that

• ∀ k̂ ∈K , ∀α ∈P , the set of the dispersion relation (12) is not empty;
• Given α ∈P , the mapping of K to {ηα

k̂
| k̂ ∈K } is injective.

Let F h,α : p(θ)→ q(θ) be the operator which computes for given p(θ), θ ∈ [0,2π]
the solution q(θ) of

(e−i[p(θ)cos(θ),p(θ)sin(θ)]T ·x)i, j(Lh,α
q ei[p(θ)cos(θ),p(θ)sin(θ)]T ·x)i, j = 0. (15)

Since k̂2 appears only linearly in the 9-point FDM (11), F h,α is easy to compute nu-
merically. In addition, by the definition of ηα

k̂
in (13) and Assumption 3.1, we have

F h,α(ηα

k̂
)= k̂. Thus, instead of solving (14), we solve min

α∈P,k̂∈K
∫ 2π

0 (F h,α(ηα

k̂
(θ))−

F h,α(k))2dθ , which, combined with F h,α(ηα

k̂
) = k̂, yields

min
α∈P,k̂∈K

∫ 2π

0
(k̂−F h,α(k))2dθ , (16)

where k can be interpreted as a constant function in θ . Using that k̂ does not depend
on θ , the objective function in (16) becomes by a direct calculation

∫ 2π

0
(k̂−F h,α(k))2dθ = 2π

(
k̂− 1

2π

∫ 2π

0
F h,α(k)dθ

)2

+
∫ 2π

0
F h,α(k)2dθ − 1

2π

(∫ 2π

0
F h,α(k)dθ

)2

.

1 We could also use different norms leading to different optimized dispersion corrections.
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Fig. 3 Dispersion relation of L, fd9-jss and fd9-dc when G = 4 (left) and G = 2.5 (right).

For any fixed α , we can then take k̂ = 1
2π

∫ 2π

0 F h,α(k)dθ to make the objective
function reach its minimum, since the other terms do not depend on k̂, and thus the
minimization problem (16) is after a short calculation equivalent to minimizing the
variance,

minα∈P

∫ 2π

0
(

1
2π

∫ 2π

0
F h,α(k)dθ −F h,α(k))2dθ . (17)

This leads to the following algorithm to compute optimized α∗ and k̂∗:

Algorithm 3.1 (Optimized parameters α∗ and k̂∗ for dispersion correction)
1◦ Input wave number k and mesh size h;
2◦ Construct operator F h,α in (15);
3◦ Solve minimization problem (17) to obtain α∗;
4◦ Compute k̂∗ = 1

2π

∫ 2π

0 F h,α∗(k)dθ ;
5◦ Output α∗ and k̂∗.

4 Numerical examples

We use a Riemann sum, discretizing θ in Algorithm 3.1 from 0 to 2π with step size
π/100, and solve (17) using Nelder Mead with initial guess α0 = [1,1,0], which
corresponds to the standard 5-point FDM. We denote our new 9-point FDM with
dispersion correction by fd9-dc, and compare it to the the FDM of Jo, Shin and Suh
in [8] denoted by fd9-jss. The parameters for fd9-jss do not depend on h and k and
are given by α = [0.7731,0.6248,0.3752].

We first compare in Figure 3 the dispersion relation of fd9-jss and fd9-dc
when k = 10. Algorithm 3.1 gives as optimized parameters for G = 4 the val-
ues α∗ = [0.8027,1.0532,0.0002], k̂∗ = 8.7725, and for G = 2.5 the values α∗ =
[0.7662,1.0553,0.0003], k̂∗ = 7.2186. We see on the left that both schemes seem
very good for G = 4, compared to the five point schemes in Figure 2, but on the
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Fig. 4 Phase speed curves for fd9-jss (left) and fd9-dc (right) when k = 10.

h fd5 fd9-jss fd9-dc
0.05 1.30E5 5.41E3 5.35E3
0.1 5.57E2 1.70E3 1.36E3
0.2 1.28E16 4.37E2 3.77E2

Table 1 Condition number comparison for the linear systems obtained with the different schemes
for varying mesh size when k = 10.

right for G = 2.5 the dispersion relation of fd9-dc is much better, still looking per-
fect for only 2.5 points per wavelength!

Figure 4 shows the phase speed curves vα∗

k̂∗
for fd9-jss and fd9-dc for the angles

0◦,15◦,30◦ and 45◦ when k = 10 as a function of 1/G. We can clearly see that the
phase speed of fd9-dc is much closer to 1 than for fd9-jss (note the different scales).

We next investigate the accuracy in h. We consider the Helmholtz equation on
Ω =(−1,1)×(−1,1) with the exact plane wave solution uθ

e (x)= ei(k cos(θ)x1+k sin(θ)x2)

and Dirichlet boundary conditions. The corresponding numerical solutions of fd9-
jss and fd9-dc are ufd9−jss,θ

h and ufd9−dc,θ
h , and the interpolated exact solution uθ

e on
the mesh with size h by uθ

i,h. We then measure the relative error of fd9-jss and fd9-dc
by

errfd9−jss(h,θ) =
‖ufd9−jss,θ

h −uθ
i,h‖

‖uθ
i,h‖

, errfd9−dc(h,θ) =
‖ufd9−dc,θ

h −uθ
i,h‖

‖uθ
i,h‖

.

In Figure 5, we show how the θ averaged errors

errfd9−jss(h)=
1

2π

∫ 2π

0
errfd9−jss(h,θ)dθ , errfd9−dc(h)=

1
2π

∫ 2π

0
errfd9−dc(h,θ)dθ ,

behave when h becomes small, for k = 5,10. We can clearly see that fd9-dc is 6-th
order accurate, while fd9-jss is just second order accurate. We show in Table 1 the
condition number of the corresponding linear systems for the different schemes for
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Fig. 5 Averaged relative errors of fd9-jss and fd9-dc for different mesh size h when k = 5 (left)
and k = 10 (right).

different mesh sizes when k = 10. We can clearly see that our new method (fd9-dc)
also reduces the condition number compared to the original FDM (fd5) or the FDM
proposed by Jo, Shin and Suh (fd9-jss).
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Optimized Schwarz methods for
elliptic optimal control problems

Bérangère Delourme1, Laurence Halpern1, Binh Thanh Nguyen1

Abstract
The present paper deals with the design of optimized Robin-Schwarz methods
for the algorithm of optimal control proposed in [1]. In both overlapping
and non-overlapping cases, a full analysis of the problem is provided, and is
illustrated with numerical tests.

1 Introduction

Let Ω be a bounded open set of R2, z ∈ L2(Ω), and ν > 0. We consider the
following elliptic control problem described in [1] (see also [9, Chapter 2])

min
u∈L2(Ω)

∫
Ω

|y(u)− z|2dx+ ν

∫
Ω

|u|2dx, (1)

where, for a given function f ∈ L2(Ω), y(u) is the unique H1
0 (Ω) solution to

−∆y = f + u in Ω, y = 0 on ∂Ω. (2)

It is well known that the optimal control u (solution to (1)) is related to the
adjoint state p by u = − p

ν , and (y, p) ∈ H1
0 (Ω)2 is solution of the coupled

problem

−∆y = f − p

ν
−∆p = y − z (3)

Introducing the new unknown w = y+ i√
ν
p (see [1]), Problem (3) is equivalent

to the complex Helmholtz problem: find w ∈ H1
0 (Ω) such that

University Paris 13, Villetaneuse, France delourme@math.univ-paris13.fr

1
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−∆w − i√
ν
w = g in Ω g = f − i√

ν
z. (4)

In [2], Benamou and Després proposed a Robin’s non-overlapping domain
decomposition algorithm. Let us describe this algorithm (written here also for
overlapping subdomains like in the original Schwarz algorithm). We consider
the case where Ω = R2 is split into two subdomains Ω1 =] −∞, L2 [×R and

Ω2 =]− L
2 ,+∞[×R. Here, L is a non-negative parameter that corresponds to

the width of the overlapping zone between Ω1 and Ω2. We denote by nj the
outward unit normal vector to Ωj , ∂nj the normal derivative on the boundary

of Ωj . Letting λ0 ∈ H1/2(∂Ω1) and ` ∈ C, we construct iteratively the
sequences (wn1 )n∈N, (wn2 )n∈N as follows: for any n ∈ N\{0}, find wn1 ∈ H1(Ω1)
and wn2 ∈ H1(Ω2) such that{
−∆wn1 − i√

ν
wn1 = g in Ω1,

∂n1
wn1 + `wn1 = λn−1 on ∂Ω1,

{
−∆wn2 − i√

ν
wn2 = g in Ω2,

∂n2
wn2 + `wn2 = ∂n2

wn1 + `wn1 on ∂Ω2,

(5)

λn = ∂n1
wn2 + `wn2

∣∣∣
∂Ω1

.

It is easily seen ([1, Theorem 1]) that the problems defining wn1 and wn2 are
well-posed if ` belongs to the angular sector A defined by

A = {z ∈ C such that Im(z) < 0, Im(z) + Re(z) > 0} . (6)

Moreover, it is proved in [1, Theorem 2] (see also [2]), in the non-overlapping
case, that the algorithm (5) converges, namely the sequence wn1 (resp. wn2 )
tends to w (solution to (4)) in H1(Ω1) (resp. w in H1(Ω2)).

The objective of the present work is to find a parameter ` ∈ A that optimizes
the rate of convergence of this algorithm. In the case of strongly elliptic
real equation, this problem has been solved in [7] for Robin and Ventcel
transmission conditions. In the former case, explicit values of the coefficients
were given, whereas in the Ventcel case, only asymptotic formulas in terms
of the mesh size are available. Extension to real Helmholtz equations were
given in [6, 8]. Following these approaches, we consider the errors en1 = wn1−w
and en2 = wn2 − w and we denote by ên1 and ên2 their Fourier transform with
respect to y, with Fourier variable k. It is easily seen that ên1 and ên2 follow a
geometrical progression: more specifically, there exists two complex constants
a1 and a2 such that

ênj = aj δ(`, k)2n e−ω(k)|x|, δ(`, k) = e−ω(k)L
ω(k)− `
ω(k) + `

, ω(k) =

√
k2 − i√

ν
,

In the previous formulas, . Moreover, here and all over the text, the complex
number

√
z corresponds to the square root of z belonging to A. As a result,
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it suffices to minimize the modulus of δ (the square root of the convergence
factor) in order to accelerate the convergence of the domain decomposition
algorithm (5). As explained in [7, Section 4], we are interested in optimizing
δ over a bounded interval [kmin, kmax] (i.e. k ∈ [kmin, kmax]). In practice, the
interval depends on the geometry of the domain and the mesh size (kmax =
π
h where h denotes the characteristic length of the mesh). It leads us to
investigate the following homographic best approximation problem (see [7,
Section 4.2], [3] for the name in a time-dependent context): find δ∗ ∈ R such
that

δ∗ = inf
`∈C

sup
k∈[kmin,kmax]

|δ(ω(k), `)| (7)

2 General results of well-posedness

The existence and uniqueness of an optimal parameter `∗ are direct conse-
quences of the general results of [3, 4]:

Theorem 1 For L sufficiently small, there exists a unique `∗ ∈ A such that

δ∗ = inf
`∈C

sup
k∈[kmin,kmax]

|δ(ω(k), `)| = max
k∈[kmin,kmax]

|δ(ω(k), `∗)|. (8)

Moreover, there exists at least two distinct real numbers (k1, k2) ∈ [kmin, kmax]2

such that

max
k∈[kmin,kmax]

|δ(ω(k), `∗)| = |δ(ω(k1), `∗)| = |δ(ω(k2), `∗)|. (9)

Proof (Sketch of the proof of Theorem 1). By contradiction, one can verify
that if there exists `∗ ∈ C satisfying (8), then `∗ ∈ A (see e.g. [3, Lemma
4.5] for a similar proof). Then, the existence of `∗ ([3, Theorem 2.2 and The-
orem 2.8]) results from a compactness argument (k belongs to the compact
set [kmin, kmax]). Finally, in the non-overlapping case (L = 0), the uniqueness
is proved in [3, Theorem 2.6]. For L 6= 0 and sufficiently small, the unique-
ness proof results from an adaptation of [4, Theorem 8]. In both cases, the
uniqueness is a consequence of convexity properties and the equi-oscillation
property (9)([3, Theorem 2.5 and Theorem 2.11]).

3 Characterization of the optimal parameter in the
non-overlapping case

Theorem 2 The best parameter `∗ defined by (8) is given by
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`∗ =
√
ωminωmax, δ∗ =

∣∣∣∣√ωmin −
√
ωmax√

ωmin +
√
ωmax

∣∣∣∣ (10)

where ωmin = ω(kmin) and ωmax = ω(kmax). Moreover, if kmax = π
h , δ∗ and

`∗ admit the following asymptotic expansion

δ∗ = 1 − 2h1/2
Re(
√
ωmin)√
π

+ o(h1/2), `∗ = h−1/2
(√
π
√
ωmin + o(1)

)
.

(11)

We remark that Formula (10) is the same as in the real positive case (see
[7, Theorem 4.4]). The reminder of this section is dedicated to the proof of
Theorem 2. First, we remark that in the non-overlapping case (and as in the
real case), the equi-oscillation property (9) holds for exactly two points that
are nothing but kmin and kmax (the proof of this result may be done using
either a geometrical argument or a direct investigation of the derivative of
|δ(k, `)|2 with respect to k, see [5]):

Lemma 1 Let `∗ be defined by (8). Then,

max
k∈[kmin,kmax]

|δ(ω, `∗)| = |δ(ωmin, `
∗)| = |δ(ωmax, `

∗)|, (12)

and, for any k ∈]kmin, kmax[, |δ(ω(k), `∗)| < |δ(ωmin, `
∗)|.

The previous lemma motivates us to consider the curve of equioscillation Π
defined by

Π =
{
` = reiθ ∈ A such that |δ(ωmin, `)| = |δ(ωmax, `)|

}
, (13)

so that the optimization problem (8) can then be rewritten as follows: find
`∗ ∈ Π such that

δ∗ = min
`∈Π
|δ(ωmin, `)| = min

`∈Π
|δ(ωmax, `)|. (14)

Note that, unlike in the real case, the set Π is not reduced to the sin-
gleton {p =

√
ωminωmax}. Nevertheless,

√
ωminωmax still belongs to Π.

To continue the proof, it is useful to introduce the perpendicular bisector
∆ of the segment [ωmin, ωmax], i.e. ∆ = {z = x+ iy ∈ C s.t. y = ax+ b}
where a = −Re(ωmax−ωmin)

Im(ωmax−ωmin)
and b = |ωmax|2−|ωmin|2

2Im(ωmax−ωmin)
. For any ` ∈ C, we

also consider the signed distance between ` and ∆, namely the function

d(`) = aRe(`)−Im(`)+b√
1+a2

. Using the intercept theorem, it is easily seen that

the best parameter `∗ corresponds to the point of Π for which the distance
between Π and ∆ is minimal:

Lemma 2 The function η : Π → R, defined by η(`) = |δ(`, ωmin)| =
|δ(`, ωmax)| is a strictly increasing function of the signed distance d: for any
(`1, `2) ∈ Π2 such that d(`1) < d(`2), η(`1) < η(`2).
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In other words it suffices to study the variations of the distance function d over
Π in order to characterize the best parameter `. By a standard investigation
of d we prove the following lemma:

Lemma 3 The function d reaches its minimum over Π for `∗ =
√
ωminωmax.

The proof of Theorem 2 is completed by a standard asymptotic expansion of
δ∗ for kmax large.

4 Asymptotics of the optimal parameter in the
overlapping case

In the overlapping case (L > 0), we are not able to obtain an explicit char-
acterization of the best parameter `∗. Nevertheless, we are able to compute
its asymptotic behaviour for h small when the overlapping parameter L = h
and kmax = π

h ,

Theorem 3 Assume that L = h and kmax = π
h .

- For h sufficiently small, there exists k∗ ∈]kmin, kmax[ such that

max
k∈[kmin,kmax]

|δ(ω, `∗)| = |δ(ωmin, `
∗)| = |δ(ω(k∗), `∗)|, (15)

and, for any k ∈]kmin, k
∗[∪]k∗, kmax], |δ(ω(k), `∗)| < |δ(ωmin, `

∗)|.

- The optimal parameter `∗ and the corresponding convergence factor δ∗ admit
the following asymptotic expansion:

`∗ = h−1/3 ((cx − icy) + o(1)) and δ∗ = 1− crh1/3 + o(h1/3), (16)

where, introducing rmin = Re(ωmin) and imin = Im(ωmin),

cx =

(
rmin +

√
r2min + i2min

2
√

2

)2/3

, cy = − imin

2
√

2cx
, and cr = 2

√
2cx. (17)

Proof. The proof of Theorem 3 is divided into two main parts. We first con-
struct a formal asymptotic expansion of `∗ that we justify a posteriori. To
start with, we make an ’ansatz’ on the asymptotic behaviour of the optimal
parameter `∗. We assume that

`∗ ∼ ch−α with α ∈]0, 1[ and c = cx − icy (cx > 0, cy > 0).

Then, computing explicitly the derivative of |δ(`, k)|2, we prove that, in this
asymptotic regime, the equi-oscillation property (9) holds for exactly two
points k1 = kmin and k2 = k∗, where k∗ admits the following asymptotic:
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k∗ = 21/4(cx)1/4h(−α−1)/4 + o(h(−α−1)/4), and

|δ(ω(k∗), `
∗)|2 ∼ 1− 4(2cx)1/2h

1−α
2 |δ(ωmin, `

∗)|2 ∼ 1− 4hα
(cxrmin − cyimin)

|c|2

Identifying the previous two expansions leads to

α =
1

3
and

√
2cx(c2x + c2y)− (cxrmin − cyimin) = 0. (18)

Thus, in order to minimize the convergence factor (in this asymptotic regime),
it suffices to find the couple (cx, cy) satisfying (18)(right) and such that cx is
maximal. A direct analysis of equation (18) leads to (17).

It remains to justify the obtained formal asymptotic. For h ∈ (0, 1) and ε > 0
sufficiently small, let

Lh =
{
` ∈ C, s. t. h1/3(`x, `y) ∈ [cx − ε , cx + ε]× [−cy − ε,−cy + ε]

}
,

where cx and cy are defined by (17). Then, for h sufficiently small (in order to
be able to define k∗), let Γh = {` ∈ Lh, |δ(ωmin, `)| = |δ(ω(k∗, `)|} . Because
Γh is closed and non empty, there exists `h∗ such that

|δ(ωmin, `
h
∗)| = inf

`∈Γh
|δ(ωmin, `)|. (19)

It is not difficult to prove that `h∗ admits the asymptotic expansion (16). The
end the proof of Theorem 3 consists in showing that `h∗ = `∗. This is done by
proving the following lemma:

Lemma 4 `h∗ is a strict local minimum for ` 7→ ‖R(ω(k), `)‖L∞(kmin,kmax).

Indeed, Corollary 2.16 in [3] guarantees that any strict local minimum of the
function ` 7→ ‖R(ω(k), `)‖L∞(kmin,kmax) is the global minimum. Consequently

`h∗ = `∗ and the proof is complete. The proof of Lemma (4) is an adaptation
of the proof of [3, Theorem 4.2].

5 Numerical illustration

Let Ω =]0, π[2, ν = 1 and f = z = 0 (hence g = 0), so that the exact
solution is 0. The discretization is done using a standard second order finite
difference scheme. We choose a similar discretization in the x and y directions
(hx = hy = h) and we set kmin = 1 and kmax = π

h . In the non-overlapping
case, we split the domain Ω into two domains Ω1 and Ω2 of equal size:
Ω1 =]0, π/2[×]0, π[ and Ω2 =]π/2, π[×]0, π[. In the overlapping case, we take
Ω1 =]0, π/2[×]0, π[ and Ω2 =]π/2 − h, π[×]0, π[ (i.e. L = h). The domain
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decomposition algorithm is initialized with a uniform (over ]0, 1[) random
data λ01. In the next experiments, we evaluate the numerical (or observed)
convergence rate δnum(`,N) defined by

δnum(`,N) =

(
eN
eN−1

)1/2

, en =
√
‖unh,1‖2 + ‖unh,2‖2 (20)

On Figure 1, we evaluate δnum(`,N) for different values of ` taking N = 60
and h = π/80. The red cross corresponds to theoretical optimal parameter
`∗: in the non-overlapping case, `∗ =

√
ωminωmax while in the overlapping

case, `∗ is numerically computed. Although the theoretical analysis is done
for a two dimensional unbounded domain, we remark that the theoretical op-
timal parameter `∗ and the observed optimal parameter are relatively closed.
Moreover, for L = 0, the convergence factor slowly varies with respect to the
imaginary part of ` (cf. [5]). Then, Figure 2a presents the evolution of the er-
ror en with respect to the number n of iterations of the domain decomposition
algorithm for two different values of `: ` = `∗ and ` = `∗num, where `∗num de-
notes the numerical optimized coefficient obtained by optimizing δnum(`,N).
Finally, Figure 2b shows the evolution of 1− δnum(`,N) with respect to the
discretization parameter h. The introduction of the overlap perceptibly im-
proves the observed convergence rate (although the asymptotic regime is not
entirely reached in this case).
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Auxiliary space preconditioners for a DG
discretization of H(curl;Ω)- elliptic problem on
hexahedral meshes

B. Ayuso de Dios, R. Hiptmair, and C. Pagliantini

Abstract We present a family of preconditioners based on the auxiliary
space method for a discontinuous Galerkin discretization on cubical meshes of
H(curl;Ω)- elliptic problems with possibly discontinuous coefficients. We address
the influence of possible discontinuities in the coefficients on the asymptotic perfor-
mance of the proposed solvers and present numerical results in two dimensions.

1 Introduction

Let Ω ⊂ R3 be a simply connected bounded domain with Lipschitz boundary and
let fff ∈ L2(Ω)3. We consider the following H(curl;Ω)-elliptic problem{

∇× (ν∇×uuu)+βuuu = fff in Ω ,

uuu×n = 0 on ∂Ω .
(1)

where ν = ν(x) ≥ ν0 > 0 and β = β (x) ≥ β0 > 0 are assumed to be in L∞(Ω)
but possibly discontinuous, and represent properties of the medium or material:
ν is typically the inverse of the magnetic permeability and β is proportional to
the ratio of electrical conductivity and the time step. Problem (1) arises in the
modelling of magnetic diffusion and also after implicit time discretization of
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resistive magneto-hydrodynamics (MHD). In connection with the MHD application
the use of hexahedral meshes is typically preferred over to family partitions made
of simplices [Pagliantini(2016)].
Finite element discretizations using edge elements of the first family
[Nédélec(1980)] are probably the most satisfactory methods to approximate
(1) from a theoretical point of view. Only recently, a new compatible element
(corresponding to an edge element of the second family) has been introduced
in [Arnold and Awanou(2014)]. Discontinuous Galerkin (DG) methods offer an
attractive alternative to conforming FE edge elements [Houston et al.(2005)] and
allow for great flexibility in incorporating the discontinuities of the medium.
For both methods, the condition number of the resulting linear systems de-
grades with mesh refinement and the size of the variations of the coefficients.
Hence, designing a preconditioner able to cope with the combined effect
of the mesh width and of highly varying coefficients turns out to be essen-
tial. For constant coefficients, efficient solvers for FE edge discretizations
have been successfully developed using domain decomposition (DD) and the
Auxiliary Space (AS) method [Hiptmair and Xu(2007)]. For discontinuous coef-
ficients, a non-overlapping BDDC algorithm has been proposed and analyzed in
[Dohrmann and Widlund(2016)], improving previous results in the DD literature,
see e.g. [Toselli(2006)]. Recently, in [Ayuso de Dios et al.(2017)], we have de-
veloped a family of AS preconditioners for DG discretizations of (1), providing
the analysis for simplicial meshes and in the case of cubical meshes when edge
elements of the first kind are used as local spaces. In this paper, we report on the
construction of the AS preconditioners focusing on the case of cubical meshes,
discussing also their performance in the case of jumping coefficients. The proposed
preconditioners rely on H(curl;Ω)-conforming auxiliary spaces (as auxiliary
space) and hence is presumed the availability of a (direct) solver for standard
H(curl;Ω)-conforming Galerkin discretizations.

2 SIPG Discretization on Hexahedral Meshes

Let Th be a family of shape-regular partitions of Ω into cubes T . For each T ∈ Th,
let hT = diam(T ) and set h = maxT∈Th hT . We assume that Th is conforming and
resolves the piece-wise constant coefficients β and ν . (i.e., νT ,βT ∈ P0(T ) for all
T ∈ Th).We denote by Fh the set of all faces of the partition; F o

h and F ∂
h refer

respectively, to the collection of all interior and boundary faces. Similarly, Eh =
E o

h ∪E ∂
h denote the set of all edges of the skeleton of Th; with E o

h and E ∂
h referring

to interior and boundary edges, respectively. We define the sets:

T (e) := {T ∈ Th : e ⊂ ∂T} ; E (T ) := {e ∈ Eh : e ⊂ ∂T} ;
F (T ) := { f ∈ Fh : f ⊂ ∂T} ; F (e) := { f ∈ Fh : e ⊂ ∂ f} .

We introduce the (family of) DG finite element spaces
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VDG
h = {vvv ∈ L2(Ω)3 : vvv ∈ M (T ), T ∈ Th} , M (T )⊆Qk(T )

3

where the local space M (T ) of vector-valued polynomials can be of three types:
1. Nédélec elements of first family on cubical meshes [Nédélec(1980)]

M (T ) = N I(T ) :=Qk−1,k,k(T )×Qk,k−1,k(T )×Qk,k,k−1(T ), k ≥ 1,

where Q`,m,n(T ) is the space of polynomials of degree at most `,m,n in each vector
variable.
2. Compatible elements (of second kind) [Arnold and Awanou(2014)]:

M (T ) = Sk(T ) := (Pk(T ))3+span{[yz(w2(x,z)−w3(x,y)) , zx(w3(x,y)−w1(y,z)) ,

xy(w1(y,z)−w2(x,z)) ]+∇s(x,y,z)} ,

where each wi ∈ Pk and s ∈ Pk(T ) has superlinear degree (ordinary degree ignoring
variables which appear linearly) at most k+1, with k ≥ 1.
3. Full polynomials: We set the local space M (T ) = (Qk(T ))3, and k ≥ 1.

For each choice of the resulting VDG
h space, the corresponding H0(curl,Ω)-

conforming finite element spaces are defined as:

Vc
h := VDG

h ∩H0(curl,Ω) = {vvv ∈ H0(curl,Ω) : vvv ∈ M (T ), T ∈ Th}. (2)

For a piecewise smooth vector-valued function vvv, we denote by vvv± the traces of vvv
taken from within T±. The tangential jump, indicated by [[ · ]]τ , is defined by

[[vvv ]]τ := n+× vvv++n−× vvv− on f ∈ F o
h , [[vvv ]]τ := n× vvv on f ∈ F ∂

h

where n+ and n− denote the unit normal vectors on f = ∂T+∩ ∈ ∂T− pointing
outwards from T+ and T−, respectively. We will also use the notation

(θuuu,vvv)Th = ∑
T∈Th

∫
T

θT uuuvvvdx, 〈uuu,vvv〉Fh = ∑
f∈Fh

∫
f
uuuvvvds ∀uuu,vvv ∈ VDG

h

where θ ∈ P0(Th) will be either θ = ν or θ = β .
The SIPG-DG method. We consider a symmetric Interior Penalty method (SIPG)
introduced recently in [Ayuso de Dios et al.(2017)] for approximating (1) robustly
(w.r.t the discontinuous coefficients). The method reads:

Find uuuh ∈ VDG
h such that aDG(uuuh,vvv) = ( fff ,vvv)Th ∀vvv ∈ VDG

h , (3)

with aDG(·, ·) defined by

aDG(uuu,vvv) := (ν∇×uuu,∇×vvv)Th +(βuuu,vvv)Th −〈{{ν∇×uuu}}
γ
, [[vvv ]]τ〉Fh

−〈[[uuu ]]τ ,{{ν∇×vvv}}
γ
〉Fh + ∑

T∈Th

αT (ν) ∑
e∈E (T )

∑
f∈F (e)

(s f [[uuu ]]τ , [[vvv ]]τ)0, f . (4)
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In (4), the weighted average {{·}}
γ

is defined as the plain trace for a boundary face,
whereas for ∂T+∩∂T− = f ∈ F o

h , is given by

{{uuu}}
γ

:= γ
+
f uuu++ γ

−
f uuu− with γ

±
f =

ν∓

ν++ν− , ν
± := ν|T± .

The penalization is defined by s f := ch−1
f on all f ∈ Fh with some c > 0 and the

mesh function h f = min{hT+ ,hT−} on f ∈ F o
h and h f = hT on f = ∂T ∩∂Ω .

The coefficient function (αT (ν))T∈Th ∈ P0(Th) is defined by

αT (ν) := max f∈F (T ) {{ν}}∗, f with {{ν}}∗, f :=


max

T∈T (e)
e⊂∂ f

νT f ∈ F o
h ,

νT f ∈ F ∂
h .

Notice that αT (ν) picks the maximum conductivity coefficient over a patch
of elements surrounding T . In Figure 1 a 2D sketch of such patch is given.

T

e

Fig. 1: 2D sketch of the
patch involved in defini-
tion of αT (ν) .

We stress that the weighted average {{·}}
γ

together with
{{·}}∗, f and the definition of αT (ν) ensure robustness
(with respect to the coefficients) of both the approximation
(3) in the energy norm (see [Ayuso de Dios et al.(2017),
Proposition 2.1], and [Pagliantini(2016), Proposition
5.1.1]) and the preconditioners, see Theorem 1 and
[Ayuso de Dios et al.(2017), Pagliantini(2016)] for details
in the analysis. Observe that when the variational for-
mulation (3) is restricted to Vc

h in (2), the corresponding
H0(curl,Ω)-conforming discretization of (1) is obtained. In
fact,

aW (uuu,vvv) := (ν∇×uuu,∇×vvv)Ω +(βuuu,vvv)Ω = aDG(uuu,vvv) ∀ uuu,vvv ∈ Vc
h. (5)

We denote by A : VDG
h −→ (VDG

h )′ the discrete operator (A uuu,www) = aDG(uuu,www)
and by A the matrix representation of A with respect to a localized “nodal” basis
of VDG

h (using any of the choices for M (T )). It can be verified that the spectral
condition number κ(A) is proportional to

h−2 maxT αT (ν)

minT νT
+

maxT βT

minT βT
.

3 Auxiliary Space Preconditioning

The Auxiliary Space Method (ASM) was introduced in [Xu(1996), Oswald(1996)]
as an expansion of the Fictitious Space Method [Nepomnyaschikh(1991)] providing
a neat methodology for developing and analysing preconditioners. To describe the



AS preconditioning for DG approximation of H(curl;Ω) on cubes 5

preconditioners we propose, based on the AS methodology, we first review the basic
ingredients behind the Fictitious Space Method:

(1) the fictitious space: a real finite dimensional Hilbert space V , endowed with an
inner product ā(·, ·), induced operator A : V → V

′
and norm ‖·‖A .

(2) A continuous, linear and surjective transfer operator Π : V → VDG
h .

By virtue of [Nepomnyaschikh(1991)], an optimal preconditioner for A would re-
sult in an optimal preconditioner for A . The distinguishing feature of ASM is the
particular choice of V as a product space, including the original space as one of the
components. Here, we set V = VDG

h ×W , endowed with the inner product

a(vvv,vvv) = s(vvv0,vvv0)+a
W
(www,www), ∀vvv = (vvv0,www), vvv0 ∈ VDG

h , www ∈ W , (6)

where W is the (truly) so-called auxiliary space and a
W
(·, ·) is the auxiliary bi-

linear form. We will always take as W an H0(curl,Ω)-conforming space Vc
h. In

(6), s(·, ·) is the bilinear form associated with a relaxation operator S on VDG
h .

Denoting by A
W

the operator associated with a
W
(·, ·), the auxiliary space precon-

ditioner operator is B = S −1 +Π
W
◦A −1

W
◦Π ∗

W
where the linear transfer operator

Π
W

: W → VDG
h is the standard inclusion and its adjoint Π ∗

W
: VDG

h → W is defined

by a
W
(Π ∗

W
vvv,www) = a(vvv,Π

W
www), vvv ∈ VDG

h , www ∈ W . If S ∈ RN×N with N := dimVDG
h

and AW ∈ RNW×NW , NW := dimW , then the preconditioner in algebraic form reads

B= S−1 +PA−1
W PT, (7)

where P ∈ RN×NW is the matrix representation of the transfer operator Π
W

.
We now specify the precise components for the two preconditioners we propose:

1. Natural Preconditioner: We set W = Vc
h = VDG

h ∩H0(curl,Ω) for any choice
of the local space M (T ) and a

W
(·, ·) is as in (5). Hence, A

W
: Vc

h → (Vc
h)

′ is self-
adjoint and positive definite. As relaxation operator S it is sufficient to use a simple
Jacobi or block Jacobi smoother.
2. Coarser or Economical Preconditioner: When the local space is either
M (T ) = Sk(T ) or M (T ) = (Qk(T ))3 in the construction of the VDG

h -space, we
consider a second possibility for the AS preconditioner. We take W as

W := W c
h = {www ∈ H0(curl,Ω) : www|T ∈ N I(T ), T ∈ Th} ⊂ Vc

h ⊂ VDG
h .

As to the relaxation operator, we demonstrate numerically that a non-overlapping
Schwarz smoother is not able to resolve the components in the kernel of curl(W )
and as a consequence an overlapping smoother is necessary. We will show numer-
ically that in the case M (T ) = (Qk(T ))3, the resulting AS preconditioner is not
effective, independently of the choice of the smoother and the amount of domain
overlaps involved in its construction. We suspect that this is connected to the fact
that the DG method using M (T ) = (Qk(T ))3 is not spectrally correct, while W c

h is.
Next result provides the convergence of the Natural Preconditioner.
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Theorem 1. Let B be the auxiliary space preconditioner in (7), with W = Vc
h and

simple Jacobi smoother on VDG
h . Let ∆h and ∆ ′

h denote the set of elements in the
curl-dominated regime and reaction-dominated region, respectively:

∆h := {T ∈ Th : h2
T βT < αT (ν)} , ∆

′
h := {T ∈ Th : h2

T βT ≥ αT (ν)} .

Then, the spectral condition number of the resulting preconditioned system satisfies

κ(BA). max{1,Θ(ν ,β )} ,

with Θ(ν ,β ) := min
{

max
T∈Th

h2
T βT

νT
, max

T,T ′∈Th
∂T∩∂T ′ 6= /0

βT

βT ′
, max

T∈∆h,T ′∈∆ ′
h

∂T∩∂T ′ 6= /0

αT (ν)

αT ′(ν)

}
.

The proof can be found in [Ayuso de Dios et al.(2017), Pagliantini(2016)] as well
as the analysis of the Coarser AS Preconditioner on simplicial meshes. The analysis
of a Coarser AS Preconditioner on hexahedral meshes is still an open problem.

4 Numerical Results

In the following numerical simulations we will restrict to the two dimensional prob-
lem (1) on a square. We set the constant entering in the penalty parameter s f in
(4) to c = 10. The tolerance for the CG and PCG is set to 10−7. In the tables we
always report the number of iterations required for convergence. We refer to the
AS preconditioners by VDG

h −W , or more precisely by the local spaces M (T ) in
the construction of each VDG

h and W . Since the experiments are in 2D we use the
rotated Nédélec elements of the first family N I(T ) = RT 0; the rotated version
of the space S1 := RT 0 + {curl(x2y),curl(xy2),curl(x2),curl(y2)}, and the 2D
full polynomials space Q1(T )2. For the Natural AS Preconditioner a simple Jacobi
smoother is always used. For the Coarser or Economical AS Preconditioner we will
specify the smoother used at each time.

Test Cases with Continuous Coefficients. We consider first the constant coeffi-
cient case β = ν = 1. As shown in Table 1, the natural AS preconditioner is indeed
optimal in all the cases, as predicted by Theorem 1. In contrast, the coarser AS
preconditioner performs optimally for S1 −RT 0 only if an overlapping smoother
is included. However, the coarser AS preconditioner Q1 −RT 0 is not efficacious
regardless the smoother involved in the construction.

To get some insight on the failure of the coarser AS preconditioner for Q1, we
explore the spectral approximation of the considered DG methods to (1) on Ω =
[0,π]2 with ν = 1 and β = 0. The exact eigenvalues are given by n2 +m2 for n and
m positive integers. In Figure 2 is given the lower part of the spectrum using a DG
discretization based on the three possible choices of local spaces M (T ). As it can
be observed in in Figure 2, the DG discretization based on the full polynomial space
(Q1)

2, is not spectrally correct. Therefore, a preconditioner built on an auxiliary
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]Th 16×16 32×32 64×64 128×128 256×256

RT 0 Unpreconditioned 128 204 376 753 1504

(Q1)
2 Unpreconditioned 410 815 1454 2796 4554

S1 Unpreconditioned 543 1083 2031 4056 7316

RT 0-RT 0 Jacobi 9 9 9 9 9

Q1-Q1 Jacobi 22 21 20 19 19

Q1-RT 0: Jacobi
∣∣ overlapping 259

∣∣ 61 471
∣∣ 113 844

∣∣ 202 1622
∣∣ 337 2936

∣∣ 618

S1-RT 0: Jacobi
∣∣ overlapping 88

∣∣ 18 72
∣∣ 19 49

∣∣ 20 34
∣∣ 20 36

∣∣ 19

Table 1: Number of iterations for test case with constant coefficients.

space where the H0(curl,Ω)-conforming discretization is spectrally correct (e.g.
Nédélec elements of the first family) is not effective.

0 10 20 30 40
0

5

10

15

20

25

30

35

40

Eigenvalue number

E
ig

e
n
v
a
lu

e
s

 

 

exact

RT0

0 10 20 30 40
0

5

10

15

20

25

30

35

40

Eigenvalue number

E
ig

e
n
v
a
lu

e
s

 

 

exact

S1

0 50 100 150
0

10

20

30

40

50

60

Eigenvalue number

E
Ig

e
n
v
a
lu

e
s

 

 

exact

Q1

Fig. 2: Lower part of the spectrum for different DG discretizations: rotated Nédélec elements of
the first family RT 0 (left), rotated S1 (center), and the full polynomial space (Q1)

2 (right).

Test Case with Discontinuous Coefficients. We consider now the more challenging
case of β and ν both discontinuous following a checkerboard distribution according
to the partition Ω1 := [0,0.5]2 ∪ [0.5,1]2 ⊂ Ω = [0,1]2. We define

ν(x) =

102 if x ∈ Ω1 ,

1 otherwise ,
and β (x) =

10−3 if x ∈ Ω1 ,

10 otherwise .

In Table 2 we report the iteration counts of the different preconditioners and in Fig-
ure 3 are given graphically the estimated condition numbers of the preconditioned
systems. As it can be observed in Figure 3 and Table 2, the natural AS precondi-
tioner performs optimally in the presence of discontinuous coefficients, as predicted
by Theorem 1. The coarser AS preconditioner S1-RT 0 is also efficacious in this
case, when using an overlapping relaxation. As regards the (Q1)

2 DG discretization,
the coarser AS preconditioner is totally ineffective.
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]Th 16×16 32×32 64×64 128×128 256×256

RT 0-RT 0 Jacobi 11 10 10 10 10

Q1-Q1 Jacobi 23 22 21 21 20

S1-RT 0: overlapping 24 24 24 25 24

Q1-RT 0: overlapping 69 129 248 425 −

Table 2: Number of iterations for test case with discontinuous coefficients.
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Fig. 3: Test case with discontinuous co-
efficients. Condition number vs. number
of elements: S1 DG discretization with
ASM based on rotated RT 0 elements
with overlapping additive Schwarz smoother
(black); DG discretization with rotated
RT 0 discontinuous elements and rotated
RT 0 as auxiliary space with pointwise Ja-
cobi smoother (blue); discontinuous bilin-
ear Lagrangian elements with H(curl,Ω)-
conforming full polynomial auxiliary space
and Jacobi smoother (orange).
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Is minimising the convergence rate a good choice
for efficient Optimized Schwarz preconditioning
in heterogeneous coupling?
The Stokes-Darcy case

Marco Discacciati and Luca Gerardo-Giorda

Abstract Optimized Schwarz Methods (OSM) are domain decomposition tech-
niques based on Robin-type interface condition that have become increasingly pop-
ular in the last two decades. Ensuring convergence also on non-overlapping decom-
positions, OSM are naturally advocated for the heterogeneous coupling of multi-
physics problems. Classical approaches optimize the coefficients in the Robin con-
dition by minimizing the effective convergence rate of the resulting iterative algo-
rithm. However, when OSM are used as preconditioners for Krylov solvers of the
resulting interface problem, such parameter optimization does not necessarily guar-
antee the fastest convergence. This drawback is already known for homogeneous
decomposition, but in the case of heterogeneous decomposition, the poor perfor-
mance of the classical optimization approach becomes utterly evident. In this paper,
we highlight this drawback for the Stokes/Darcy problem and propose a more effec-
tive optimization procedure.

1 Problem settings

The Stokes-Darcy problem, a classical model for the filtration of an incompressible
fluid in a porous media [2], is a good example of a multi-physics problem where two
different boundary value problems are coupled into a global heterogeneous one.

The problem is defined on a bounded domain Ω ⊂ RD (D = 2,3) formed by
two non overlapping subregions: the fluid domain Ω f and the porous medium Ωp
separated by an interface Γ . If the fluid is incompressible with constant viscosity
and density, and low Reynolds’ number, it can be described by the Stokes equations
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in Ω f and by Darcy’s law in Ωp. The physics of the problem naturally drives the
decomposition of the domain and, at the same time, imposes interface conditions
across Γ to describe filtration phenomena. The coupled problem reads as follows:
Find the fluid velocity u f and pressure p f , and the pressure pp such that

−∇ ·σ(u f , p f ) = f f in Ω f Stokes equations
∇ ·u f = 0 in Ω f

−∇ · (ηp∇pp) = gp in Ωp Darcy’s equation
−(ηp∇pp) ·n = u f ·n on Γ continuity of the normal velocity
−n ·σ(u f , p f ) ·n = pp on Γ continuity of the normal stresses

−τ ·σ(u f , p f ) ·n = ξ u f · τ on Γ BJS condition on the tangential stresses

(1)

where σ(u f , p f ) = µ f (∇u f +(∇u f )
T − p f I is the Cauchy stress tensor, while f f

and gp are given external forces. The Beaver-Joseph-Saffman (BJS, [1]) condition
does not play any role in the coupling of the local problems. Thus, coupling on Γ

can be obtained by linear combination of the first two conditions:

−n ·σ(u f , p f ) ·n−α f u f ·n = pp +α f (ηp ∇pp) ·n
pp−αp (ηp ∇pp) ·n =−n ·σ(u f , p f ) ·n+αp u f ·n

(2)

Using the interface conditions (2) a Robin-Robin method can be formulated. Such
method requires solving iteratively the Stokes problem in Ω f with boundary condi-
tion (2)1 on Γ and Darcy’s equation in Ωp with boundary condition (2)2 on Γ . More
details can be found in [3].

2 Optimization of the Robin parameters αp and α f

Classical approaches in the Optimized Schwarz literature derive, through Fourier
analysis, the convergence rate ρ(α f ,αp,k) of the iterative algorithm as a function
of the parameters α f , αp and of the frequency k, and they aim at optimizing α f and
αp by minimization of ρ(α f ,αp,k) over all the relevant frequencies of the problem.
This amounts to solve the min-max problem

min
α f ,αp∈R+

max
k∈[kmin,kmax]

ρ(α f ,αp,k), (3)

where kmin and kmax are the minimal frequency relevant to the problem and the
maximal frequency supported by the numerical grid (of the order of π/h).

However, when the OSM is used as a preconditioner for a Krylov method
to solve the interface problem, such a choice does not necessarily guarantee the
fastest convergence. Minimising the effective convergence rate (ρe f f (α f ,αp) =
maxk ρ(α f ,αp,k)) does not make the convergence rate automatically small for all
frequencies, and the Krylov type solver can then suffer from slow convergence.
Such an issue can be particularly relevant in the presence of heterogeneous cou-
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pling. In the rest of the section, we first introduce the exact interface conditions,
then present three different approaches to optimize the interface parameters. The
first one is based on a classical equioscillation principle, the second one exploits
the peculiar characteristics of the Stokes/Darcy problem, while the third one aims
to globally minimize the convergence rate for all frequencies.

2.1 Convergence rate and exact interface conditions

The convergence rate of the Robin-Robin algorithm does not depend on the iteration
and, for positive parameters αp,α f > 0, is given by [3]

ρ(α f ,αp,k) =
∣∣∣∣2µ f k−αp

2µ f k+α f

∣∣∣∣ · ∣∣∣∣1−α f ηp k
1+αp ηp k

∣∣∣∣ . (4)

(As shown in [3], by symmetry we can restrict to the case k > 0.)
The optimal parameters force the reduction factor ρ(α f ,αp,k) to be identically

equal to zero for all k, so that convergence is attained in a number of iterations equal
to the number of subdomains. They can be easily derived from (4) as

α
exact
p (k) = 2µ f k α

exact
f (k) =

1
ηp k

. (5)

Their direct use is unfortunately not viable: both depend on the frequency k, and
their back transforms in the physical space are either introducing an imaginary co-
efficient which multiplies a first order tangential derivative (αexact

p (k)) or result in a
nonlocal operator (αexact

f (k)). The use of approximations based on low-order Taylor
expansions of the optimal values (5) (around k = kmin for αp and k = kmax for α f )
would not help either, as they would suffer from the same drawbacks (see [3]).

2.2 The equioscillation approach

The convergence rate (4) is continuous, has two positive roots, k1 = (α f ηp)
−1 and

k2 = αp/(2µ f ), and a maximum between k1 and k2, given by (setting δ = 2µ f ηp)

k∗ =
2δ (αp−α f )+

√
4δ 2(αp−α f )2 +4δ (2µs +α f αpηp)2

2δ (2µs +α f αpηp)
. (6)

The natural approach to solve the min-max problem (3) would resort to an
equioscillation principle, where one seeks for α

eq
f and α

eq
p such that

ρ(αeq
f ,αeq

p ,kmin) = ρ(αeq
f ,αeq

p ,k∗) = ρ(αeq
f ,αeq

p ,kmax). (7)
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This approach ensures that all other frequencies exhibit a smaller convergence rate.

Proposition 1. The solution to problem (7) is given by the two pairs of optimal
coefficients (αeq

f ,i,α
eq
p,i), i = 1,2:

α
eq
f ,i =

1
2

(
Xi +

√
X2

i +4Yi

)
, α

eq
p,i =

1
2

(
−Xi +

√
X2

i +4Yi

)
, i = 1,2, (8)

with Yi ∈ R+ and Xi ∈ R defined as follows:

Yi =
2µ f

ηp

b
a
−1+(−1)i+1

√(
b
a
−1
)2

−1

 i = 1,2, (9)

Xi =
1−δkminkmax

ηp(kmin + kmax)

(
ηp

2µ f
Yi +1

)
i = 1,2, (10)

where a > 0 and b > 0 are the positive quantities

a =
1+δk2

max

(kmin + kmax)2

(
kmin(k∗+ kmax)+ k∗(kmax− k∗)

+δkminkmax(k∗(kmin + k∗)+ kmax(k∗− kmin))
)
,

(11)

b = (1+δk2
max)(1+δk2

∗), (12)

and k∗ > 0 becomes

k∗ =
δkminkmax−1+

√
(δkminkmax−1)2 +δ (kmin + kmax)2

δ (kmin + kmax)
. (13)

Proof. We consider the first condition of equioscillation in (7): ρ(α f ,αp,kmin) =
ρ(α f ,αp,kmax). With the help of some algebra, we obtain

αp−α f = (δkminkmax−1)(ηpα f αp +2µ f )(δ (kmin + kmax))
−1 . (14)

Substituting (14) into (6) we obtain the expression (13) for k∗ which is now inde-
pendent of α f and αp. It can be easily verified that the obtained value of k∗ satisfies
kmin < k∗ < kmax so that we can proceed imposing the second condition of equioscil-
lation in (7): ρ(α f ,αp,kmax) = ρ(α f ,αp,k∗), that is:

−δ (k2
∗+ k2

max)(α f −αp)
2 +2ηpk∗kmax(α f αp)

2

+ηp(k∗+ kmax)(1−δk∗kmax)(α f −αp)α f αp

+2µ f (k∗+ kmax)(1−δk∗kmax)(α f −αp)

−2(1+δ 2k2
∗k

2
max +δ (kmax− k∗)2)α f αp +8µ2

f k∗kmax = 0.

(15)

We introduce now the change of variables: X = α f − αp and Y = α f αp. We
substitute the expression of X from (14) into (15) to get
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Y 2
(

a
ηp

2µ f

)
+2Y (a−b)+a

2µ f

ηp
= 0 (16)

where a and b are as in (11) and (12), respectively. Since kmin < k∗ < kmax, a > 0
and we can rewrite (16) as

Y 2 ηp

2µ f
−2Y

(
b
a
−1
)
+

2µ f

ηp
= 0 (17)

whose roots are (9). By a simple algebraic manipulation, it can be verified that
b− 2a > 0 which also implies that b− a > 0, so that the discriminant of (17) is
positive and both its roots are positive as well: Yi > 0, i = 1,2. Finally, (10) follows
from (14) and (8) is obtained reversing the change of variables. ut

2.3 Exploiting the problem characteristics

From (5), we observe that the product of the optimal values αexact
f (k) and αexact

p (k)
is constant and equals 2µ f /ηp. We exploit such peculiarity of the problem (not
occurring in homogeneous decomposition, see e.g. [5]), and restrict our search for
optimized parameters to the curve

α f αp = 2µ f /ηp. (18)

Notice that such curve is the subset of the (α f ,αp) upper-quadrant where the zeros
k1 and k2 of the convergence rate ρ coincide.

Proposition 2 ([3]). The solution of the min-max problem

min
α f αp=

2µ f
ηp

max
k∈[kmin,kmax]

ρ(α f ,αp,k)

is given by the pair

α
∗
f =

1−2µ f ηp kminkmax

ηp(kmin + kmax)
+

√(
1−2µ f ηp kminkmax

ηp(kmin + kmax)

)2

+
2µ f

ηp

α
∗
p =−

1−2µ f ηp kminkmax

ηp(kmin + kmax)
+

√(
1−2µ f ηp kminkmax

ηp(kmin + kmax)

)2

+
2µ f

ηp

(19)

Moreover, ρ(α∗f ,α
∗
p,k)< 1 for all k ∈ [kmin,kmax].
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2.4 Minimisation of the mean convergence rate

The reduction factor along (18) is given by

ρ(α f ,k) =
2µ f

ηp

(
ηpα f k−1
2µ f k+α f

)2

. (20)

To further exploit the characteristics of the problem, we consider the set
A f = {α f > 0 : ρ(α f ,k)≤ 1 ∀k ∈ [kmin,kmax]}.

Notice that the convergence of the Robin-Robin method in the iterative form would
be ensured only if the inequality in the definition of A f is strict. From [3] we know
that the convergence rate can equal 1 in at most one frequency, either in kmin or in
kmax. When using the OSM as a preconditioner for a Krylov method, the latter can
handle isolated problems in the spectrum (see, e.g., [4, 6, 7]).

In order to improve the overall convergence for a Krylov method, we minimize,
on the set A f , the expected value of ρ(α f ,k) in the interval [kmin,kmax]:

E(α f ) := E[ρ(α f ,k)] =
1

kmax− kmin

∫ kmax

kmin

ρ(α f ,k)dk.

Owing to (20), E(α f ) can be explicitly computed: it is positive in α f = 0, and
has a minimum in the point α̂ f after which it is always increasing (see [3]). As a
consequence, the minimum α

opt
f of E(α f ) is attained in α̂ f if the latter belongs to

A f , or in one extremum of A f otherwise, namely:

α
opt
f =


min

α f∈A f
α f if α̂ f < min

α f∈A f
α f

α̂ f if α̂ f ∈A f

max
α f∈A f

α f if α̂ f > max
α f∈A f

α f .

(21)

3 Numerical results

We compare here the three approaches (8), (19) and (21) considering a test with
analytic solution: u f = (

√
µ f ηp, αBJx), p f = 2µ f (x + y− 1) + (3ηp)

−1, pp =

(−αBJx(y− 1) + y3/3− y2 + y)/ηp + 2µ f x. We set Ω f = (0,1)× (1,2), Ωp =
(0,1)× (0,1) and interface Γ = (0,1)×{1}. The computational grids are uniform,
structured, made of triangles with h = 2−(s+2), s≥ 0; P2-P1 finite elements are used
for Stokes and P2 elements for Darcy’s law; ηp is constant, αBJ = 1, kmin = π ,
kmax = π/h. The interface system associated to the OSM [3] is solved by GMRES
with tolerance 1e-9. In Table 1 we report the parameters obtained for various co-
efficients µ f and ηp. Figure 1 shows the convergence rates versus k for the three
possible choices of α f and αp and two pairs of values (µ f ,ηp). The number of iter-
ations for α f and αp at fixed h is computed for two pairs of values (µ f ,ηp) and is
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Table 1 Parameters obtained in (8), (19) and (21) for different values of µ f , ηp and h = 2−5.

µ f ηp α
eq
f α

eq
p α∗f α∗p α

opt
f α

opt
p

1 1 0.27 36.93 0.16 12.33 0.036 56.04
1 1e-2 23.00 68.59 9.91 20.17 5.44 36.75
1 1e-4 852.50 157.10 258.19 77.46 217.34 92.01
1e-1 1 0.26 4.19 0.15 1.35 0.03 5.48
1e-1 1e-2 15.71 12.01 4.84 4.13 3.37 5.93
1e-1 1e-4 613.00 17.02 201.61 9.92 195.90 10.21

shown in Figure 2. The parameters devised in (8) feature both the smallest conver-
gence rate and the worst preconditioning performance in terms of iteration counts.
Notice also that α

opt
f in (21), minimizing the mean convergence rate, always ensures

the best performance in terms of iteration counts. Figure 3 displays the number of
iterations versus h for different combinations of µ f and ηp: α

opt
f consistently ex-

hibits the best convergence properties, in particular when the ratio µ f /ηp increases.

Fig. 1 Convergence rates as a function of k for the parameters (8) (solid line), (19) (dashed line),
and (21) (dotted line). Left: µ f = 1, ηp = 1e-2. Right: µ f = 1e-1, ηp = 1e-2. h = 2−5.

4 Conclusions

Using the Stokes/Darcy coupling as a testbed for heterogeneous problems, we show
that minimizing the convergence rate of the corresponding iterative algorithm leads
to poor convergence when an Optimized Schwarz Method is used as preconditioner
for a Krylov method applied to the interface equation. On the other hand, taking ad-
vantage of the problem characteristics and minimizing the mean of the convergence
rate provides effective preconditioning.
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Fig. 2 Number of iterations for h = 2−5 and parameters α f and αp as in (8) (squares), (19) (circle)
and (21) (diamond). Left: µ f = 1, ηp = 1e-2; right: µ f = 1e-1, ηp = 1e-2.

Fig. 3 Number of iterations versus h. Solid lines refer to (8), dashed lines to (19) and dotted lines
(21). Squares refer to ηp = 1, circles ηp = 1e-2, diamonds ηp = 1e-4. Left: µ f = 1; right: µ f = 1e-
1. All values obtained for ηp = 1 and µ f = 1 coincide (left plot), while for ηp = 1 and µ f = 1e-1
they coincide only when computed using (8) and (19) (right plot).
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Preconditioned space-time boundary element
methods for the one-dimensional heat equation

Stefan Dohr and Olaf Steinbach

1 Introduction

Space–time discretization methods, see, e.g., [8], became very popular in recent
years, due to their ability to drive adaptivity in space and time simultaneously, and
to use parallel iterative solution strategies for time–dependent problems. But the
solution of the global linear system requires the use of some efficient preconditioner.

In this note we describe a space–time boundary element discretization of the heat
equation and an efficient and robust preconditioning strategy which is based on the
use of boundary integral operators of opposite orders, but which requires a suitable
stability condition for the boundary element spaces used for the discretization. We
demonstrate the method for the simple spatially one-dimensional case. However, the
presented results, particularly the stability analysis of the boundary element spaces,
can be used to extend the method to the two- and three-dimensional problem [2].

Let Ω = (a,b) ⊂ R, Γ := ∂Ω = {a,b} and T > 0. As a model problem we
consider the Dirichlet boundary value problem for the heat equation,

α∂tu−∆xu = 0 in Q := Ω × (0,T ), u = g on Σ := Γ × (0,T ), u = u0 in Ω (1)

with the heat capacity constant α > 0, the given initial datum u0, and the boundary
datum g. The solution of (1) can be expressed by using the representation formula
for the heat equation [1], i.e. for (x, t) ∈ Q we have

u(x, t) =
∫

Ω
U?(x− y, t)u0(y)dy+

1
α

∫

Σ
U?(x− y, t− s)

∂
∂ny

u(y,s)dsyds

− 1
α

∫

Σ

∂
∂ny

U?(x− y, t− s)g(y,s)dsyds,
(2)

Stefan Dohr, Olaf Steinbach
Institut für Angewandte Mathematik, TU Graz, Steyrergasse 30, 8010 Graz
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where U? denotes the fundamental solution of the heat equation given by

U?(x− y, t− s) =





(
α

4π(t− s)

)1/2

exp
(−α|x− y|2

4(t− s)

)
, s < t,

0 , else.

Hence it suffices to determine the yet unknown Cauchy datum ∂nu|Σ to compute
the solution of (1). It is well known [5] that for u0 ∈ L2(Ω) and g ∈ H1/2,1/4(Σ)
the problem (1) has a unique solution u ∈ H1,1/2(Q,α∂t −∆x) with the anisotropic
Sobolev space

H1,1/2(Q,α∂t −∆x) :=
{

u ∈ H1,1/2(Q) : (α∂t −∆x)u ∈ L2(Q)
}
.

In the one-dimensional case the spatial component of the space–time boundary Σ
collapses to the points {a,b} and therefore we can identify the anisotropic Sobolev
spaces Hr,s(Σ) with Hs(Σ). The unknown density w := ∂nu|Σ ∈ H−1/4(Σ) can be
found by applying the interior Dirichlet trace operator γ int

0 : H1,1/2(Q)→ H1/4(Σ)
to the representation formula (2),

g(x, t) = (M0u0)(x, t)+(V w)(x, t)+((
1
2

I−K)g)(x, t) for (x, t) ∈ Σ .

The initial potential M0 : L2(Ω)→ H1/4(Σ), the single layer boundary integral op-
erator V : H−1/4(Σ)→ H1/4(Σ), and the double layer boundary integral operator
1
2 I−K : H1/4(Σ)→ H1/4(Σ) are obtained by composition of the potentials in (2)
with the Dirichlet trace operator γ int

0 , see, e.g., [1, 6]. In fact, we have to solve the
variational formulation to find w ∈ H−1/4(Σ) such that

〈V w,τ〉Σ = 〈(1
2

I +K)g,τ〉Σ −〈M0u0,τ〉Σ for all τ ∈ H−1/4(Σ), (3)

where 〈·, ·〉Σ denotes the duality pairing on H1/4(Σ)×H−1/4(Σ). The single layer
boundary integral operator V is bounded and elliptic, i.e. there exists a constant
cV

1 > 0 such that

〈V w,w〉Σ ≥ cV
1 ‖w‖2

H−1/4(Σ)
for all w ∈ H−1/4(Σ).

Thus, the variational formulation (3) is uniquely solvable. When applying the Neu-
mann trace operator γ int

1 : H1,1/2(Q,α∂t − ∆x)→ H−1/4(Σ) to the representation
formula (2) we obtain the second boundary integral equation

w(x, t) = (M1u0)(x, t)+((
1
2

I +K′)w)(x, t)+(Dg)(x, t) for (x, t) ∈ Σ
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Fig. 1 Sample BE mesh.
We consider an arbitrary
decomposition of the space–
time boundary Σ . Note that
there is no time-stepping
scheme involved Ω× (0,T )

x

t

with the hypersingular boundary integral operator D : H1/4(Σ)→ H−1/4(Σ), and
with the adjoint double layer boundary integral operator K′ : H−1/4(Σ)→H−1/4(Σ).
Moreover, M1 : L2(Ω)→ H−1/4(Σ).

2 Boundary element methods

For the Galerkin boundary element discretization of the variational formulation
(3) we consider a family {ΣN}N∈N of arbitrary decompositions of the space–time
boundary Σ into boundary elements σl , i.e. we have

Σ N =
N⋃

`=1

σ ` .

In the one-dimensional case the boundary elements σ` are line segments in temporal
direction with fixed spatial coordinate x` ∈ {a,b} as shown in Fig. 1. Let (x`, t`1) and
(x`, t`2) be the nodes of the boundary element σ`. The local mesh size is then given
as h` := |t`2 − t`1 | while h := max`=1,...,N h` is the global mesh size.
For the approximation of the unknown Cauchy datum w = γ int

1 u ∈ H−1/4(Σ) we
consider the space S0

h(Σ) := span
{

ϕ0
`

}N
`=1 of piecewise constant basis functions

ϕ0
` , which is defined with respect to the decomposition ΣN . The Galerkin-Bubnov

variational formulation of (3) is to find wh ∈ S0
h(Σ) such that

〈V wh,τh〉Σ = 〈(1
2

I +K)g,τh〉Σ −〈M0u0,τh〉Σ for all τh ∈ S0
h(Σ) . (4)

This is equivalent to the system of linear equations Vhw = f where

Vh[`,k] = 〈V ϕ0
k ,ϕ

0
` 〉Σ , f[`] = 〈(1

2
I +K)g,ϕ0

` 〉Σ −〈M0u0,ϕ0
` 〉Σ , k, `= 1, . . . ,N.

Due to the ellipticity of the single layer operator V the matrix Vh is positive definite
and therefore the variational formulation (4) is uniquely solvable as well. Moreover,
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when assuming w ∈ Hs(Σ) for some s ∈ [0,1], there holds the error estimate

‖w−wh‖H−1/4(Σ) ≤ ch1/4+s|w|Hs(Σ) .

Using standard arguments we also conclude the error estimate

‖w−wh‖L2(Σ) ≤ chs|w|Hs(Σ)

which implies linear convergence of the L2(Σ)–error of the Galerkin approximation
wh if w ∈ H1(Σ) is satisfied.

3 Preconditioning strategies

Since the boundary element discretization is done with respect to the whole space–
time boundary Σ we need to have an efficient iterative solution technique. In fact,
the linear system Vhw = f with the positive definite but nonsymmetric matrix Vh
can be solved by using a preconditioned GMRES method. Here we will apply a
preconditioning technique based on boundary integral operators of opposite order
[10], also known as operator or Calderon preconditioning [3]. Since the single layer
integral operator V : H−1/4(Σ)→ H1/4(Σ) and the hypersingular integral operator
D : H1/4(Σ)→H−1/4(Σ) are both elliptic, the operator DV : H−1/4(Σ)→H−1/4(Σ)
behaves like the identity. Hence we can use the Galerkin discretization of D as a pre-
conditioner for Vh. But for the Galerkin discretization Dh of the hypersingular inte-
gral operator D : H1/4(Σ)→ H−1/4(Σ) we need to use a conforming ansatz space
Yh = span{ψi}N

i=1 ⊂H1/4(Σ) while the discretization of the single layer integral op-
erator V is done with respect to S0

h(Σ). Since the boundary element space S0
h(Σ) of

piecewise constant basis functions ϕ0
k also satisfies S0

h(Σ)⊂H1/4(Σ) we can choose
Yh = S0

h(Σ). The inverse hypersingular operator D−1 is spectrally equivalent to the
single layer operator V , therefore the approximation of the preconditioning opera-
tor corresponds to a mixed approximation scheme, and hence we need to assume a
discrete stability condition to be satisfied.

Theorem 1 ([3, 10]). Assume the discrete stability condition

sup
06=vh∈Yh

〈τh,vh〉L2(Σ)

‖vh‖H1/4(Σ)

≥ cM
1 ‖τh‖H−1/4(Σ) for all τh ∈ S0

h(Σ). (5)

Then there exists a constant cκ > 1 such that

κ
(

M−1
h DhM−>h Vh

)
≤ cκ

where, for k, `= 1, . . . ,N,

Vh[`,k] = 〈V ϕ0
k ,ϕ

0
` 〉Σ , Dh[`,k] = 〈Dψk,ψ`〉Σ , Mh[`,k] = 〈ϕ0

k ,ψ`〉L2(Σ) .
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Thus we can use C−1
V = M−1

h DhM−>h as a preconditioner for Vh. Since Mh is sparse
and spectrally equivalent to a diagonal matrix, the inverse M−1

h can be computed
efficiently. It remains to define, for given S0

h(Σ), a suitable boundary element space
Yh such that the stability condition (5) is satisfied. In what follows we will discuss a
possible choice.

If we choose Yh = S0
h(Σ) for the discretization of the hypersingular operator D,

then Mh becomes diagonal and is therefore easily invertible. In order to prove the
stability condition (5) we need to establish the H1/4(Σ)–stability of the L2(Σ)–
projection Q0

h : L2(Σ)→ S0
h(Σ)⊂ L2(Σ) which is defined as

〈Q0
hv,τh〉L2(Σ) = 〈v,τh〉L2(Σ) for all τh ∈ S0

h(Σ).

Following [7], and when assuming local quasi-uniformity of the boundary element
mesh ΣN we are able to establish the stability of Q0

h : H1/4(Σ)→ H1/4(Σ), see [2]
for a more detailed discussion: For ` = 1, ...,N we define I(`) to be the index set
of the boundary element σ` and all its adjacent elements. We assume the boundary
element mesh ΣN to be locally quasi-uniform, i.e. there exists a constant cL ≥ 1 such
that

1
cL
≤ h`

hk
≤ cL for all k ∈ I(`) and `= 1, ...,N.

In this case the operator Q0
h : H1/4(Σ)→ H1/4(Σ) is bounded, i.e. there exists a

constant c0
S > 0 such that

∥∥Q0
hv
∥∥

H1/4(Σ)
≤ c0

S ‖v‖H1/4(Σ) for all v ∈ H1/4(Σ). (6)

By using the stability estimate (6) we can conclude

1
c0

S
‖τh‖H−1/4(Σ) ≤ sup

06=vh∈S0
h(Σ)

〈τh,vh〉L2(Σ)

‖vh‖H1/4(Σ)

for all τh ∈ S0
h(Σ).

Hence the stability condition (5) holds and we can use C−1
V = M−1

h DhM−>h as a
preconditioner for Vh.

4 Numerical results

For the numerical experiments we choose Ω = (0,1), T = 1, and we consider
the model problem (1) with homogeneous Dirichlet conditions g = 0, and some
given initial datum u0 satisfying the compatibility conditions u0(0) = u0(1) = 0.
The Galerkin boundary element discretization of the variational formulation (3) is
done by piecewise constant basis functions. The resulting system of linear equa-
tions Vhw = f is solved by using the GMRES method. As a preconditioner we use
the discretization C−1

V = M−1
h DhM−>h of the hypersingular operator D with piece-

wise constant basis functions.
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Uniform refinement

The first example corresponds to the initial datum u0(x) = sin 2πx and a globally
uniform boundary element mesh of mesh size h = 2−L. Table 1 shows the L2(Σ)–
error ‖w−wh‖L2(Σ) and the estimated order of convergence (eoc), which is linear
as expected. Moreover, the condition numbers of the stiffness matrix Vh and of the
preconditioned matrix C−1

V Vh as well as the number of iterations to reach a relative
accuracy of 10−8 are given which confirm the theoretical estimates.

Table 1 Error, condition and iteration numbers in the case of uniform refinement

L N ‖w−wh‖L2(Σ) eoc κ(Vh) It. κ(C−1
V Vh) It.

0 2 2.249 - 1.001 1 1.002 1
1 4 1.311 0.778 2.808 2 1.279 2
2 8 0.658 0.996 4.905 4 1.422 4
3 16 0.324 1.021 7.548 8 1.486 8
4 32 0.160 1.017 11.140 16 1.541 14
5 64 0.079 1.010 16.724 31 1.563 13
6 128 0.040 1.006 13.470 41 1.590 13
7 256 0.020 1.003 22.053 50 1.615 12
8 512 0.010 1.001 32.043 59 1.636 12
9 1024 0.005 1.001 60.957 70 1.777 11
10 2048 0.002 1.000 88.488 82 1.762 11
11 4096 0.001 1.000 125.957 96 1.765 10

Adaptive refinement

For the second example we consider the initial datum u0(x) = 5e−10x sin πx which
motivates the use of a locally quasi-uniform boundary element mesh resulting from
some adaptive refinement strategy. The numerical results as given in Table 2 again
confirm the theoretical findings, in particular the robustness of the proposed precon-
ditioning strategy in the case of an adaptive refinement which is not the case when
using none or only diagonal preconditioning C̃V = diagVh.

5 Conclusions and outlook

In this note we have described a space–time boundary element discretization of the
spatially one-dimensional heat equation and an efficient and robust preconditioning
strategy which is based on the use of boundary integral operators of opposite orders,
but which requires a suitable stability condition for the boundary element spaces
used for the discretization. In the particular case of the spatially one-dimensional
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Table 2 Error, condition and iteration numbers in the case of adaptive refinement

L N ‖w−wh‖L2(Σ) κ(Vh) It. κ(C̃−1
V Vh) It. κ(C−1

V Vh) It.

0 2 1.886 1.00 2 1.001 2 1.002 2
1 3 1.637 3.97 3 2.553 3 1.16 3
2 5 1.272 12.23 5 4.055 4 1.166 4
3 7 0.914 34.21 7 3.611 6 1.156 6
4 9 0.615 92.08 9 3.164 8 1.149 8
5 11 0.401 118.59 11 2.945 10 1.224 10
6 13 0.267 338.26 13 2.803 12 1.21 12
7 20 0.166 621.77 20 3.524 18 1.197 13
8 31 0.101 1608.08 31 4.457 27 1.252 12
9 47 0.063 2344.90 47 5.779 32 1.574 11
10 74 0.039 6141.47 74 8.348 37 1.692 11
11 114 0.024 8409.92 114 10.950 42 1.561 10
12 177 0.015 23007.60 173 14.324 47 1.716 10
13 278 0.010 27528.30 200 21.094 53 1.677 10

heat equation we can use the space S0
h(Σ) of piecewise constant basis functions to

discretize both the single layer and the hypersingular boundary integral operator V
and D, respectively. This is due to the inclusion S0

h(Σ) ⊂ H1/4(Σ) where the latter
is the Dirichlet trace space of the anisotropic Sobolev space H1,1/2(Q). In the case
of a spatially two- or three-dimensional domain Ω a conformal approximation of
the Dirichlet trace space H1/2,1/4(Σ) and therefore the discretization of the hyper-
singular integral operator D requires the use of continuous basis functions. Hence,
to ensure the stability condition (5) we may use the space S1

h(Σ) of piecewise linear
and continuous basis functions for the discretization of V and D, respectively, see
[7, Theorem 3.2], and when assuming some appropriate mesh conditions locally [7,
Section 4]. However, due to the approximation properties of S1

h(Σ) such an approach
is restricted to spatial domains Ω with smooth boundary where the unknown flux is
continuous.

When using the discontinuous boundary element space S0
h(Σ) for the approxi-

mation of the unknown flux we need to choose an appropriate boundary element
space Yh to ensure the stability condition (5). A possible approach is the use of a
dual mesh using piecewise constant basis functions for the approximation of V , and
piecewise linear and continuous basis functions for the approximation of D, see Fig.
2 for the situation in 1D. For a more detailed analysis of the proposed precondi-
tioning strategy and suitable choices of stable boundary element spaces we refer to
[2].
An efficient solution of local Dirichlet boundary value problems is an important tool
when considering domain decomposition methods for the heat equation, see e.g. [9]
in the case of the Laplace equation. Moreover, the preconditioning strategy of us-
ing operators of opposite order can also be used when considering related Schur
complement systems on the skeleton, as they also appear in tearing and intercon-
necting domain decomposition methods, see, e.g., [4]. This also covers the coupling
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Fig. 2 Sample dual mesh.
The piecewise linear and
continuous functions ϕ1

i are
used for the discretization of
D. The piecewise constant
basis functions ϕ̃0

i are used
for the discretization of V
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of space–time finite and boundary element methods. Related results on the stability
and error analysis as well as on efficient solution strategies for space–time domain
decomposition methods will be published elsewhere.
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On high-order approximation and
stability with conservative properties

Juan Galvis1, Eduardo Abreu2, Ciro Dı́az2, and Marcus Sarkis3

1 Summary

In this paper, we explore a method for the construction of locally conservative
flux fields. The flux values are obtained through the use of a Ritz formulation
in which we augment the resulting linear system of the continuous Galerkin
(CG) formulation in a higher-order approximation space. These methodolo-
gies have been successfully applied to multi-phase flow models with heteroge-
neous permeability coefficients that have high-variation and discontinuities.
The increase in accuracy associated with the high order approximation of
the pressure solutions is inherited by the flux fields and saturation solutions.
Our formulation allows us to use the saddle point problems analysis to study
approximation and stability properties as well as iterative methods design for
the resulting linear system. In particular, here we show that the low-order
finite element problem preconditions well the high-order conservative discrete
system. We present numerical evidence to support our findings.

2 Problem and conservative formulation

Consider the equation,

−div(Λ(x)∇p) = q in Ω ⊂ <2, (1)

p = 0 on ∂Ω, (2)
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where Ω is a two-dimensional domain and Λ is a (smooth enough) positive
definite symmetric matrix function. See [6] for the case of Λ being a multiscale
coefficient with high-contrast. Our main interest is to obtain approximate so-
lutions of the second order problem above1 with: 1) high-order approximation
(e.g., multiple basis per node), 2) local mass conservation properties and 3)
stable-fast solver.

Our motivations come from the fact that in some applications it is
imperative to have some conservative properties represented as conserva-

tions of total flux in control volumes. For instance, if qh represents the approx-
imation to the flux (in our case qh = −Λ∇ph where ph is the approximation
of the pressure), it is required that∫

∂V

qh · n =

∫
V

q for each control volume V.

For Dirichlet boundary condition, V is a control volume that does not cross
∂Ω from a set of control volumes of interest, and here and after n is the
normal vector pointing out the control volume. We say that a discrete method
is conservative if the total flux restriction such as the one written above holds.

We note that FV methods that use higher degree piecewise polynomi-
als have been introduced in the literature; see [3, 4, 5]. We consider a Ritz
formulation and construct a solution procedure that combines a continuous
Galerkin-type formulation that concurrently satisfies mass conservation re-
strictions. We impose finite volume restrictions by using a scalar Lagrange
multiplier for each restriction; see [1, 6].

The variational formulation of problem (1) is to find p ∈ H1
0 (Ω) such that

a(p, v) = F (v) for all v ∈ H1
0 (Ω), (3)

where the bilinear form a is defined by

a(p, v) =

∫
Ω

Λ(x)∇p(x)∇v(x)dx, (4)

the functional F is defined by F (v) =
∫
Ω
q(x)v(x)dx. The Problem (3) is

equivalent to the minimization problem:

p = arg min
v∈H1

0 (Ω)
J (v) where J (v) =

1

2
a(v, v)− F (v). (5)

Let the triangulation τh = {Rk}Nh

k=1 made of elements that are triangles
or squares, where Nh is the number of elements. We also introduce the dual

1 The use of second order formulation makes sense especially for cases where some form of

high regularity holds. Usually in these cases the equality in the second order formulation
is an equality in L2 so that, in principle, there is no need to write the system of first order

equations and weaken the equality by introducing less regular spaces for the pressure as it

is done in mixed formulation with L2 pressure.
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mesh τ∗h = {Vk}
N∗h
k=1 where the elements are called control volumes. In this

paper we assume that each Vk is a subdomain of Ω with polygonal boundary.
Let us introduce the space H := {v ∈ H1

0 (Ω) : Λ∇v ∈ H(div, Ω)}. If q ∈ L2

we have that (3) is equivalent to: Find p ∈ H1
0 such that

p = arg min
v∈W
J (v), (6)

where W =

{
v ∈ H :

∫
∂T

−Λ∇v · n =

∫
T

q for all T ∈ τ∗h
}
.

Problem (6) above can be view as Lagrange multipliers min-max optimiza-
tion problem. See [2] and references therein. Let us denote Mh = RN∗h .

The Lagrange multiplier formulation of problem (6) can be written as:
Find p ∈ H and λ ∈Mh that solves

(p, λ) = arg max
µ∈RN∗

h

min
v∈H,

J (v)− (a(v, µ)− F (µ)). (7)

Here, the total flux bilinear form a : H × Mh → R is defined by

a(v, µ) =

Nh∑
k=1

µk

∫
∂Vk

Λ∇v · n for all v ∈ H and µ ∈Mh. (8)

The functional F : Mh → R is defined by F (µ) =
∑Nh

i=1 µk
∫
Vk
q, for all µ ∈

Mh. The first order conditions of the min-max problem above give the fol-
lowing saddle point problem: Find p ∈ H1

0 (Ω) and λ = 0 ∈Mh that solves:

a(p, v) + a(v, λ) = F (v) for all v ∈ H,
a(p, µ) = F (µ) for all µ ∈Mh.

(9)

3 Discretization and error

Let us consider Ph = Qr(τh)∩H1
0 (Ω). We also interpret Mh as Q0(τ∗h), that

is, the space of piecewise constant functions on the dual mesh τ∗h . See for
instance [6] where we consider GMsFEM spaces instead of piecewise polyno-
mials.

The discrete version of (9) is to find ph ∈ Ph and λ ∈Mh such that

a(ph, vh) + a(vh, λh) = F (vh) for all vh ∈ Ph (10)

a(ph, µh) = F (µh) for all µh ∈Mh. (11)

The equivalent matrix form is,
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A A

T

A O

] [
uh

λh

]
=

[
f

f

]
(12)

where A is the finite element stiffness matrix corresponding to finite element
space Ph = span {ϕj},

A = [ai,j ] where aij =

∫
Ω

Λ∇ϕi · ∇ϕj . (13)

The restriction or finite volume matrix A is given by,

A = [ak,j ] where akj =

∫
∂Vk

Λ∇ϕj · n. (14)

Moreover, f = [fi] with fi =
∫
Ω
q ϕi and f = [fk]

N∗h
k=1 with fk =

∫
Vk
q.

Note that matrix A is related to classical (low order) finite volume matrix.
Matrix A is a rectangular matrix with more columns than rows. Several pre-
vious works on conservative high-order approximation of second order elliptic
problem have been designed by “adding” rows using several constructions.
See [1] for details.

We consider a particular case of a regular mesh made of squares. Our anal-
ysis is valid for high order finite element on regular meshes made of triangles

since a similar analysis holds in this case. Define Γ ∗ =
⋃N∗h
k=1 that is, Γ ∗ is the

interior interface generated by the dual triangulation. For µ ∈Mh define [µ]
on Γ ∗ as the jump across element interfaces such that [µ]|∂Vk∩∂Vk′ = µk−µk′ .
Note that a(v, µ) =

∑N∗h
k=1 µk

∫
∂Vk
∇v · n =

∫
Γ∗
∇v · n [µ] .

In our analysis we use the energy norm in the space that approximates
the pressure and a discrete norm in the space of Lagrange multipliers. De-
note ‖v‖2a =

∫
Ω
Λ∇v · ∇v for all v ∈ H1

0 (Ω). Let us recall the defini-
tion of space H := {v ∈ H1

0 (Ω) : Λ∇v ∈ H(div, Ω)}, and additional set
Ph+ = Span{Ph, H}. We define the norm (that is motivated by the analysis)

‖v‖2Ph
+

= |v|2H1(Ω) + h2
N∗h∑
`=1

‖∆v‖2L2(R`)
for all v ∈ Ph+. (15)

Note that if v ∈ Qr, then ‖v‖2
Ph

+
� |v|2H1(Ω) using an inverse inequality. Also

define the discrete norm for the spaces of Lagrange multipliers as

‖µ‖2Mh =
1

h

∫
Γ∗

[µ]2. (16)

It is possible to verify that ([1])
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1. Augmented norm: ‖v‖a ≤ ‖v‖Ph
+

for all v ∈ Ph+.

2. Continuity: |ā| ∈ R such that |ā(v, µh)| ≤ |ā|‖v‖Ph
+
‖µh‖Mh for all v ∈ Ph+

and µh ∈Mh.

3. Inf-Sup: infµh∈Mh supv∈Ph
+

a(v, µh)

‖v‖a ‖µh‖Mh
≥ α > 0.

We also have established optimal approximation in energy norm (‖p−ph‖a �
h|p|H2(Ω)) and using a duality argument it is possible to write the optimal

L2 approximation ‖p− (ph + λh)‖0 � h2|p|H2(Ω); see [1] for details.

4 The case of highly anisotropic media

One issue with some cases of conservative methods is the lack of coerciveness
under the presence of high-anisotropic coefficients. We can think our formula-
tion as a stabilization for these cases (in the sense that we increase the space
of the solution while keeping fixed the space for the Lagrange multipliers).
Preliminary numerical studies suggest that our formulation is more robust
(with respect to anisotropy) than the classical finite volume formulations.

A nice feature of our formulation is that the symmetric saddle point (12) is
suitable for constructing robust preconditioners; see [2] for variety of solvers
and iteration that can be used. Here we present a simple stationary iteration.
Consider the iteration

Auk+1 = f −ATλk
λk+1 = λk + ωB−1(Auk+1 − f).

(17)

Here ω is a relaxation parameter and B a preconditioner to be defined. This
iteration corresponds to a preconditioned Richardson iteration applied to
the Schur complement problem (to solve for the Lagrange multiplier lambda
equation). We have, by combining the two equations above,

λk+1 = λk + ωB−1 (g − Sλk)

where g = AA−1f − f and S is the Schur complement S = AA−1A
T

. Note
that the size of S is the number of interior vertices if the control volumes
are constructed by joining the centers of the elements of the primal mesh. In
the case of isotropic coefficients and square elements, we can take B = Mh

defined in (16); see [2]. In order to take into account the anisotropy, below in
the numerical tests we consider B defined by

B = [bij ] where bij =

∫
D

Λ∇ϕi∇ϕj with ϕi, ϕj ∈ Q1 ∩H1
0 (Ω).
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5 Numerical experiments

We consider the Dirichlet problem (1). Let Ω = (0, 1)× (0, 1). We consider a
regular mesh made of 4L squares. The dual mesh is constructed by joining the
centers of the elements of the primal mesh. We perform a series of numerical
experiments to compare properties of FEM solutions with the solution of our
high order FV formulation (to which we refer from now on as FV solution).
We select the exact solution p(x, y) = sin(πx) sin(πy)(−x+3y) and f = −∆u.

On Table 1 we compare our Q1 FV method with the classical Q1 finite
element method. We compute L2 and H1 errors. We observe optimal con-
vergence of both strategies however the FV is conservative. On Table 2 we
consider Q2 elements and optimal higher convergence rates are confirmed.

L FEM, L2 Error FV. L2 Error FEM, H1 Error FV.H1 Error

1 1.5538× 10−1 1.5103× 10−1 1.1297× 100 1.1338× 100

2 3.6342× 10−2 3.1881× 10−2 5.3226× 10−1 5.3416× 10−1

3 8.9720× 10−3 7.5.276× 10−3 2.6374× 10−1 2.6403× 10−1

4 2.2548× 10−3 1.9348× 10−3 1.3163× 10−1 1.3172× 10−1

5 5.5513× 10−4 4.6095× 10−4 6.5833× 10−2 6.5840× 10−2

6 1.3875× 10−4 1.1513× 10−4 3.2948× 10−2 3.2924× 10−2

7 3.4685× 10−5 2.8776× 10−5 1.6418× 10−2 1.6489× 10−2

Table 1 Table of FEM and FV L2 and H1 errors using Q1 elements.

L FEM L2 Error FV. L2 Error FEM H1 Error FV.H1 Error

1 1.4061× 10−2 2.4548× 10−2 1.9302× 10−1 2.2436× 10−1

2 2.1217× 10−3 4.9023× 10−3 5.4862× 10−2 7.2895× 10−2

3 2.6860× 10−4 6.4789× 10−4 1.4072× 10−2 1.8847× 10−2

4 3.3875× 10−5 8.1756× 10−5 3.5418× 10−3 4.7552× 10−3

5 4.2437× 10−6 1.0242× 10−5 8.3539× 10−4 1.2667× 10−3

6 5.3075× 10−7 1.2810× 10−6 2.2016× 10−4 2.9616× 10−4

7 6.6353× 10−8 1.6015× 10−7 5.5043× 10−5 7.4046× 10−5

Table 2 Table of FEM and FV L2 and H1 errors using Q2 elements.

We now move to symmetric anisotropic coefficients Λ. We now show in Ta-
bles 3-8 the smallest and the largest eigenvalues of λmax(B−1S)/λmin(B−1S)
for different values of Λ, h = 2L and for Q1,Q2 and Q3 elements. The Λ has
eigenvalues 1 and η and associate eigenvector η = (cos(Θ), sin(Θ))t. From
these results we see that the smallest eigenvalue is very stable, therefore, the
discrete inf-sup is satisfied. This is a strong result since finite volume dis-
cretizations sometimes lack in coerciveness for highly anisotropic media. The
proposed preconditioner performs well however has a mildly dependence with
respect to the different configuration of anisotropy direction and anisotropy
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ratio. This is somehow expected since the continuity given in (15) is with
respect to the Vh-norm rather than a-norm, and further studies are on the
way to eliminate this dependence. Recall that the application of the precon-
ditioner requires the solution of a low-order (Q1) classical symmetric finite
element problem. In practice, these solve can be replaced by a robust method
for low-order finite element method and inexact Uzawa or Conjugated Gra-
dient. Recall also that we obtain conservative solutions.

L\η 1 10 100 1000 1 10 100 1000 1 10 100 1000

2
1.76

1.05

1.76

1.05

1.76

1.05

1.76

1.05

1.76

1.05

1.76

1.05

1.81

1.05

1.81

1.05

1.76

1.05

1.80

1.05

1.82

1.05

1.83

1.05

3
2.09

1.01

2.09

1.01

2.09

1.01

2.09

1.01

2.09

1.01

2.11

1.01

2.12

1.01

2.12

1.01

2.09

1.01

2.11

1.01

2.13

1.01

2.14

1.01

4
2.20

1.00

2.20

1.00

2.20

1.00

2.20

1.00

2.20

1.00

2.21

1.00

2.22

1.00

2.22

1.00

2.20

1.00

2.21

1.00

2.22

1.00

2.22

1.00

5
2.24

1.00

2.24

1.00

2.24

1.00

2.24

1.00

2.23

1.00

2.24

1.00

2.24

1.00

2.24

1.00

2.24

1.00

2.24

1.00

2.24

1.00

2.24

1.00

6
2.25

1.00

2.25

1.00

2.25

1.00

2.25

1.00

2.25

1.00

2.25

1.00

2.25

1.00

2.25

1.00

2.25

1.00

2.25

1.00

2.25

1.00

2.25

1.00

Table 3 Maximum and minimum eigenvalue λmax
λmin

for Θ = 1(left), Θ = π
6

(center),

Θ = π
4

(right) and Ph = Q1. The Λ has eigenvalues 1 and η and the eigenvector associated

to η is (cos(Θ), sin(Θ))t.

L\η 1 10 100 1000 1 10 100 1000 1 10 100 1000

2
1.79

1.05

1.80

1.05

1.81

1.06

1.81

1.06

1.79

1.05

2.13

1.09

2.47

1.11

2.53

1.11

1.79

1.05

2.32

1.10

2.98

1.12

3.12

1.12

3
2.10

1.01

2.10

1.01

2.11

1.01

2.11

1.01

2.10

1.01

2.50

1.02

2.99

1.03

3.18

1.03

2.10

1.01

2.77

1.02

4.03

1.03

4, 43

1.03

4
2.21

1.00

2.21

1.00

2.21

1.00

2.21

1.00

2.21

1.00

2.61

1.01

3.27

1.01

3.92

1.01

2.21

1.00

2.91

1.01

4.40

1.01

5.24

1.01

5
2.24

1.00

2.24

1.00

2.24

1.00

2.24

1.00

2.24

1.00

2.64

1.00

3.43

1.00

4.90

1.00

2.24

1.00

2.95

1.00

4.52

1.00

6.43

1.00

6
2.25

1.00

2.25

1.00

2.25

1.00

2.25

1.00

2.25

1.00

2.65

1.00

3.48

1.00

5.86

1.00

2.25

1.00

2.95

1.00

4.57

1.00

7.60

1.00

Table 4 Maximum and minimum eigenvalue λmax
λmin

for Θ = 1 (left), Θ = π
6

(center),

Θ = π
4

(right) and Ph = Q2. The Λ has eigenvalues 1 and η and the eigenvector associated

to η is (cos(Θ), sin(Θ))t.

6 Conclusions

In this paper we use a Ritz formulation with constraints to obtain locally
conservative fluxes in the approximation of the Darcy equation. With this
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L\η 1 10 100 1000 1 10 100 1000 1 10 100 1000

2
4.52

2.43

4.54

2.43

4.57

2.43

4.58

2.43

4.52

2.29

4.72

2.29

6.92

2.29

7.21

2.29

4.52

2.44

4.80

2.28

5.01

2.24

5.05

2.23

3
5.32

2.29

5.35

2.29

5.40

2.29

5.41

2.29

5.33

2.29

5.47

1.95

6.92

1.89

7.21

1.90

5.32

2.29

5.67

1.92

7.37

1.86

7.68

1.64

4
5.59

2.26

5.62

2.26

5.68

2.26

5.69

2.26

5.60

2.26

5.89

1.81

10.8

1.74

12.2

1.74

5.59

2.26

6.48

1.78

12.2

1.72

13.7

1.72

5
5.67

2.25

6.70

2.25

5.75

2.25

5.77

2.25

5.67

2.25

6.19

1.75

16.9

1.68

22.2

1.67

5.67

2.25

7.09

1.73

20.2

1.67

26.3

1.66

6
5.69

2.25

5.72

2.25

5.77

2.25

5.79

2.25

5.68

2.25

5.68

1.72

24.7

1.65

41.4

1.65

5.68

2.25

7.46

1.70

30.8

1.65

50.7

1.64

Table 5 Maximum and minimum eigenvalue λmax
λmin

for Θ = 1 (left), Θ = π
6

(center),

Θ = π
4

(right) and Ph = Q3.

formulation we obtain solution that have high-order approximation and still
yield locally conservative fluxes with no post-processing. We show that the
resulting linear system can be solve using a stationary iteration where the
application of the preconditioner uses an approximation of a low-order finite
element problem. We present numerical evidence to support our findings.

Acknowledgments E. Abreu thanks financial support FAPESP through
grant No. 2016/23374-1.
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A Nonlinear ParaExp Algorithm

Martin J. Gander, Stefan Güttel, and Madalina Petcu

1 Derivation of the Nonlinear ParaExp Algorithm

Time parallelization has a long history, see [1] and references therein. The parallel

speedup obtained is in general not as good as with space parallelization, especially

for hyperbolic problems. A notable exception are waveform relaxation-type meth-

ods [3, 4], which in the hyperbolic case are related to the more recent tent-pitching

approach [6], and the ParaExp algorithm [7, 9] based on Krylov methods, which is

however restricted to linear problems. For an application in a nonlinear context, see

[10], and for a different approach using Krylov information, see [8]. Here we pro-

pose and analyze a variant of the ParaExp algorithm for the nonlinear initial value

problem

u′(t) = Au(t)+B
(

u(t)
)

+ g(t), t ∈ [0,T ], u(0) = u0, (1.1)

with A∈Cm×m, B :Cm →Cm a nonlinear operator, g : [0,T ]→Cm a source function,

and u : [0,T ] → Cm the sought solution. Throughout this note we assume that all

stated initial value problems have unique solutions. For the ParaExp algorithm, the
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time interval [0,T ] is partitioned into N subintervals [Tn−1,Tn] with n= 1, . . . ,N, and

a direct application of this algorithm to the nonlinear problem (1.1) gives

Step 1: Solve for n ≥ 1 in parallel the nonlinear problems with zero initial data

v′n(t) = Avn(t)+B
(

vn(t)
)

+ g(t), t ∈ [Tn−1,Tn],

vn(Tn−1) = 0.

Step 2: Solve for n ≥ 1 in parallel the linear non-homogeneous problems

w′
n(t) = Awn(t), t ∈ [Tn−1,T ],

wn(Tn−1) = vn−1(Tn−1), v0(T0) = u0.

ParaExp then forms the linear combination u(t) = vn(t)+∑
n
j=1 w j(t), t ∈ [Tn−1,Tn),

which still satisfies the initial condition, but not equation (1.1) since u′(t) = Au(t)+
B
(

vn(t)
)

+ g(t), t ∈ [Tn−1,Tn], except when B is not present. One can however

naturally separate the solution into u(t) = v(t) +w(t), with w solving the linear

problem w′(t) = Aw(t), w(t) = u0, and v solving the nonlinear remaining part

v′(t) = Av(t) +B
(

v(t) +w(t)
)

+ g(t), v(0) = 0. To apply this splitting on multi-

ple time intervals [Tn−1,Tn] we need to iterate. Using the initialization v0
n(Tn) = 0

for n = 1, . . . ,N (or some other approximation), we perform for k = 1,2, . . .

Step 1: Solve for n ≥ 1 in parallel the linear problems

(

wk
n

)′
(t) = Awk

n(t), t ∈ [Tn−1,T ],

wk
n(Tn−1) = vk−1

n−1(Tn−1), wk
1(T0) = u0.

(1.2)

Step 2: Solve for n ≥ 1 in parallel the nonlinear problems

(

vk
n

)′
(t) = Avk

n(t)+B
(

vk
n(t)+

n

∑
j=1

wk
j(t)

)

+ g(t), t ∈ [Tn−1,Tn],

vk
n(Tn−1) = 0.

(1.3)

The new approximate solution is then defined by uk(t) = vk
n(t) +∑

n
j=1 wk

j(t), t ∈
[Tn−1,Tn), which now satisfies equation (1.1) on each time interval [Tn−1,Tn), and

uk(0)=u0. The solution of the linear part (1.2) can still be computed efficiently as in

the ParaExp algorithm using Krylov techniques, but (1.3) requires the computation

of ∑
n
j=1 wk

j on [Tn−1,Tn], and thus would need the Krylov approximation of wk
j on

the entire interval [Tn−1,Tn]. To avoid this, we rewrite the algorithm in terms of uk
n

instead of vk
n, where uk

n approximates u: starting with u0
n(Tn) = w0

j(Tn) = 0 for all j

and n, the nonlinear ParaExp algorithm performs for k = 1,2, . . .

Step 1: Solve for n ≥ 1 in parallel the linear problems



A Nonlinear ParaExp Algorithm 3

(

wk
n

)′
(t) = Awk

n(t), t ∈ [Tn−1,T ],

wk
n(Tn−1) = uk−1

n−1(Tn−1)−
n−1

∑
j=1

wk−1
j (Tn−1), wk

1(T0) = u0.
(1.4)

Step 2: Solve for n ≥ 1 in parallel the nonlinear problems

(

uk
n

)′
(t) = Auk

n(t)+B
(

uk
n(t)

)

+ g(t), t ∈ [Tn−1,Tn],

uk
n(Tn−1) =

n

∑
j=1

wk
j(Tn−1),

(1.5)

and form the new approximate solution as

uk(t) = uk
n(t), t ∈ [Tn−1,Tn). (1.6)

Remark 1. To avoid the computation of uk
n as the solution of a nonlinear problem,

one could linearize (1.5) by using in the nonlinear term B(uk−1
n ) instead of B(uk

n),
where u0

n = 0 or some other approximation of the solution. However, in what follows

we focus on the fully nonlinear version, since then uk is the solution of the nonlinear

problem (1.1) on each time interval.

2 Analysis of the Nonlinear ParaExp Algorithm

We first show that the nonlinear ParaExp algorithm introduced in the previous sec-

tion converges in a finite number of steps.

Theorem 1. The approximate solution uk obtained at iteration k and defined by

(1.6) coincides with the exact solution u on the time interval [T0,Tk).

Proof. Since wk
1(T0) = u0 for all k = 1,2, . . . , wk

1 =wk−1
1 on the time interval [T0,T ]

for all k = 2,3, . . . . Next, for k = 1 we have u1(t) = u1
1(t) on [T0,T1], and since

u1
1(T0) = w1

1(T0) = u0 we get by the uniqueness of the solution of (1.5) that u1
1

coincides with the exact solution u on the time interval [T0,T1].
We now prove by induction that for all k = 2,3 . . . we have

uk
n = u on [Tn−1,Tn], ∀n ≤ k, wk

n = wk−1
n on [Tn−1,T ], ∀n ≤ k− 1. (2.1)

For k = 2, we only need to prove property (2.1) for u2, since for w2
1 it is ensured by

the fact that wk
1 = wk−1

1 for all k ≥ 2. The initial condition for u2
2 is

u2
2(T1) = w2

1(T1)+w2
2(T1) = w2

1(T1)+u1
1(T1)−w1

1(T1) = u1
1(T1) = u(T1),

where we used the fact that w2
1 = w1

1 and that u1
1 is the exact solution on the time

interval [T0,T1]. Since u2
2 satisfies the same equation as u on the time interval [T1,T2]

and u2
2(T1) = u(T1), u2

2 must coincide with u on [T1,T2]. But we also know that
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u2
1(T0) = w2

1(T0) = u0 and that u2
1 satisfies (1.5), which implies u2

1 = u on [T0,T1],
and hence u2 coincides with the exact solution of (1.1) on the time interval [T0,T2).

We now suppose that (2.1) holds for all iterations up to an arbitrarily fixed index k

and we prove (2.1) for k + 1. To first check that wk+1
n = wk

n on [Tn−1,T ] for all

n = 2,3, . . . ,k, we compute

wk+1
n (Tn−1) = uk

n−1(Tn−1)−
n−1

∑
j=1

wk
j(Tn−1) = u(Tn−1)−

n−1

∑
j=1

wk−1
j (Tn−1)

= uk−1
n−1(Tn−1)−

n−1

∑
j=1

wk−1
j (Tn−1) = wk

n(Tn−1),

where we have used the recurrence hypothesis (2.1). Since wk+1
n and wk

n satisfy the

same equation and have the same initial condition, the result follows. We next prove

that uk+1
n = u on [Tn−1,Tn] for all n ≤ k+1. Since we already know that uk+1

n and u

satisfy the same equation on the time interval [Tn−1,Tn], we only need to check that

the initial condition satisfied by uk+1
n ,

uk+1
n (Tn−1) =

n

∑
j=1

wk+1
j (Tn−1) =

n−1

∑
j=1

wk+1
j (Tn−1)+uk

n−1(Tn−1)−
n−1

∑
j=1

wk
j(Tn−1)

= uk
n−1(Tn−1),

where we used the first result we just proved for wk+1
n and that wk+1

1 = wk
1 for all k.

Now, using the recurrence hypothesis (2.1), we know that uk
n−1 coincides with the

exact solution of (1.1) on [Tn−2,Tn−1], which implies that uk+1
n (Tn−1) = u(Tn−1). �

We now show that the nonlinear ParaExp algorithm can be interpreted in the

context of the Parareal algorithm if written as a multiple shooting method (see [5,

2]). We will need the following result.

Lemma 1. Let (uk
n)k,n be the sequence defined by the nonlinear ParaExp algorithm

(1.4)–(1.6). Defining ũ
0
n(Tn) = 0 and C0

n(Tn) = 0 for all n ≥ 0, let
(

Ck
n

)

k,n
for all

k ≥ 1 and n ≥ 1 be the solutions of the linear problems

(

Ck
n

)′
(t) = ACk

n(t), t ∈ [Tn−1,Tn],

Ck
n(Tn−1) = Ck

n−1(Tn−1)+ ũ
k−1
n−1(Tn−1)−Ck−1

n−1(Tn−1), Ck
1(T0) = u0,

and let
(

ũ
k
n

)

k,n
be the solutions of the nonlinear problems

(

ũ
k
n

)′
(t) = Aũ

k
n(t)+B

(

ũ
k
n(t)

)

+ g(t), t ∈ [Tn−1,Tn],

ũ
k
n(Tn−1) = Ck

n(Tn−1).

Then uk
n = ũ

k
n on [Tn−1,Tn] for all n ≥ 0 and k ≥ 1.

Proof. At step k = 1 and for all n ≥ 1, C1
n is the solution of the linear problem
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(C1
n)

′(t) = AC1
n(t), t ∈ [Tn−1,Tn],

C1
n(Tn−1) = C1

n−1(Tn−1), C1
1(T0) = u0.

Hence C1
n is the restriction of the solution of u′ = Au, u(0) = u0 on [T0,T ] to the

time interval [Tn−1,Tn]. Taking into account the definition (1.4) of w1
n, we notice that

w1
n = 0 for n > 1 and w1

1 is the solution of the linear problem u′ = Au, u(0) = u0 on

[T0,T ]. Thus, C1
n(t) = ∑

n
j=1 w1

j(t) on [Tn−1,Tn], and ũ
1
n satisfies for n ≥ 1

(

ũ
1
n

)′
(t) = Aũ

1
n(t)+B

(

ũ
1
n(t)

)

+ g(t), t ∈ [Tn−1,Tn],

u1
n(Tn−1) = C1

n(Tn−1) =
n

∑
j=1

w1
j(Tn−1).

Comparing this with (1.5) and using the uniqueness of the solution for the nonlinear

problem, we deduce that u1
n(t) = ũ

1
n(t) on [Tn−1,Tn] for all n ≥ 1.

Assuming now that for all n ≥ 1 and a given k we have Ck
n(t) = ∑

n
j=1 wk

j(t),

uk
n(t) = ũ

k
n(t) on [Tn−1,Tn],we need to show that this also holds for k+ 1. To do so,

we prove by recurrence with respect to n that Ck+1
n (t) = ∑

n
j=1 wk+1

j (t) on [Tn−1,Tn].

For n= 1, we have that Ck+1
1 (T0) = u0 =wk+1

1 (T0) and, since Ck+1
1 and wk+1

1 satisfy

the same equation and the same initial condition, we conclude that Ck+1
1 = wk+1

1 on

[T0,T1]. Next, we suppose that Ck+1
n (t) = ∑

n
j=1 wk+1

j (t) on [Tn−1,Tn] and prove that

Ck+1
n+1(t) = ∑

n+1
j=1 wk+1

j (t) on [Tn,Tn+1]. By checking the initial condition of Ck+1
n+1

at Tn and using the recurrence hypothesis, we find

Ck+1
n+1(Tn)=Ck+1

n (Tn)+uk
n(Tn)−

n

∑
j=1

wk
j(Tn)=Ck+1

n (Tn)+wk+1
n+1(Tn)=

n+1

∑
j=1

wk+1
j (Tn).

Since Ck+1
n+1 and ∑

n+1
j=1 wk+1

j solve the same linear problem on [Tn,Tn+1] and satisfy

the same initial condition at Tn, we obtain Ck+1
n+1 = ∑

n+1
j=1 wk+1

j on [Tn,Tn+1]. Further,

for n ≥ 1 we have

(

ũ
k+1
n

)′
(t) = Aũ

k+1
n (t)+B

(

ũ
k+1
n (t)

)

+ g(t), t ∈ [Tn−1,Tn],

ũ
k+1
n (Tn−1) = Ck+1

n (Tn−1) =
n

∑
j=1

wk+1
j (Tn−1).

Thus, ũ
k+1
n and uk+1

n solve the same equation with identical initial condition on

[Tn−1,Tn] and hence ũ
k+1
n = uk+1

n on [Tn−1,Tn]. �

The following theorem is essentially a reformulation of Lemma 1 in the usual

notation of the parareal algorithm in terms of a coarse and a fine integrator [11].

Theorem 2. Let the coarse propagator G(Tn,Tn−1,U) solve the linear problem

u′(t) = Au(t) on [Tn−1,Tn], u(Tn−1) = U,
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and let the fine propagator F(Tn,Tn−1,U) solve the nonlinear problem

u′(t) = Au(t)+B
(

u(t)
)

+ g(t) on [Tn−1,Tn], u(Tn−1) = U.

Then the solution uk computed by the nonlinear ParaExp algorithm (1.4)–(1.6) coin-

cides at each time point Tn with the solution Uk
n computed by the parareal algorithm

Uk
n = F(Tn,Tn−1,U

k−1
n−1)+G(Tn,Tn−1,U

k
n−1)−G(Tn,Tn−1,U

k−1
n−1). (2.2)

Proof. Using the definition of uk in (1.6) and the notation of Lemma 1, we have

uk(Tn) = uk
n+1(Tn) = Ck

n+1(Tn) = Ck
n(Tn)+uk−1

n (Tn)−Ck−1
n (Tn)

= G
(

Tn,Tn−1,C
k
n(Tn−1)

)

−G
(

Tn,Tn−1,C
k−1
n (Tn−1)

)

+ ũ
k−1
n (Tn)

= G
(

Tn,Tn−1,C
k
n(Tn−1)

)

−G
(

Tn,Tn−1,C
k−1
n (Tn−1)

)

+F
(

Tn,Tn−1,C
k−1
n (Tn−1)

)

.

Thus uk(Tn) = Uk
n with Uk

n = Ck
n+1(Tn). �

Theorem 2 shows that the nonlinear ParaExp algorithm is mathematically equiva-

lent to the parareal algorithm (2.2) where the coarse integrator G is an exponential

integrator for w′ = Aw. There is however an important computational difference:

due to the linearity of G we can write

G(Tn,Tn−1,U
k+1
n−1)

= G
(

Tn,Tn−1,F(Tn−1,Tn−2,U
k
n−2)−G(Tn−1,Tn−2,U

k
n−2)+G(Tn−1,Tn−2,U

k+1
n−2)

)

= G
(

Tn,Tn−1,F(Tn−1,Tn−2,U
k
n−2)−G(Tn−1,Tn−2,U

k
n−2)

)

+G(Tn,Tn−2,U
k+1
n−2),

which corresponds to the coarse propagation of a jump over [Tn−1,Tn] plus the coarse

propagation of Uk+1
n−2 over a longer time interval [Tn−2,Tn]. Repeating a similar cal-

culation for G(Tn,Tn−2,U
k+1
n−2), we derive

G(Tn,Tn−2,U
k+1
n−2) = G

(

Tn,Tn−2,F(Tn−2,Tn−3,U
k
n−3)−G(Tn−2,Tn−3,U

k
n−3)

)

+G(Tn,Tn−3,U
k+1
n−3),

which again corresponds to the coarse propagation of a jump (over two intervals)

plus a coarse propagation of Uk+1
n−3 (over three intervals). This recursion can be re-

peated, and it will terminate as Uk+1
n−n = U0 is known, leading to an alternative, more

compact formulation of the nonlinear ParaExp algorithm:

initialize U0
n = G(Tn,T0,U0) for n = 0,1, . . . ,N,

Uk+1
n = G(Tn,T0,U0)+

n

∑
j=1

G
(

Tn,Tj,F(Tj,Tj−1,U
k
j−1)−G(Tj,Tj−1,U

k
j−1)

)

.

Here the coarse integrator is applied in parallel, which is different from parareal.

The price to pay is that the coarse integrations now span multiple overlapping time
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intervals [Tj,Tn]. As in the original ParaExp algorithm, these linear homogeneous

problems can be solved very efficiently using Krylov methods.

3 Numerical Illustration

We now investigate the nonlinear ParaExp algorithm numerically. We solve the non-

linear wave equation utt = uxx +αu2 on the time-space domain [0,4]× [−1,1] with

homogeneous Dirichlet boundary conditions and u(0,x) = e−100x2
, u′(0,x) = 0,

where the parameter α ≥ 0 controls the nonlinear character of the problem. The

problem is discretized in space using finite differences with m = 200 equispaced

interior grid points on [−1,1]. This gives rise to the ODE

[

u

v

]′

=

[

O I

L O

][

u

v

]

+

[

0

αu2

]

,

where L = tridiag(1,−2,1)/h2, h = 2/(m+ 1), and the operation u2 has to be un-

derstood component-wise. We partition the time interval [0,4] into n = 20 slices of

equal length and use as fine integrator MATLAB’s ode15s routine with a relative

error tolerance of 10−6. For the linear coarse integration we use MATLAB’s expm.

Table 1 lists, for varying α ∈ {0,2,4,6,8.2}, the number of iterations required

by our nonlinear ParaExp algorithm to achieve an error of order ≈ 1e− 6 over all

time slices. Figure 1 shows, again for varying α , the reference solutions u(t,x) on

the left, and on the right the error of the ParaExp solution at each time point t j after

k = 1,2, . . . iterations. Here a number of k = 0 iterations corresponds to the error of

the ParaExp initialization with the coarse integrator.

The parameter α = 0 gives rise to a linear problem. Note that for this case the

error of the initialization is of order ≈ 10−6, and not of order machine precision as

one would expect from the exponential integration using expm. This is because our

reference solution has been computed via ode15s and is of lower accuracy.

For increasing values of α the nonlinear character of the wave equation becomes

more pronounced and typically more ParaExp iterations are required. It depends on

the efficiency of the coarse propagator (in this case expm) if any speed-up would

be obtained in a parallel implementation. For large-scale problems the use of (ratio-

nal) Krylov techniques as in [7] is recommended. The nonlinear ParaExp method

becomes inefficient for highly nonlinear problems, with 14 iterations required for

α = 8.2. This is expected and we note that for α ≈ 9 the solution u(t,x) even ap-

pears to have a singularity in the time-space domain of interest.
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Fig. 1 Exact solutions (left) and convergence (right) of the nonlinear ParaExp algorithm applied

to a nonlinear wave equation with varying parameter α ∈ {0,2,4,6,8.2} (top to bottom).
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parameter α 0 2 4 6 8.2

# iterations 1 5 7 7 14

Table 1 Number of iterations required by the nonlinear ParaExp algorithm to solve a nonlinear

wave equation to fixed accuracy uniformly over a time interval. The parameter α controls the

nonlinearity of the problem.
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7. M. J. GANDER AND S. GÜTTEL, PARAEXP: A parallel integrator for linear initial-value

problems, SIAM J. Sci. Comput., 35(2):C123–C142, 2013.

8. M. J. GANDER AND M. PETCU, Analysis of a Krylov subspace enhanced parareal algorithm,

ESAIM Proc., 25:45–56, 2008.
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On Optimal Coarse Spaces for Domain
Decomposition and Their Approximation

Martin J. Gander, Laurence Halpern, and Kévin Santugini

1 Definition of the Optimal Coarse Space

We consider a general second order elliptic model problem

L u= f in Ω (1)

with some given boundary conditions that make the problem well posed. We decom-
pose the domainΩ first into non-overlapping subdomains̃Ω j , j = 1,2, . . . ,J, and
to consider also overlapping domain decomposition methods, we construct over-
lapping subdomainsΩ j from Ω̃ j by simply enlarging them a bit. All domain de-
composition methods provide at iterationn solutionsun

j on the subdomains̃Ω j ,
j = 1,2, . . . ,J (or onΩ j in the case of overlapping methods, but then we just restrict
those to the non-overlapping decompositionΩ̃ j ). We want to study here properties
of the correction that needs to be added to these subdomain solutions in order to ob-
tain the solutionu of (1). This would be the best possible correction a coarse space
can provide, independently of the domain decomposition method used, and it allows
us to define an optimal coarse space, which we then approximate.

Since theun
j are subdomain solutions, they satisfy equation (1) on theircorre-

sponding subdomain,
L un

j = f , in Ω̃ j . (2)

Defining the error
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en(x) := u(x)−un
j (x), x∈ Ω̃ j ,

we see that the error satisfies the homogeneous problem in each subdomain,

L en = 0 in Ω̃ j . (3)

At the interface between the non-overlapping subdomainsΩ̃ j the error is in general
not continuous, and also the normal derivative of the error is not continuous, since
the subdomain solutionsun

j in general do not have this property1. The best coarse
space, which we call optimal coarse space, must thus containpiecewise harmonic
functions onΩ̃ j to be able to represent the error.

2 Computing the Optimal Coarse Correction

Having identified the optimal coarse space, we need to explain a general method
to determine the optimal coarse correction in it. While two different approaches for
specific cases can be found in [8, 7], we present now a completely general approach:
let us denote the interface between subdomainΩ̃i andΩ̃ j by Γi j , and let the jumps
in the Dirichlet and Neumann traces between subdomain solutions be denoted by

gn
i j (x) := un

i (x)−un
j (x), hn

i j (x) := ∂ni u
n
i (x)+ ∂n j u

n
j (x), x∈ Γi j , (4)

where∂n j denotes the outer normal derivative of subdomainΩ̃ j . Then the error
satisfies the transmission problem

L en = 0 in Ω̃ j ,
en

i (x)−en
j (x) = gn

i j (x) onΓi j ,

∂ni e
n
i (x)+ ∂n j e

n
j (x) = hn

i j (x) onΓi j .
(5)

Its solution lies in the optimal coarse space, and when addedto the iteratesun
i , we

obtain the solution: the domain decomposition method has become a direct solver,
it is nilpotent, independently of the domain decompositionmethod and the problem
we solve: no better coarse correction is possible!

We now give a weak formulation of the transmission problem (5). To simplify
the exposition, we use the case of the Laplacian,L := −∆ . We multiply the par-
tial differential equation from (5) in each subdomainΩ̃ j by a test functionv j and
integrate by parts to obtain

∫

Ω j

∇ej ·∇v j −

∫

Γj

∂ej

∂n j
v j = 0. (6)

1 For certain methods, continuity of the normal derivative ishowever assured, like in the FETI
methods, or continuity of the Dirichlet traces, like in the Neumann-Neumann method or the alter-
nating Schwarz method. This can be used to reduce the size of the optimal coarse space.
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If we denote by ˜eandṽ the functions defined on all ofΩ by the piecewise definition
ẽ|Ω j := ej andṽ|Ω j := v j , then we can combine (6) over all subdomainsΩ̃ j to obtain

∫

Ω
∇ẽ·∇ṽ−∑

Γi j

∫

Γi j

∂ej

∂n j
v j +

∂ei

∂ni
vi = 0. (7)

If we impose now continuity on the test functionsv j , i.e. ṽ to be continuous, then
(7) becomes

∫

Ω
∇ẽ·∇ṽ−∑

Γi j

∫

Γi j

(

∂ej

∂n j
+

∂ei

∂ni

)

ṽ= 0, (8)

and we can use the data of the problem to remove the normal derivatives,
∫

Ω
∇ẽ·∇ṽ−∑

Γi j

∫

Γi j

hi j ṽ= 0. (9)

It is therefore natural to choose a continuous test functionṽ to obtain a variational
formulation of the transmission problem (5), a function in the space

V := {v : v|Ωi =: vi ∈ H1(Ω̃i), vi = v j onΓi j }. (10)

Now the jump in the Dirichlet traces of the errors would in general be imposed on
the trial function space,

U := {u : u|Ωi =: ui ∈ H1(Ω̃i), ui −u j = gi j onΓi j }, (11)

so the complete variational formulation for (5) is:

find ẽ∈U , such that
∫

Ω
∇ẽ·∇ṽ−∑

Γi j

∫

Γi j

hi j ṽ= 0 ∀ṽ∈V. (12)

To discretize the variational formulation (12), we have to choose approximations
of the spacesV andU , and both spaces contain interior Dirichlet conditions. Ina
finite element setting, it is natural to enforce the homogeneous Dirichlet conditions
in Vh strongly if the mesh is matching at the interfaces, i.e. we just impose the nodal
values to be the same forVh.

While at the continuous level, the optimal coarse correction lies in an infinite
dimensional space except for 1d problems, see [5, 7], at the discrete level this space
becomes finite dimensional. It is in principle then possibleto use the optimal coarse
space at the discrete level and to obtain a nilpotent method,i.e. a method which
converges after the coarse correction, see for example [9, 8, 11, 10], and also [1]
for conditions under which classical subdomain iterationscan become nilpotent. It
is however not very practical to use these high dimensional optimal coarse spaces,
and we are thus interested in approximations.
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3 Approximations of the Optimal Coarse Space

We have seen that the optimal coarse space contains functions which satisfy the ho-
mogeneous equation in each non-overlapping subdomainΩ̃ j , i.e. they are harmonic
in Ω̃ j . To obtain an approximation of the optimal coarse space, it is therefore suf-
ficient to define an approximation for the functions on the interfacesΓi j , which are
then extended harmonically insidẽΩ j . A natural way to approximate the functions
on the interfaces is to use a Sturm-Liuville eigenvalue problem, and then to select
eigenfunctions which correspond to modes on which the subdomain iteration of the
domain decomposition methods used is not effective. This can be done either for
the entire subdomain, for example choosing eigenfunctionsof the Dirichlet to Neu-
mann operator of the subdomain, see [2], or any other eigenvalue problem along the
entire boundary of the subdomaiñΩ j , or piecewise on each interfaceΓi j , in which
case also basis functions relating cross points need be added [11, 10], see also the
ACMS coarse space [12] and references therein. This can be done solving for exam-
ple lower dimensional counterparts of the original problemalong the interfaceΓi j

with boundary conditions one at one end, and zero at the other, creating something
like hat functions around the crosspoint. Doing this for example for a rectangular
domain decomposed into rectangular subdomains for Laplaces equation, this would
just generate Q1 functions on each subdomain. It is important however to not force
these function to be continuous across subdomains, since they have to solve approx-
imately the transmission problem (5) whose solution is not continuous, except for
specific methods2. So the resulting coarse basis function is not a hat functionwith
one degree of freedom, but it is a discontinuous hat functionwith e.g. four degrees
of freedom if four subdomains meet at that cross point.

Different approaches not based on approximating an optimalcoarse space, but
also using eigenfunctions in the coarse space to improve specific inequalities in the
convergence analysis of domain decomposition methods are GenEO [14], whose
functions are also harmonic in the interior of subdomains, and [3, 4], where volume
eigenfunctions are used which are thus not harmonic within subdomains. For a good
overview, see [13].

4 Concrete Example: the Parallel Schwarz Method

We consider the high contrast diffusion problem∇ · (a(x,y)∇u) = f in Ω = (0,1)2

with two subdomainsΩ1 = (0, 1+δ
2 )× (0,1) andΩ2 = (1−δ

2 ,1)× (0,1). The classi-
cal parallel Schwarz method is converging most slowly for low frequencies along the
interfacex= 1

2, i.e. error components represented in the Laplacian case bysin(kπy),
k = 1,2, . . . ,K for some small integerK, see for example [6]. These are precisely
the eigenfunctions of the eigenvalue problem one obtains when using separation of
variables, which in our high contrast case is

2 see footnote 1
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Fig. 1 An example with long channels, shortened channels, and closed shortened channels

∂y(aΓ φy) = λaΓ φ , (13)

whereaΓ denotes the trace of the high contrast parameter along the interface, in
our simple exampleaΓ (y) := a(1

2,y). So already in the case of Laplaces equation,
it would be good to enrich a classicalQ1 coarse space aligned with the decom-
position with harmonically extended eigenfunctions sin(kπy), k = 1,2, . . . ,K into
the subdomains. We now illustrate why this is even more important in the case of
high contrast channels, thea(x,y) of which are shown in Figure 1. We show in Fig-
ure 2 the performance of a classical parallel Schwarz methodwith two subdomains
for increasing overlap sizes. We see that for the case of the long channels increas-
ing the overlap improves the performance of the classical Schwarz methods as for
the Laplacian3, and nothing special happens between overlap 41h and overlap 43h.
This is however completely different for the shortened channel case, independently
if they are closed or not, were increasing the overlap does not help at all, until sud-
denly changing from overlap 41h and overlap 43h, the method becomes fast. This
can be easily understood by the maximum principle, and is illustrated in Figure 3
which shows the errors in the subdomains. We clearly see thatdue to the fast dif-
fusion the error propagates rapidly from the interface intothe subdomains, and the
maximum principle indicates slow convergence, as long as the overlap does not con-
tain the shortened channels. As soon as the overlap containsthe shortened channels,
convergence becomes rapid. This is very different for the long channels, as illus-
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Fig. 2 Convergence behavior of a classical parallel Schwarz method for high contrast long and
shortened channels

3 the same happens if inclusions are only contained within thesubdomains, outside the overlap
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Fig. 3 Error for the first four iterations in the shortened channel case: Top overlap 41h, and bottom
overlap 43h, and slightly more overlap suddenly leads to much more rapidconvergence.

trated in Figure 4. Here the channels touch the outer boundary of the domain, and
the maximum principle indicates rapid convergence.

The case of shortened channels is precisely the situation where the convergence
mechanism of the underlying domain decomposition method has problems, and if
one can not afford a large enough overlap, a well chosen coarse space can help. It
suffices to add harmonically extended low frequency modes ofthe cheap, lower di-
mensional interface eigenvalues problem to the coarse space, leading to the so called
Spectrally Harmonically Enriched Multiscale coarse space(SHEM), see [11, 10].
Figure 5 shows that the eigenfunctions of the cheap interface eigenvalue problem
are almost identical to the eigenfunctions obtained from the expensive DtN eigen-
value problem on the shortened channels from [2, 12], and still very similar to the
ones of the DtN eigenvalue problem on the shortened closed channels, except for
the first one. We show in Figure 6 on the left the eigenvalues ofthe cheap interface
eigenvalue problem, compared to the eigenvalues of the expensive DtN-operator
on the shortened channels and the shortened closed channels. They all indicate via
the smallest eigenvalues that there are five channels, and five coarse functions are
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Fig. 4 Error for the first four iterations in the shortened channel case: Top overlap 41h, and bottom
overlap 43h, and slightly more overlap leads to slightly more rapid converge.
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Fig. 5 Eigenfunctions of the different eigenvalue problems compared

needed for good convergence, see Figure 6 on the right. The DtN-eigenvalue prob-
lem for the shortened closed channels also indicates that there is only one eigenvalue
going to zero when the contrast becomes large. To obtain goodconvergence, it is
however also in the closed shortened channel case necessaryto include five enrich-
ment functions in the coarse space, see Figure 7. It thus suffices as in SHEM to use
the inexpensive interface eigenvalue problem to constructan effective approxima-
tion of the optimal coarse space, see [10] for simulations inthe more general case
of many subdomains and contrast functions.
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iteration
10 20 30 40

10 -5

10 0

1 Coarse
2 Coarse
3 Coarse
4 Coarse
5 Coarse
6 Coarse
7 Coarse
8 Coarse

iteration
10 20 30 40

10 -5

10 0

1 Coarse
2 Coarse
3 Coarse
4 Coarse
5 Coarse
6 Coarse
7 Coarse
8 Coarse

Fig. 7 Shortened closed channels. Left: coarse space based on the interface eigenvalue problem.
Right: coarse space based on the DtN eigenvalue problem for the shortened closed channels.

2. Victorita Dolean, Frédéric Nataf, Robert Scheichl, and Nicole Spillane. Analysis of a two-
level Schwarz method with coarse spaces based on local Dirichlet-to-Neumann maps.Comput.
Methods Appl. Math., 12(4):391–414, 2012.

3. Juan Galvis and Yalchin Efendiev. Domain decomposition preconditioners for multiscale
flows in high-contrast media.Multiscale Model. Simul., 8(4):1461–1483, 2010.

4. Juan Galvis and Yalchin Efendiev. Domain decomposition preconditioners for multiscale
flows in high contrast media: reduced dimension coarse spaces. Multiscale Model. Simul.,
8(5):1621–1644, 2010.
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Analysis of Overlap in Waveform Relaxation
Methods for RC Circuits

Martin J. Gander1, Pratik M. Kumbhar1, and Albert E. Ruehli2

1 Introduction

Classical Waveform Relaxation (WR) was introduced in 1981 for circuit solver ap-
plications [5]. In WR, large systems of differential equations modeling electric cir-
cuits are partitioned into small subcircuits, which are then solved separately, and an
iteration is used to get better and better approximations to the overall solution of the
underlying large circuit. For classical WR, smart partitioning is very important to
enhance the convergence rate, while optimized WR uses more effective transmis-
sion conditions to enhance the convergence rate, and thus permits also partitioning
at less suitable locations in the circuit without negatively affecting the convergence
rate. We study here for the first time the influence of overlapping subcircuits in
classical and optimized WR methods applied to RC circuits.

2 The RC Circuit Equations

Circuit equations are obtained from a given circuit using Modified Nodal Analysis
(MNA), a major invention that led for circuits to a similar assembly procedure like
the finite element method [4]. The MNA circuit equations for the RC circuit of
length N shown in Figure 1 are

v̇ =


b1 c1
a1 b2 c2

. . .
. . .

. . .
aN−2 bN−1 cN−1

aN−1 bN

v+ f, (1)

1 Section de Mathématiques, Université de Genève, Switzerland, e-mail: martin.gander@
unige.ch,pratik.kumbhar@unige.ch ·2 EMC Laboratory, Missouri University of Sci-
ence And Technology, U.S, e-mail: albert.ruehli@gmail.com.
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Is Rs

v1

C1

v2
R1

C2

R2
v3

C3

RN−1

CN

vN

Fig. 1: Finite RC circuit of length N.

where the entries in the tridiagonal matrix are given by

{
ai =

1
RiCi+1

,

ci =
1

RiCi
,

i = 1,2, ..,N−1, bi =


−( 1

Rs
+ 1

R1
) 1

C1
, i = 1,

−( 1
Ri−1

+ 1
Ri
) 1

Ci
, i = 2,3, ...,N−1,

− 1
RN−1CN

, i = N.

The resistances Ri and capacitances Ci are strictly positive constants. The source
term on the right-hand side is given by f(t)=(Is(t)/C1,0, ...0)T for some current func-
tion Is(t), and we need to specify initial voltage values v(0) = (v0

1,v
0
2, ..,v

0
N)

T at time
t = 0 to solve this system.

3 The Classical WR Algorithm

To define the classical WR algorithm, we partition the circuit in Figure 1 with
the voltages v to be determined into two sub-circuits with unknown voltages u
and w. For convenience in the analysis that will follow, we assume N to be
even, and we renumber the nodes: instead of using the numbering from 1 to
N, we use the numbering from −N

2 + 1 to N
2 , see Figure 2. We thus have v :=

(v−N
2 +1, ...,v−1,v0,v1, ....vN/2)

T , which is still of length N, and

v1 v2 v3 vN/2v0v−1
v− N

2 +1

u3u2u1u0u−1
u− N

2 +1

w0 w1 w2 w3 wN/2

Fig. 2: Decomposition into two sub-circuits with two nodes overlap.
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u := (u−N
2 +1, ...,un−2,un−1,un)

T , u j = v j for j =−N
2 +1, . . . ,n,

w := (w1,w2, ...,w N
2
)T , w j = v j for j = 1, . . . , N

2 ,

which are of length N
2 +n and N

2 , since we added n nodes to subcircuit u to have an
overlap of n nodes. The classical WR algorithm applied to the two sub-systems is

u̇k+1 =


b−N

2 +1 c−N
2 +1

. . . . . . . . .
an−2 bn−1 cn−1

an−1 bn




u−N
2 +1
...

un−1
un


k+1

+


0
...
0

cn uk+1
n+1

+


f−N
2 +1
...

fn−1
fn

 ,

ẇk+1 =


b1 c1
a1 b2 c2

. . . . . . . . .
a N

2 −1 b N
2




w1
w2
...

w N
2


k+1

+


a0wk+1

0
0
...
0

+


f1
f2
...

f N
2

 ,
(2)

where uk+1
n+1 and wk+1

0 are determined in classical WR by the transmission conditions

uk+1
n+1 = wk

n+1 and wk+1
0 = uk

0. (3)

Note that in these transmission conditions, we exchange voltages at the interfaces.
The two subsystems are given the initial voltages u(0) = (v0

−N
2 +1

, ....,v0
n−1,v

0
n)

T and

w(0) = (v0
1,v

0
2, ..,v

0
N
2
)T , and the initial waveforms u0

0, w0
n+1 are needed to start the

WR algorithm.
To simplify our analysis of the convergence factor, we assume that all resistors

and capacitors are the same, R := Ri and C :=Ci for all i ∈ Z, which implies

b := bi and a := ai = ci for all i ∈ Z, (4)

and for our RC circuit b=−2a. To further simplify the analysis, we also assume that
the circuit is of infinite length, N→∞, and by linearity it suffices to analyze the ho-
mogeneous problem corresponding to the error equations, and to study convergence
to the zero solution. Taking a Laplace transform in time with Laplace parameter
s ∈ C of the WR algorithm (2), we get in the homogeneous case when N→ ∞

s ûk+1 =

. . . . . . . . .
a b a

a b


 ...

ûn−1
ûn


k+1

+

 ...
0

aŵk
n+1

 ,
s ŵk+1 =

b a
a b a

. . . . . . . . .


ŵ1

ŵ2
...


k+1

+

aûk
0

0
...

 .
(5)
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Lemma 1. Let a > 0, b < 0, i =
√
−1, and s := σ + iω , with σ > 0 . If −b ≥ 2a,

then the roots λ1,2 := s−b±
√

(b−s)2−4a2

2a of the characteristic equation aûk+1
j−1 +(b−

s)ûk+1
j +aûk+1

j+1 = 0 of the subsystems in (5) satisfy |λ2|< 1 < |λ1|.

Proof. Since a > 0, b < 0 and−b≥ 2a, we can write b =−(2+ε)a for some ε ≥ 0.
Let p+ iq :=

√
(b− s)2−4a2, for p,q ∈ R, with p > 0. We then obtain with σ > 0

that

|λ1| = |
s−b+

√
(b− s)2−4a2

2a
|= |σ + i ·ω +(2+ ε)a

2a
+

1
2a

(p+ i ·q)|

= |(1+ εa+σ + p
2a

+
i

2a
(ω +q)|> 1.

Now by Vieta’s formulas, λ1λ2 = 1, which implies |λ2|< 1 and thus completes the
proof.

Theorem 1 (Convergence factor for Classical WR with Overlap). The conver-
gence factor of the classical WR algorithm (5) with n nodes overlap is

ρcla(s,a,b) =
( 1

λ 2
1

)n+1
. (6)

Proof. The iterate uk+1 for the first subsystem satisfies the recurrence relation

aûk+1
j−1 +(b− s) ûk+1

j +aûk+1
j+1 = 0 for j = . . . ,n−2,n−1,n, (7)

whose solution is ûk+1
j = Ak+1λ

j
1 + Bk+1λ

j
2 for j = . . . ,n− 2,n− 1,n. Since the

solution uk+1
j must remain bounded for all j, we must have Bk+1 = 0. Substituting

j = n into (7), we can determine Ak+1 and obtain the general solution

ûk+1
j =

(
− a

aλ
−1
1 +(b− s)

)
·
( 1

λ n
1

)
·λ j

1 · ŵ
k
n+1 for j = . . . ,n−2,n−1,n. (8)

Similarly, we obtain for the second subsystem

ŵk+1
j =

( −a
(b− s)+aλ2

)
·λ j−1

2 · ûk
0 for j = 1,2, . . .. (9)

Combining (8) and (9) and using Vieta’s formulas λ1 +λ2 =
s−b

a and λ1λ2 = 1 then
gives

ûk+1
j =

(
−a

aλ
−1
1 +(b−s)

)
·
(

−a
(b−s)+aλ2

)
·
(

λ n
2

λ n
1

)
·λ j

1 ûk−1
0

=
(

1
λ 2

1

)n+1
ûk−1

j =: ρcla(s,a,b)ûk−1
j ,

and similarly we find also for the second subsystem ŵk+1
j = ρcla(s,a,b)ŵk−1

j , which
concludes the proof.



Analysis of Overlap in Waveform Relaxation Methods for RC Circuits 5

We see that the convergence factor ρcla(s,a,b) is the same for all nodes in both
subsystems, and since |λ1| > 1, classical WR always converges, and convergence
becomes faster when increasing the number of nodes the subsystems overlap. In
the case |b| = 2a however, |ρcla(s,a,b)| → 1 when s→ 0, which indicates slow
convergence for this case.

Remark 1. Theorem 1 implies û2k
j = (ρcla(s,a,b))kû0

j and ŵ2k
j = (ρcla(s,a,b))kŵ0

j .
Using the Parseval-Plancherel identity, one can then obtain in the time domain

‖u2k
j (t)‖σ ≤

(
sup
ω∈R

ρcla(s,a,b)
)k
‖u0

j(t)‖σ , ‖w2k
j (t)‖σ ≤

(
sup
ω∈R

ρcla(s,a,b)
)k
‖w0

j(t)‖σ ,

where ‖x(t)‖σ := ‖e−σtx(t)‖L2 . For σ = 0, we thus obtain convergence in L2.

4 The Optimized WR Algorithm

New transmission conditions were proposed in [1] for WR, namely

(uk+1
n+1−uk+1

n )+αuk+1
n+1 = (wk

n+1−wk
n)+αwk

n+1,

(wk+1
1 −wk+1

0 )+βwk+1
0 = (uk

1−uk
0)+βuk

0,
(10)

where α and β are weighting factors that can be optimized to obtain more rapid
convergence, leading to optimized waveform relaxation algorithms (OWR). If we
divide the first equation in (10) by α and the second by β , we see that α and β rep-
resent resistances, and the new transmission conditions thus exchange both voltages
and currents at the interfaces. Note also that the classical transmission conditions
(3) become a special case when taking very large values of α and β .

Theorem 2 (Convergence factor for OWR with Overlap). The convergence fac-
tor of the OWR algorithm with n nodes overlap is

ρopt(s,a,b,α,β ) =
( 1

λ 2
1

)n
·
(

α +1−λ1

λ1(1+α)−1

)
.
(

λ1 +β −1
1+(β −1)λ1

)
. (11)

Proof. The transmission conditions (10) can we rewritten as

uk+1
n+1 =

uk+1
n

1+α
+wk

n+1−
wk

n

1+α
, wk+1

0 =−
wk+1

1
β −1

+uk
0 +

uk
1

β −1
.

Proceeding with these values as in the proof of Theorem 1 then leads to (11).

We see that OWR contains an extra term in its convergence factor, compared to
classical WR, and with a good choice of α and β this term can be made smaller than
one and thus leads to better convergence. To obtain the best possible convergence,
we need to solve the min-max problem
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min
α,β

(
max

s
|ρopt(s,a,b,α,β )|

)
. (12)

To simplify this min-max problem in the complex plane, the following Lemma is
useful:

Lemma 2. Let b< 0, a> 0,−b≥ 2a, α > 0 and β < 0. Then the convergence factor
ρopt(s,a,b,α,β ) is an analytic function in the right half of the complex plane.

Proof. We need to show that the denominator of ρopt(s,a,b,α,β ) does not have any
zeros in the right half of the complex plane. We show this by contradiction. Assume
there is a zero. Then λ1 = 0 or (1+α)λ1−1 = 0 or 1+(β−1)λ1 = 0. The first case
is not possible since under the given assumptions |λ1|> 1. Considering the second
case we have λ1 = 1

1+α
. Since α > 0, |λ1| = | 1

1+α
| < 1 which is a contradiction.

Similarly, the third case can not hold since β < 0, which concludes the proof.

Since ρopt(s,a,b,α,β ) is analytic in the right half of the complex plane, i.e for
s = σ + iω , σ ≥ 0, by the maximum principle for analytic functions, its maxi-
mum in modulus is attained on the boundary. Let s = r · eiθ , where r ∈ [0,∞)and
θ ∈ [−π/2,π/2]. From the definition of λ1 given in Lemma 1, we observe that

limr→∞ λ1 =∞ and hence limr→∞ ρopt(s,a,b,α,β )= limr→∞

(
−1

(α+1)(β−1)

)
·
(

1
λ 2

1

)n
=

0. Thus the maximum lies on the boundary when θ = ±π/2 and r < ∞ , i.e. when
σ = 0. For σ = 0, one can show that |ρopt(ω,a,b,α,β )| is symmetric in ω , and
hence it is sufficient to optimize the convergence factor for ω ≥ 0. To simplify the
min-max problem further, we use the fact that in our RC circuit, both sub-systems
have very similar electrical properties. Since we assumed furthermore that all circuit
elements have the same value, it makes sense to choose β = −α , which can be in-
terpreted as having the same current flow between the subsystems, just into opposite
directions. Therefore, the min-max problem (12) simplifies to

min
α

(
max
ω≥0
|ρopt(ω,a,b,α)|

)
, ρopt(ω,a,b,α) =

(
α +1−λ1

λ1(1+α)−1

)2
.
( 1

λ 2
1

)n
.

(13)

Theorem 3 (Asymptotically optimized α). For an RC circuit of infinite length with
b =−(2+ ε)a, where ε → 0, the optimized parameter α∗ for n nodes overlap is

α
∗ =

(
ε

n

)1/3
. (14)

Proof. This result can be proved using asymptotic analysis: one can show that the
solution to the min-max problem (13) is given by equioscillation when ε→ 0, i.e α∗

satisfies |ρopt(ω̄,a,b,α∗)|= |ρopt(0,a,b,α∗)| and ∂

∂ω
ρopt(ω̄,a,b,α∗) = 0 for some

interior maximum point ω̄ > 0. The details are however too long and technical for
this short paper, and will appear in [2].
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Fig. 3: Convergence for long time T = 1000.
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Fig. 4: Convergence for short time T = 2.

5 Numerical Results

We simulate an RC circuit of length N = 80 with R = 0.5kΩ , C = 0.63µF , a = 1
RC

and b =−(2+ ε)a. We apply Backward Euler with ∆ t = 0.1, and simulate directly
the error equations, starting with a random initial guess. In Figure 3, we show for
ε = 10−4 the influence of overlap on the convergence of classical and optimized
WR (e.g. WR2 means WR with overlap 2) for a long time interval (0,T ), T = 1000.
We see that OWR converges much faster than classical WR, see also Figure 5 for a
theoretical comparison of the convergence factors. For a short time interval, T = 2,
classical WR is already very fast, see Figure 4. We determined the optimal choice of
α for these experiments solving the min-max problem (13) numerically. Next, we
compare this min-max approach with the asymptotic optimization for b = −(2+
ε)a from Theorem 3, and also with running the algorithm for many choices of α

numerically. Figure 6 shows that all three give similar results. Finally, we show in
Figure 7 and 8 a comparison of the convergence factors for the differently optimized
α for two choices of ε .
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6 Conclusion

We studied here for the first time the influence of overlap on the convergence of
classical and optimized waveform relaxation algorithms for RC circuits. We defined
an optimization problem which permits to obtain a theoretically optimized parame-
ter leading to the fastest possible convergence of the optimized variant. Our analysis
shows that overlap enhances the performance of both algorithm variants, which we
also illustrated by numerical experiments. While the optimized variant converges
much faster when used on long time intervals compared to the classical one, for
short time intervals the optimization is less important. We finally compared numer-
ically three different approaches to obtain the optimized parameter in the transmis-
sion conditions, and observed that the three methods give similar parameters.
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Convergence of Substructuring
Methods for Elliptic Optimal Control
Problems

Martin J. Gander1, Felix Kwok2, and Bankim C. Mandal3

1 Introduction

We are interested in an Optimal Control Problem (OCP) where the constraint
is given by an elliptic partial differential equation (PDE):

−∇ · (κ(x)∇y(x)) = u(x) x ∈ Ω,
y(x) = 0 x ∈ ∂Ω. (1)

The goal is to choose a control variable u from an admissible set Uad to
minimize the discrepancy between the solution and the desired state ŷ(x),
i.e. to minimize the objective functional

J(y, u) =
1

2

∫
Ω

|y(x)− ŷ(x)|2dx +
λ

2

∫
Ω

|u(x)|2dx. (2)

We formulate and analyze substructuring algorithms for the model elliptic
OCP (1)–(2), which originates from the optimal stationary heating example
with controlled heat source, on a bounded domain Ω ⊂ Rd. In our setting, y
denotes the temperature at a particular point, κ(x) is the thermal conductiv-
ity of Ω, and λ > 0 is a regularization parameter. We assume u, ŷ ∈ L2(Ω) to
ensure a solution of the problem. For simplicity, we consider Uad = L2(Ω) as
the set of all feasible controls. Then from the first-order optimality conditions
(cf. [8]), we obtain the adjoint equation corresponding to the problem (1)–(2)

−∇ · (κ(x)∇p(x)) = y(x)− ŷ(x) x ∈ Ω,
p(x) = 0 x ∈ ∂Ω, (3)

Department of Mathematics, University of Geneva, Switzerland. e-mail: martin.gander@

unige.ch · Department of Mathematics, Hong Kong Baptist University. e-mail: felix_
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together with the optimality condition

p(x) + λu(x) = 0. (4)

We apply Domain Decomposition (DD) methods, more specifically substruc-
turing methods to solve the state and corresponding adjoint equations. For
similar applications of substructuring methods to solve linear-quadratic ellip-
tic OCPs, see [6]. Although our techniques can be extended to multiple sub-
domains, we only consider a decomposition into two non-overlapping subdo-
mains for the sake of simplicity and compact presentation. For further details
on DD methods applied to OCPs, see [1, 2]. We analyze the convergence of
Dirichlet-Neumann (DN) [3] and Neumann-Neumann (NN) [4] DD methods
for the underlying elliptic PDEs (1)–(3). For more details on DN and NN
methods, see [7]. By linearity it suffices to consider the homogeneous prob-
lems, ŷ(x) = 0, and to analyze convergence to zero, since the corresponding
error equations coincide with these homogeneous equations.

2 Dirichlet-Neumann algorithm

We first apply the Dirichlet-Neumann algorithm to solve the PDEs (1) and
(3), coupled through the condition (4). Suppose the domain Ω is decomposed
into two non-overlapping subdomains, Ω1 and Ω2. We denote by yi, ui, pi the
restriction of y, u, p to Ωi, and by ni the unit outward normal for Ωi on the
interface Γ := ∂Ω1 ∩ ∂Ω2. Then given two initial guesses h0y(x) and h0p(x)
along the interface Γ , we write the DN algorithm for both state and adjoint
equations (we do not write explicitly the homogeneous boundary conditions
on the outer boundaries satisfied by the iterates): for k = 1, 2, . . . compute

−∇ ·
(
κ(x)∇yk1

)
= uk1 in Ω1,

yk1 = hk−1y on Γ,
−∇ ·

(
κ(x)∇pk1

)
= yk1 in Ω1,

pk1 = hk−1p on Γ,
(5)

−∇ ·
(
κ(x)∇yk2

)
= uk2 in Ω2,

∂n2
yk2 = −∂n1

yk1 on Γ,
−∇ ·

(
κ(x)∇pk2

)
= yk2 in Ω2,

∂n2
pk2 = −∂n1

pk1 on Γ,
(6)

together with the update conditions:

hky(x) = θyy
k
2 |Γ + (1− θy)hk−1y (x), hkp(x) = θpp

k
2 |Γ + (1− θp)hk−1p (x), (7)

where θy, θp are two relaxation parameters, one for the state variable and
another for the adjoint variable. Note that the adjoint problem in (5) can be
derived from the first order stationarity conditions for the modified objective
function

J1(y, u) =
1

2

∫
Ω1

|y − ŷ|2 dx +
λ

2

∫
Ω1

|u|2 dx−
∫
Γ

κ
∂y

∂n
· hk−1p dS(x).
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The adjoint system for (6) can be interpreted similarly.
We analyze the convergence of the DN algorithm (5)-(6)-(7) for the 1d

case with Ω1 = (0, α), Ω2 = (α, 1) and κ(x) = 1. By the condition (4), we
write uki = −pki /λ for i = 1, 2. We denote by D(m) := dm

dxm . Eliminating pk1 , p
k
2

from (5)–(6), we obtain

D(4)yk1 + 1
λy

k
1 = 0,

yk1 (α) = hk−1y ,

D(2)yk1 (α) =
hk−1
p

λ ,

D(4)yk2 + 1
λy

k
2 = 0,

D(1)yk2 (α) = D(1)yk1 (α),
D(3)yk2 (α) = D(3)yk1 (α),

(8)

with the homogenous boundary conditions yk1 (0) = 0, D(2)yk1 (0) = 0, yk2 (1) =
0, and D(2)yk2 (1) = 0 at the outer boundaries. Since λ > 0, we set µ4 := 1/λ.
To simplify notation later, we set

γ1 = cosh
(
µα√
2

)
, γ2 = cosh

(
µ(1−α)√

2

)
, σ1 = sinh

(
µα√
2

)
, σ2 = sinh

(
µ(1−α)√

2

)
,

η1 = cos
(
µα√
2

)
, η2 = cos

(
µ(1−α)√

2

)
, ρ1 = sin

(
µα√
2

)
, ρ2 = sin

(
µ(1−α)√

2

)
.

Then the general solution of (8) becomes

yk1 (x) = A sinh

(
µx√

2

)
cos

(
µx√

2

)
+B cosh

(
µx√

2

)
sin

(
µx√

2

)
, (9)

where A =
hk−1
y σ1η1−µ2hk−1

p γ1ρ1

σ2
1+ρ

2
1

, B =
hk−1
y γ1ρ1+µ

2hk−1
p σ1η1

σ2
1+ρ

2
1

, and

yk2 (x) = C sinh
(
µ(1−x)√

2

)
cos
(
µ(1−x)√

2

)
+E cosh

(
µ(1−x)√

2

)
sin
(
µ(1−x)√

2

)
, (10)

with

C = −Aσ1σ2ρ1ρ2 + γ1γ2η1η2
η22 + σ2

2

+B
γ1η1σ2ρ2 − σ1ρ1γ2η2

η22 + σ2
2

,

E = −Aγ1η1σ2ρ2 − σ1ρ1γ2η2
η22 + σ2

2

−Bσ1σ2ρ1ρ2 + γ1γ2η1η2
η22 + σ2

2

.

Using (9) and (10), the update conditions (7) are simplified to

hky = (1− θy)hk−1y + θy
(
hk−1y v − µ2hk−1p w

)
,

hkp = (1− θp)hk−1p + θp

(
hk−1
y

µ2 w + hk−1p v

)
,

(11)

with the two functions

v(α, µ) = −ρ1ρ2η1η2 + σ1σ2γ1γ2
(σ2

1 + ρ21) (η22 + σ2
2)

, w(α, µ) =
γ1σ1ρ2η2 − ρ1η1γ2σ2
(σ2

1 + ρ21) (η22 + σ2
2)

, (12)

and we obtain the following convergence results.
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Theorem 1 (Convergence in the symmetric case). For symmetric sub-
domains, α = 1/2 in (5)-(6)-(7), the DN algorithm for the coupled PDEs
converges linearly for 0 < θy, θp < 1, θy 6= 1/2, θp 6= 1/2. For θy = 1/2 = θp,
it converges in two iterations. Convergence is independent of the value of λ.

Proof. For α = 1/2, v(α, µ) = −1, w(α, µ) = 0. The expressions (11) become

hky = (1− 2θy)hk−1y = (1− 2θy)
k
h0y, h

k
p = (1− 2θp)h

k−1
p = (1− 2θp)

k
h0p.

Therefore the convergence is linear for 0 < θy, θp < 1, θy 6= 1/2, θp 6= 1/2.
If θy = 1/2 = θp, we have h1y = 0 = h1p, and hence the desired converged
solution is achieved after one more iteration.

We now focus on the more interesting asymmetric subdomain case (α 6= 1/2).

Theorem 2 (Convergence in the asymmetric case). Suppose α 6= 1/2.
Then the DN algorithm (5)-(6)-(7) for the coupled PDEs converges in at most
three iterations if and only if (θy, θp) equals either (Λ+, Λ−) or (Λ−, Λ+),
where

Λ± :=
1

(1− v)
± |w|

(1− v)
√

(1− v)2 + w2
. (13)

Proof. For α 6= 1/2, we set h̄kp := µhkp, h̄
k
y :=

hk
y

µ . We rewrite the updating

terms (11) in the matrix form(
h̄ky
h̄kp

)
=

[(
1− θy 0

0 1− θp

)
+

(
θyv(α, µ) −θyw(α, µ)
θpw(α, µ) θpv(α, µ)

)](
h̄k−1y

h̄k−1p

)
.

Note that the matrix of the system on the right side (which we call S) is
never zero for any particular set of values θy, θp. So we do not get two-step
convergence for α 6= 1/2, unlike in Theorem 1. We claim that there is some
positive integer n, for which Sn = 0. This results in(

h̄ny
h̄np

)
= Sn

(
h̄0y
h̄0p

)
=

(
0
0

)
,

so that the DN algorithm converges in n + 1 iterations. The spectral radius
of S is

Υ (θy , θp, α, µ) := max

{∣∣∣∣1 −
1

2
(θy + θp) (1 − v) ±

1

2

√
(θy − θp)2 (1 − v)2 − 4θyθpw2

∣∣∣∣} .
For each α ∈ (0, 1) and µ > 0, we solve the system

1− 1

2
(θy + θp) (1− v) = 0, (θy − θp)2 (1− v)

2 − 4θyθpw
2 = 0 (14)

simultaneously for θy, θp to obtain (Λ+, Λ−), as in equation (13). Υ being
symmetric with respect to θy, θp, (Λ−, Λ+) is also a solution of the system
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(14). Therefore Υ (Λ±, Λ∓, α, µ) = 0, resulting in S2 = 0 and hence three
step convergence to the exact solution. For any other values of (θy, θp), the
spectral radius of S is non-zero, so the algorithm cannot converge to the exact
solution in a finite number of iterations.

Remark 1. Since v(α, µ) ≤ 0 (which can be seen from (12) by noting that
γi ≥ |ηi| , σi ≥ |ρi| for all α, µ), equation (13) implies that Λ− ∈ (0, 1) and
Λ+ ∈ (0, 2). Note that unlike the symmetric case α = 1/2, it is possible to
have convergence for θy > 1; for α = 0.99 and µ =

√
8, convergence in three

steps occurs for (θy, θp) = (1.000685490, 0.9621364448).

Remark 2. For a symmetric decomposition of a rectangular domain in 2D
into two equal subdomains, it can be shown that Λ± = 0.5 still gives two-step
convergence in the DN method. For an asymmetric decomposition, however,
the optimal values may be different, see the last example in Section 4.

3 Neumann-Neumann algorithm

To write the NN algorithm for both state and adjoint equations (1)-(3), we
again divide Ω into two non-overlapping subdomains, Ω1 and Ω2. We use
the same notations as in Section 2. Given two initial guesses g0y(x) and g0p(x)
along the interface Γ , the NN algorithm is (again we do not write explicitly
the homogeneous boundary conditions on the outer boundaries satisfied by
the iterates): for k = 1, 2, . . . compute the approximations

−∇ ·
(
κ(x)∇yki

)
= uki in Ωi,

yki = gk−1y on Γ,
(15)

followed by the correction step,

−∇ ·
(
κ(x)∇ψki

)
= 0 in Ωi,

∂ni
ψki = ∂n1

yk1 + ∂n2
yk2 on Γ,

(16)

and similarly for the adjoint equation, we compute

−∇ ·
(
κ(x)∇pki

)
= yki in Ωi,

pki = gk−1p on Γ,
(17)

followed by the correction step,

−∇ ·
(
κ(x)∇ϕki

)
= 0 in Ωi,

∂ni
ϕki = ∂n1

pk1 + ∂n2
pk2 on Γ.

(18)

The update conditions for gky and gkp are
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gky (x) = gk−1y (x)− θy
(
ψk1 |Γ + ψk2 |Γ

)
,

gkp(x) = gk−1p (x)− θp
(
ϕk1 |Γ + ϕk2 |Γ

)
. (19)

We again analyze the convergence for the NN algorithm (15)–(19) for
Ω1 = (0, α), Ω2 = (α, 1) and κ(x) = 1. By (4), we have uki = −pki /λ for
i = 1, 2. Eliminating pk1 , p

k
2 from (15)-(17), we obtain

D(4)yk1 + 1
λy

k
1 = 0,

yk1 (α) = gk−1y ,

D(2)yk1 (α) =
gk−1
p

λ ,

D(4)yk2 + 1
λy

k
2 = 0,

yk2 (α) = gk−1y ,

D(2)yk2 (α) =
gk−1
p

λ ,

(20)

with the homogenous boundary conditions yk1 (0) = 0, D(2)yk1 (0) = 0, yk2 (1) =
0, and D(2)yk2 (1) = 0 at the outer boundaries. With µ4 := 1/λ, the solutions
of (20) become

yk1 (x) = E1 sinh
(
µx√
2

)
cos
(
µx√
2

)
+ E2 cosh

(
µx√
2

)
sin
(
µx√
2

)
,

yk2 (x) = F1 sinh
(
µ(1−x)√

2

)
cos
(
µ(1−x)√

2

)
+ F2 cosh

(
µ(1−x)√

2

)
sin
(
µ(1−x)√

2

)
,

where

E1 =
gk−1y σ1η1 − µ2gk−1p γ1ρ1

σ2
1 + ρ21

, E2 =
gk−1y γ1ρ1 + µ2gk−1p σ1η1

σ2
1 + ρ21

,

F1 =
gk−1y σ2η2 − µ2gk−1p γ2ρ2

σ2
2 + ρ22

, F2 =
gk−1y γ2ρ2 + µ2gk−1p σ2η2

σ2
2 + ρ22

.

Finally solving ψki , ϕ
k
i in (16)-(18) and replacing them in (19) we get the

updating terms

gky = gk−1y − θy(gk−1y z1 + µ2gk−1p z2),
gkp = gk−1p − θp(gk−1p z1 − 1

µ2 g
k−1
y z2),

(21)

with the functions z1(α, µ) = µ√
2

(
σ1γ1+ρ1η1
σ2
1+ρ

2
1

+ σ2γ2+ρ2η2
σ2
2+ρ

2
2

)
, and z2(α, µ) =

µ√
2

(
σ1γ1−ρ1η1
σ2
1+ρ

2
1

+ σ2γ2−ρ2η2
σ2
2+ρ

2
2

)
.

Theorem 3 (Convergence of the NN algorithm). The NN algorithm for
the coupled PDEs (15)–(19) converges in at most three iterations if (θy, θp)

is any of the pairs (Θ+, Θ−) , (Θ−, Θ+) , where Θ± := 1
z1
± |z2|

z1
√
z21+z

2
2

.

Proof. Setting ḡkp := µgkp , ḡ
k
y :=

gky
µ , we rewrite the updating terms (21) as:(

ḡky
ḡkp

)
=

(
1− θyz1 −θyz2
θpz2 1− θpz1

)(
ḡk−1y

ḡk−1p

)
.
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The matrix on the right side (we call P ) is never zero for any set of values
θy, θp. But like in the DN method, if we have Pn = 0, for some n, then we
get (

ḡny
ḡnp

)
= Pn

(
ḡ0y
ḡ0p

)
=

(
0
0

)
,

resulting in convergence in n + 1 iterations. The spectral radius of P is:

Φ (θy, θp, α, µ) := max

{∣∣∣∣1− 1
2 (θy + θp) z1 ± 1

2

√
(θy − θp)2 z21 − 4θyθpz22

∣∣∣∣}.

We solve the system 1− 1
2 (θy + θp) z1 = 0, (θy − θp)2 z21 −4θyθpz

2
2 = 0 simul-

taneously for each α ∈ (0, 1) and µ > 0 to obtain a solution (Θ+, Θ−) as in the
Theorem. Due to the symmetric nature of Φ with respect to θy, θp, (Θ−, Θ+)
is another solution pair of the system of equations. Thus Φ (Θ±, Θ∓, α, µ) = 0,
resulting in P 2 = 0 and therefore three step convergence to the exact solution.

4 Numerical Examples

We perform numerical experiments to verify the convergence rate of the DN
and NN algorithms for the model problem (1)–(2) with λ = 1/2, ŷ(x) = 0.
In the top two plots of Figure 1, we observe two-step convergence of the DN
method for α = 1/2 on the left, and three-step convergence for α = 0.6 for the
optimal choice of (Λ+, Λ−) = (0.62, 0.57) on the right. The two bottom plots
of Figure 1 show the convergence behavior of the DN algorithm for different
choices of θy and θp. On the left panel, we get θy = θp = 1/2 to be the best
parameters for the symmetric case, whereas on the right (Λ+, Λ−) yields the
fastest convergence for α = 0.6. For the NN experiment, we plot on the left
panel of Figure 2 the first three iterates of the state variable for the optimal
choice of (Θ+, Θ−) = (0.30, 0.16), and on the right the convergence curves
for various values of the parameters θy, θp. In Figure 3, we show convergence
of the DN and NN methods for the 2D problem:

−∆y(x) = u(x) x ∈ Ω = (0, 1)2,
y(x) = 0 x ∈ ∂Ω,

with an interface Γ = {0.6} × (0, 1) and λ = 1/2. Note that the optimal
parameters are different from the 1d case when the decomposition is non-
symmetric, as the choice of (0.5, 0.5) appears to perform better than (Λ+, Λ−)
in the DN example. A full analysis of the 2D case will be the subject of a
future paper. We are also working on the analysis of the case of multiple
subdomains, where it is not clear if one can choose relaxation parameters to
obtain finite termination of the algorithm; see [5] for the uncontrolled case.
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Fig. 1 Convergence of the iterative solution of the DN method: in two iterations for the

symmetric case on the top left, and in three iterations for α = 0.6 on the top right; error
curves for various values of θy , θp for α = 1/2 on the bottom left, and for α = 0.6 on the
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Complete, Optimal and Optimized Coarse
Spaces for Additive Schwarz

Martin J. Gander1 and Bo Song2

1 Introduction and Model Problem

Coarse spaces are needed to achieve scalability in domain decomposition methods,
see [16] and references therein. More recently, new coarse corrections were also
designed to improve convergence, for example in high contrast problems. Such en-
riched coarse spaces were first proposed in [4, 5], where volume eigenfunctions
were combined with different types of partition of unity functions, and further de-
veloped in [3]. A coarse space using the eigenfunctions of the Dirichlet-to-Neumann
maps on the boundary of each subdomain has been proposed and analyzed in [13, 2],
and further development led to solving a generalized eigenvalue problem in the over-
lap (GenEO), see [14, 15].

A new, different idea is to first define an optimal coarse space, which leads to
the best possible convergence and makes the method nilpotent [6]1 and then to ap-
proximate it [8, 9, 10, 11]. Following this principle, we design here for the first time
an optimal coarse space for the additive Schwarz (AS) method with arbitrary sized
overlaps, and then define an optimized approximation using a specific function in
the overlap, combined with harmonic extensions of interface eigenfunctions. We
compare our new coarse space to the GenEO coarse space [14, 15] and the local
spectral multiscale coarse space (also with reduced energy) in [4].

Determining an optimal coarse space and then approximating it is a very gen-
eral idea, see for example the SHEM coarse space [10, 11], but for simplicity we
consider here

∆u = f in Ω , u = 0 on ∂Ω , (1)

1 Université de Genève, Section de Mathématiques, 2-4 rue du Lièvre, CP 64, CH-1211, Genève,
Suisse, e-mail: martin.gander@unige.ch ·2 Corresponding author. School of Science,
Northwestern Polytechnical University, Xi’an 710072, China, e-mail: bosong@nwpu.edu.cn

1 Classical one level domain decomposition methods can even be nilpotent in certain situations,
see [1].
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Fig. 1 Continuous (left) and discrete (right) partition of Ω into two overlapping subdomains.

where Ω := (0,1)× (0,γ) is decomposed into two overlapping subdomains Ω1 :=
(0,β )×(0,γ) and Ω2 := (α,1)×(0,γ), with overlap Ωo := Ω1∩Ω2, and interfaces
Γ1 := {(x,y)|x = β ,0 < y < γ} and Γ2 := {(x,y)|x = α,0 < y < γ}, which leads to
the partition of the domain Ω̄ = ¯̃

Ω1∪ Ω̄o∪ ¯̃
Ω2; see Figure 1.

Discretizing (1) by the classical five-point finite difference scheme, we obtain the
linear system Au= f. Starting with an initial guess u0, the iterative two level additive
Schwarz method with multiplicative (hybrid) coarse grid correction computes

un−1/2 = un−1 +(RT
1 A−1

1 R1 +RT
2 A−1

2 R2)(f−Aun−1),

un = un−1/2 +RT
c A−1

c Rc(f−Aun−1/2),
(2)

where Ri are rectangular restriction matrices corresponding to Ωi, Ai = RiART
i , i =

1,2, and Rc is a restriction matrix to a coarse space, Ac = RcART
c .

2 Complete, Optimal and Optimized Coarse Spaces

Definition 1 (Complete coarse space). A complete coarse space for the additive
Schwarz method (2) is given by Rc such that (2) converges after one iteration for an
arbitrary initial guess u0, i.e. the method is nilpotent and becomes a direct solver.

To give an example of a complete coarse space, and being able to write discrete
problems using the same notation as continuous ones, we denote by ∆h the dis-
cretized Laplacian, and by Ωh, Ωih, Ω̃ih Ωoh, Γih the corresponding discretized
spaces, i= 1,2. Let NΓi be the number of degrees of freedom (DOFs) on the interface
Γih, i = 1,2, and let φ

j
i,cs be defined for each DOF on Γih by harmonic extension,

∆hφ
j
i,cs = 0 in Ω̃ih,

φ
j
i,cs = 1 at DOF j of Γ3−i,h, j = 1, . . . ,NΓ3−i ,

φ
j
i,cs = 0 elsewhere in Ωh.

(3)

Denoting by No the number of DOFs in the overlap Ωoh, we define for each of them
the further basis function φ

j
o,cs = 1, extended by zero to the rest of Ωh, j = 1, . . . ,No,

and
V0,cs := span{{{φ j

i,cs}
NΓ3−i
j=1 }

2
i=1∪{φ j

o,cs}
No
j=1}. (4)
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Theorem 1. A complete coarse space for the iterative two level additive Schwarz
algorithm (2) is given by Rc containing in its columns the vectors of V0,cs from (4).

Proof. The proof is technical, see [12], but the property is illustrated in Section 4.

The dimension of this complete coarse space depends on the number of DOFs in the
overlap for AS which was designed to be symmetric [7], but it can be reduced2.

Definition 2 (Optimal coarse space). An optimal coarse space for (2) is a complete
coarse space such that its associated Rc has the smallest number of columns possible.

For an optimal coarse space, we define the restriction matrix in the overlap, Ro :=
[0 IΩoh 0], where IΩo is the identity matrix whose dimension equals the number
of unknowns in Ωoh, and the associated local solver in the overlap, Ao := RoART

o .
We then construct just one specific basis function φ o in the overlap Ωoh for (2),
based on the initial guess u0 by solving

Aoφ o = Ro(f−Au0),

and then extending φ o with zero to the rest of Ωh. We also need the basis functions
φ

j
i,opt, j = 1, . . . ,NΓ3−i , i = 1,2, based on harmonic extensions,

∆hφ
j
i,opt = 0 in Ω̃ih, ∆hφ

j
i,opt = 0 in Ωoh,

φ
j
i,opt = 1 at DOF j of Γ3−i,h, φ

j
i,opt = 1 at DOF j of Γ3−i,h,

φ
j
i,opt = 0 elsewhere in Ωh, φ

j
i,opt = 0 elsewhere in Ωh,

and define
V0,opt := span{{{φ j

i,opt}
NΓ3−i
j=1 }

2
i=1∪{φ o}}. (5)

Theorem 2. An optimal coarse space for the iterative two level additive Schwarz
algorithm (2) is given by Rc containing in its columns the vectors of V0,opt from (5).

Proof. The proof is given in [12], but the property is again illustrated in Section 4.

At the continuous level, even the optimal coarse space would still be infinite
dimensional, and we thus introduce now an approximation of the optimal coarse
space based on SHEM (Spectral Harmonically Enriched Multiscale coarse space
[10]) using an interface eigenvalue problem:

Definition 3 (Interface eigenvalue problem). Denoting by Dyy an approximation
of the second derivative along the interface Γi, the interface eigenvalue problem is

−Dyyψ i = λψ i on Γih, (6)

with zero Dirichlet boundary conditions ψ i(0) = ψ i(γ) = 0, i = 1,2.

2 This problem does not arise with overlap of one or two mesh sizes [11], or RAS [10].
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Fig. 2 First 3 basis functions used to approximate the optimal coarse space based on the interface
eigenfunctions, and the single mode in the overlap for a random initial guess on the right.

In our example, the eigenvectors of the interface eigenvalue problem (6) are ψ
j
i =

sin(( jπ/γ)ym), ym = mh. We can thus construct basis functions φ
j
i,app by the har-

monic extensions of the sine functions for i = 1,2,

∆hφ
j
i,app = 0 in Ω̃ih, ∆hφ

j
i,app = 0 in Ωoh,

φ
j
i,app = ψ

j
3−i on Γ3−i,h, φ

j
i,app = ψ

j
3−i on Γ3−i,h

φ
j
i,app = 0 elsewhere in Ωh, φ

j
i,app = 0 elsewhere in Ωh,

(7)

j = 1, . . . , `, where ` is the number of the eigenvectors of the interface eigenvalue
problem (6) selected; see Figure 2 for an illustration. We then define an optimized
approximation of the optimal coarse space

V0,cs-l = span{{{φ j
i,app}

`
j=1}2

i=1∪{φ o}}. (8)

Theorem 3. The iterative two level additive Schwarz algorithm (2) with Rc contain-
ing in its columns the vectors of V0,cs-l in (8) satisfies the error estimate

‖un−u‖∞,2≤

cosh( (`+1)π
γ

(α +β −1))− cosh( (`+1)π
γ

(β −α−1))

cosh( (`+1)π
γ

(α +β −1))− cosh( (`+1)π
γ

(β −α +1))

n/2

‖u0−u‖∞,2,

and there is no other coarse space of this dimension that leads to faster convergence.

Proof. The proof can be obtained by a direct calculation using separation of vari-
ables for the residual after one additive Schwarz iteration, and will be given in [12].

3 Comparison to Two Other Coarse Spaces

We now compare our optimized coarse space to the GenEO coarse space from [14,
15], and the local spectral multiscale coarse space with reduced energy from [4].
The GenEO coarse space was designed for high contrast problems and is based on
generalized eigenproblems “in the overlap”: in our example it solves in Ωi, i = 1,2,

Âip j
i = λ

j
i XiÂo

i Xip j
i (9)
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Fig. 3 Left: partition of the domain for the GenEO coarse space. Right: partition of the domain for
the local multiscale coarse space with reduced energy.

for eigenvectors p j
i ∈R#dof(Ωi) assoicated with small eigenvalues λ

j
i ∈R

⋃
{+∞}. In

(9), X j is a diagonal matrix indicating the partition of unity used to combine subdo-
main solutions, and Âi, Âo

i are Neumann matrices for each subdomain. Selecting the
` eigenfunctions corresponding to the smallest eigenvalues then leads to the GenEO
coarse space

V0,GenEO = span{RT
i Xip j

i , j = 1, . . . , `, i = 1,2}.

To understand how GenEO is related to our optimized coarse space, we first rewrite
the eigenvalue problem (9) at the continuous level for λi 6= 0 and λi 6= 4,

∆ p̂i(x,y) = 0 in ˆ̃
Ωi, ∆ pio(x,y) = 0 in Ωo,

p̂i = pio on Γ̂3−i, pio =
4

4−λi
p̂i on Γ3−i,

(10)

with boundary conditions p̂i = 0 on ∂Ω ∩ ¯̃̂
Ωi, pio = 0 on (∂Ω ∩ ¯̃̂

Ωo)\Γi and ∂n pio = 0
on Γi, and then define pi := p̂i in ˆ̃

Ωi, pi := pio in Ωo, and pi := 0 in the rest of Ω ,
i = 1,2. Here, Γ ′i are within one mesh size from the corresponding boundary Γi,
i = 1,2, see Figure 3 on the left. Solving (10) with separation of variables for Ω1,
we find for our model problem

p j
1(x,y) =


4

4−λ
j

1

sinh( jπ
γ

x)

sinh( jπ
γ

α ′)

cosh( jπ
γ
(β −α ′))

cosh( jπ
γ
(β −α))

sin( jπ
γ

y), (x,y) ∈ (0,α)× (0,γ),

4

4−λ
j

1

cosh( jπ
γ
(β − x))

cosh( jπ
γ
(β −α))

sin( jπ
γ

y), (x,y) ∈ (α,β )× (0,γ),

λ
j

1 = 4−4
sinh( jπ

γ
α)

sinh( jπ
γ

α ′)

cosh( jπ
γ
(β −α ′))

cosh( jπ
γ
(β −α))

.

We show in Figure 4 the three types of GenEO eigenfunctions. The eigenfunctions
corresponding to the smallest eigenvalues are like the ones in our optimized coarse
space within the subdomains, but in the overlap they differ. Since GenEO uses an
eigenvalue problem in the entire subdomain volume, it also contains many more
eigenfunctions (which one avoids to compute in GenEO), like the overlap ones for
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Fig. 4 First 3 basis functions on Ω1 of the eigenvalue problem from GenEO for the smallest λ ,
followed by 3 of the randomly looking modes for λ = 4 and 2 of the modes for λ = ∞.

λ = 4 corresponding to φ
j
o,cs in our complete coarse space, plus the ones for λ = ∞

which do not contain relevant information for the coarse space.
We next compare our optimized coarse space with the local spectral multiscale

coarse space (also with reduced energy) in [4]. The domain Ω is still decomposed
into two overlapping subdomains Ω1 and Ω2, with six coarse blocks Ki, i = 1, . . . ,6,
see Figure 3 on the right. Let q j

i denote the jth eigenvector of the volume eigenvalue
problem in subdomain Ωih, i = 1,2,

∆hqi = λiqi in Ωih,

∂nqi = 0 on Γih,

qi = 0 on ∂Ωih\Γih.

(11)

With the partition of unity χi, i = 1,2, the local spectral multiscale coarse space of
[4] using ` functions is defined by

V0,mul = span{RT
i χiq j

i ,1≤ j ≤ `, i = 1,2}. (12)

The local spectral multiscale coarse space with reduced energy of [4] is defined by

Ṽ0,mul = span{RT
i q̃ j

i ,1≤ j ≤ `, i = 1,2},

where for each block Kh ∈Ωih, i = 1,2, 1≤ j ≤ `, one still needs to solve ∆hq̃ j
i = 0

in Kh, q̃ j
i = χiq j

i on ∂Kh. Solving (11) using separation of variables, we find in Ω1

q jk
1 (x,y) = sin(

kπ−π/2
α

x)sin(
jπ
γ

y), λ
jk

1 = (
kπ−π/2

α
)2 +(

jπ
γ
)2.

We show in Figure 5 the first few of those modes. Note that these modes are different
from the modes in our optimized coarse space and GenEO, and again one needs to
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Fig. 5 Top: First 4 basis functions of the local spectral multiscale coarse space V0,mul. Bottom:
corresponding modes for the reduced energy case.

solve volume eigenvalue problems to construct the coarse spaces V0,mul and Ṽ0,mul,
which now also contain many redundant modes.

4 Numerical experiments

We solve (1) with f =−3 on Ω = (0,1)×(0,1) discretized by centered finite differ-
ences and using an overlap of 4h, h being the mesh parameter. We start with a ran-
dom initial guess, and stop the iteration when the error in the iterative method or the
residual in PCG reaches the tolerance 1e−8. In Table 1 we show the dependence of
the number of iterations on h for the complete coarse space (CS), the optimal coarse
space (CS-opt), our optimized coarse space SHEM(`), and GenEO(`), GalvisI(`)
and GalvisII(`) (reduced energy), using `= 3 enrichment functions for each subdo-
main. We see that CS and CS-opt are direct solvers, and only SHEM(`) leads to a
convergent stationary iteration; and SHEM(`) also performs best with PCG.

In Table 2, we show the iteration numbers for 2×2, 4×4, and 8×8 subdomains
using h = 1/32,1/64,1/128, i.e. keeping H/h fixed. We choose again ` = 3 for

Table 1 Iteration number comparison in the two subdomain case for different mesh parameters h.

h AS CS CS-opt SHEM(3) GenEO(3) GalvisI(3) GalvisII(3)

Iterative

1
16 na 1 1 6 na na na
1

32 na 1 1 11 na na na
1

64 na 1 1 20 na na na
1

128 na 1 1 38 na na na

PCG

1
16 9 1 1 4 8 8 7
1

32 11 1 1 6 9 9 9
1

64 14 1 1 9 11 12 11
1

128 17 1 1 12 14 14 14
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Table 2 Iteration number comparison for many subdomains.

Subdomains AS CS CS-opt SHEM GenEO GalvisI GalvisII

Iterative
2×2 na 1 1 8 na na na
4×4 na 1 1 8 na na na
8×8 na 1 1 8 na na na

PCG
2×2 15 1 1 5 13 12 10
4×4 25 1 1 5 13 14 10
8×8 42 1 1 5 13 14 10

SHEM, and approximately the same total number of coarse functions for the other
coarse spaces. We see again that CS and CS-opt are direct solvers, and only SHEM
leads to a convergent stationary method. When used with PCG, the methods are all
scalable, but SHEM needs only half the number of iterations compared to the other
methods.
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Heterogeneous Optimized Schwarz Methods for
Coupling Helmholtz and Laplace Equations

Martin J. Gander1 and Tommaso Vanzan1

1 Introduction

Optimized Schwarz methods have increasingly drawn attention over the last two
decades because of their improvements in terms of robustness and computational
cost compared to the classical Schwarz method. Their optimized transmission con-
ditions have been obtained through analytical or numerical procedures in many dif-
ferent situations, involving mostly the same partial differential equation on each
subdomain, see [6, 3, 7] and references therein. When dealing with heterogeneous
problems, a domain decomposition approach which allows one to exploit different
solvers adapted to the different physical problems is important. Due to their favor-
able convergence properties in the absence of overlap, and their capability to take
physical properties at the interfaces into account, optimized Schwarz methods are a
natural framework for such heterogeneous domain decomposition methods, where
the spatial decomposition is simply provided by the multi-physics of the problem.

We introduce and analyze here heterogeneous optimized Schwarz methods with
zeroth order optimized transmission conditions for the coupling between the hard
to solve Helmholtz equation [5] and the Laplace equation. It is a simplified in-
stance of the coupling of parabolic and hyperbolic operators, which might arise in
Maxwell equations. The Helmholtz equation is used in the time harmonic regime of
a wave equation and the Laplace operator represents the parabolic part. We consider
a bounded domain Ω ⊂ R2, with sufficiently regular boundary, divided into two
subdomains Ω1 and Ω2 such that Ω = Ω1 ∪Ω2, Γ = Ω1 ∩Ω2, and Σ j = ∂Ω j \Γ .
Our model problem is

(−∆ −qω
2)u = f in Ω ,

∂u
∂n

+ iωu = 0 on Σ1, (1)

1 Section de mathématiques, Université de Genève, 2-4 rue du Lièvre, Genève, e-mail: {martin.
gander}{tommaso.vanzan}@unige.ch .

1
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u = 0 on Σ2,

where ω > 0 is the Helmholtz frequency, and q ∈ L∞(Ω) satisfies q = 1 in Ω1 and
q = 0 in Ω2. Since the well-posedness of the problem is not straightforward due to
the indefinite nature of the Helmholtz part, we first analyze it in more detail adapting
arguments presented by Després in [2].

Lemma 1. The norm ||u||2 =
∫

Ω
|∇u|2 +ω

∫
Σ1
|u|2 is equivalent to the canonical

norm on H1(Ω) if |Σ1|> 0.

Proof. We first observe that H1(Ω) is the direct sum of V̄ =
{

v ∈ H1(Ω) :
∫

Ω
v = 0

}
and Ṽ =

{
v ∈ H1(Ω) : v is constant in Ω

}
, H1(Ω) = Ṽ ⊕V̄ . Then, on the one hand,

it easy to see that for all v ∈ Ṽ , there exist a constant C =
√

ω|Σ1|
|Ω | such that

C||v||H1(Ω) ≤ ||v|| ≤C||v||H1(Ω). (2)

On the other hand, for every v ∈ V̄ , we first use the Poincaré inequality to get

||v||2H1(Ω) ≤ (1+C)
∫

Ω

|∇v|2 ≤ (1+C)

(∫
Ω

|∇v|2 +ω

∫
Σ1

|v|2
)
= (1+C)||v||2.

(3)
Exploiting the continuity of the trace operator, we obtain

||v||2 =
∫

Ω

|∇v|2+ω

∫
Σ1

|v|2≤
∫

Ω

|∇v|2+ω

∫
∂Ω

|v|2≤max(1,C∂Ω ω)(
∫

Ω

|∇v|2+
∫

Ω

|v|2).

(4)
Having proved that the two norms are equivalent on the subspaces V̄ and Ṽ with
Ṽ ⊕V̄ = H1(Ω), the two norms are also equivalent on H1(Ω).

Let us define V := {v∈H1(Ω) : v = 0 on Σ2}, with || · ||V = || · ||H1(Ω), and consider
problem (1) in the variational form

Find u ∈V : a(u,v)−b(u,v) =V−1 〈 f ,v〉V ∀v ∈V , (5)

where a(u,v) =
∫

Ω
∇u∇v̄+ iω

∫
Σ1

uv̄, b(u,v) = ω2 ∫
Ω2

uv̄ and f ∈V−1. To use Fred-
holm theory, we now show that the bilinear form b is a compact pertubation of a.

Lemma 2. Let B be an operator from V to V such that

a(Bu,v) = b(u,v) ∀v ∈V, (6)

then B is a continuous compact operator.

Proof. We first prove continuity, i.e. ∃C > 0 : ∀u ∈ V, ||Bu||V ≤C||u||V . From the
definition of B, and applying Lax-Milgram to (6), we have ||Bu||V ≤ 1

α
||b(u)||V−1 ,

where b(u) : V → R is the functional defined by V−1 < b(u),v >V := b(u,v). Then
we have ∀v ∈V
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|V−1 < b(u),v>V | := |b(u,v)|=ω
2|
∫

Ω2

uv̄| ≤ω
2||u||L2(Ω2)

||v||L2(Ω2)
≤ω

2||u||L2(Ω2)
||v||V .

We thus conclude that ||b(u)||V−1 ≤ ω2||u||L2(Ω2)
, and hence have the bound

||Bu||V ≤
1
α

ω
2||u||V .

To prove compactness, let un be a bounded sequence in V , i.e ∃C > 0 : ∀n, ||un||V <
C. From weak compactness of V it follows that there exists a subsequence un j such
that un j ⇀ u for some u. Hence un j converge strongly to u in L2 (Ω). Considering
a(Bun j −Bu,Bun j −Bu) = b(un j − u,Bun j −Bu) we have letting n→ ∞ and
using the Cauchy-Schwarz inequality∣∣∣∣∫

Ω

|∇(Bun j −Bu)|2 + iω
∫

Σ1

|Bun j −Bu|2
∣∣∣∣≤ω

2||un j−u||L2(Ω2)
||Bun j−Bu||L2(Ω2)

.

(7)
We observe that Bun j ⇀ Bu in V because un j ⇀ u in V and B is a continuous
operator [1]. Hence, both un j and Bun j converge strongly in L2(Ω). In particular
we have that a(Bun j −Bu,Bun j −Bu)→ 0 which implies ||Bun j −Bu|| → 0.
With Lemma 1, we have that Bun j →Bu in V and thus B is a compact operator.

Since B is a compact operator, thanks to Fredholm alternative, existence of the
solution of problem (5) follows from uniqueness. We need two further Lemmas to
prove uniqueness. We denote with γ ju and S ju the trace of u and the trace of the
normal derivative on the j-th interface and we introduce the space E(Ω ,∆) := {u ∈
H1(Ω) :−∆u ∈ L2(Ω)}.

Lemma 3 (Grisvard, Theorem 1.5.3.11, page 61, [9]). Let Ω be an open bounded
subset of R2 whose boundary is a curvilinear polygon of class C1,1 with interfaces
Σ j, j = 1, ..,N. The mappings u→ γ ju and u→ S ju have a unique continuous ex-
tension from E(Ω ,∆) to respectively H

1
2 (Σ j) and H−

1
2 (Σ j). Moreover for every

u ∈ E(Ω ,∆) and v ∈ H1(Ω) with γ jv ∈ H
1
2 (Σ j) ∀ j, the Green’s formula holds:

(−∆u,v) = (∇u,∇v)−
N

∑
j=1
〈S ju,γ jv〉. (8)

Lemma 4 (Després, Corollary 2.1, page 22, [2]). Let Ω be an open bounded arc-
connected subset of R2 and assume that Γ is a nonempty open subset of ∂Ω of class
C2 and q ∈ L∞(Ω). If u ∈ H2(Ω) satisfies

(−∆ −qω
2)u = 0 on Ω , u|Γ = ∂nu|Γ = 0, (9)

then u=0 in Ω .

Theorem 1. Under the hypotheses of Lemmas 3 and 4, u≡ 0 is the only solution of
the boundary value problem (1) with f = 0.
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Proof. Choosing v ∈ D(Ω), the space of C∞(Ω) functions with compact support,
in the weak formulation of eq. (1) we obtain −∆u−qω2u = 0. Hence, since u ∈V ,
∆u ∈ L2(Ω) and u ∈ E(Ω ,∆). Exploiting Green’s formula and choosing v = u we
get ∫

Ω

|∇u|2−ω
2
∫

Ω1

|u|2 + iω
∫

Σ1

|u|2 = 0. (10)

Considering the imaginary part we have
∫

Σ1
|u|2 = 0, which implies u = 0 on Σ1.

We now have homogeneous Dirichlet data on the whole domain ∂Ω = Σ1 ∪ Σ2.
Regularity results for Dirichlet problems in smooth domains state that u ∈ H2(Ω).
Exploiting again the Green’s formula and −∆u−qω2u = 0 in Ω , we obtain

H−
1
2 (Σ1)
〈∂u

∂n
,v〉

H
1
2 (Σ1)

+ iw
∫

Σ1

uv = 0. (11)

Since u = 0 on Σ1, we can conclude that ∂nu = 0 on Σ1 and by the unique continu-
ation principle in Lemma 4, the result follows.

2 Heterogeneous Optimized Schwarz methods

In order to make analytical calculations, we simplify the analysis and set Ω = R2,
with Ω1 being the left half plane and Ω2 the right half plane. The heterogeneous
optimized Schwarz method is given by

(−ω2−∆)u1 = f in Ω1, (∂x +S1)(un
1)(0, ·) = (∂x +S1)(un−1

2 )(0, ·),
−∆u2 = f in Ω2, (∂x +S2)(un

2)(0, ·) = (∂x +S2)(un−1
1 )(0, ·), (12)

where the S j, j = 1,2 are linear operators along the interface in the y direction. The
system is closed by the Sommerfeld radiation condition limx→−∞

√
|x| x
|x| (∂xun

1 −
iωun

1) = 0 and by the boundedness condition limx→+∞ un
2 = 0. The goal is to find

which operators lead to the fastest convergence. We define the errors e j := u− u j,
and taking the Fourier transform of the error equations in the y direction, we obtain

(−ω2−∂xx + k2)(ên
1) = 0 k ∈ R, x < 0,

(∂x +σ1(k))(ên
1)(0,k) = (∂x +σ1(k))(ên−1

2 )(0,k), k ∈ R,
(−∂xx + k2)(ên

2) = 0 k ∈ R, x > 0,
(∂x +σ2(k))(ên

2)(0,k) = (∂x +σ2(k))(ên−1
1 )(0,k), k ∈ R,

(13)

where σ j(k) are the Fourier symbols of the operators S j. Solving the equations in
(13) and imposing the radiation/boundedness conditions, we get

ên
1 = ên

1(0,k)e
λ (k)x, ên

2 = ên
2(0,k)e

−|k|x,

where λ (k) := i
√

ω2− k2 if k < ω and λ (k) :=
√

k2−ω2 if k ≥ ω . Applying the
transmission conditions, it follows that
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ên
1 = ρ(k)ên−2

1 , ên
2 = ρ(k)ên−2

2 ,

where

ρ(k) =
−|k|+σ1(k)
λ (k)+σ1(k)

λ (k)+σ2(k)
−|k|+σ2(k)

.

Next, to approximate the optimal choice for σ1(k) and σ2(k) which would require
non local operators, we set σ1 = −σ2 = p(1+ i). This choice is motivated by [4]
where the single and double sided optimizations were studied and compared for
the time harmonic Maxwell equations. Since both σ j and λ (k) contain complex
numbers, we have to study the modulus of the convergence factor,

|ρ(k, p)|2 =


((k− p)2 + p2)

((k+ p)2 + p2)

((
√

k2−ω2− p)2 + p2)

((
√

k2−ω2 + p)2 + p2)
k ≥ ω,

((k− p)2 + p2)

((k+ p)2 + p2)

((
√

ω2− k2− p)2 + p2)

((
√

ω2− k2 + p)2 + p2)
k < ω.

(14)

Since we are interested in minimizing the convergence factor over all relevant nu-
merically represented frequencies, we study now the minimax problem

min
p≥0

max
k∈[kmin,kmax]

|ρ(k, p)|2, (15)

where kmin is the minimum frequency and kmax is the maximum frequency supported
by the numerical grid.

Theorem 2. Assuming that kmax > 2ω , the solution of the minimax problem (15) is
given by p∗ = ω√

2
if |ρ(kmax, p∗ = ω√

2
)|2 ≤ (

√
2−1)2+1

(
√

2+1)2+1
, and otherwise it is given by

the unique p∗ such that |ρ(k = ω, p∗)|2 = |ρ(kmax, p∗)|2.

Proof. We consider p > 0, because for p = 0 the convergence factor is equal to 1,
and for p < 0 it is greater than one, while for values of p > 0, the convergence factor
is always less than 1. We introduce a change of variables which will be useful in the
computations, namely x =

√
k2−ω2 if k≥ω and x =

√
ω2− k2 for k < ω . Problem

(15) then becomes

min
p>0

max

(
max

[0,
√

ω2−k2
min]

G(x, p), max
[0,
√

k2
max−ω2]

F(x, p)

)
, (16)

where

G(x, p) =
((x− p)2 + p2)

((x+ p)2 + p2)

((
√

ω2− x2− p)2 + p2)

((
√

ω2− x2 + p)2 + p2)
,

F(x, p) =
((x− p)2 + p2)

((x+ p)2 + p2)

((
√

x2 +ω2− p)2 + p2)

((
√

x2 +ω2 + p)2 + p2)
.
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First, we observe that ∂G
∂x |x=0 = ∂F

∂x |x=0 = − (2((ω−p)2+p2))
(p((ω+p)2+p2))

< 0 for all p > 0 and

G(0, p) = F(0, p). Indeed, x = 0 (k = ω) is a cusp for ρ2(k, p) and hence it is a local
maximum which needs to be minimized. The minimum of G(0, p) with respect to

the variable p is given by p̄ = ω√
2

and G(x = 0, p = ω√
2
) = (

√
2−1)2+1

(
√

2+1)2+1
≈ 0.176. We

thus have found a lower bound for the value of the minimax problem. Next, we study
how G(x, p) behaves in the rest of the interval, and start by restricting our attention
to the case p≥ p̄. Computing the partial derivative with respect to x of G(x, p), we
find that it has a unique zero x1 given by the root of the non linear equation

x(4p4 + x4)(2p2 + x2−ω
2) = ((ω2− x2)2 +4p2)(2p2− x2)

√
ω2− x2. (17)

To proof uniqueness, it is enough to notice that the LHS is zero for x = 0 and strictly
increasing on x, if p ≥ p̄, while the RHS is greater than zero for x = 0 and strictly
decreasing in x. Therefore G(x, p) decreases until x < x1 and then increases mono-

tonically. If x1 >
√

ω2− k2
min then the max

[0,
√

ω2−k2
min]

G(x, p) = G(0, p), otherwise

if x1 ≤
√

ω2− k2
min it is sufficient to notice that G(

√
ω2− k2

min, p) < G(ω, p) =
G(0, p), to conclude that it holds again max

[0,
√

ω2−k2
min]

G(x, p) = G(0, p). Next we

focus on the second interval, considering the function F(x, p). The zeros of the
derivative ∂F

∂x are given by the zeros of the equation

x(4p2 + x4)(22 + x2−2p2) = (2p2− x2)((ω2 + x2)2 +4p2)
√

ω2 + x2.

Repeating an argument similar to the one above, we find that again there is a unique
zero x2, in this case ∀p > 0, which again might or might not belong to the interval
[0,
√

k2
max−ω2]. If x2 is outside the interval or F(

√
k2

max−ω2, p̄) ≤ F(0, p̄), then
we can conclude that the optimal value p∗ is given by p∗ = p̄, i.e. the value which
minimizes the convergence factor for the frequency k =ω . Otherwise the local max-
ima are located at x= 0 and x=

√
k2

max−ω2. We compute the partial derivative w.r.t

the variable p, which satisfies ∂F
∂ p |x=

√
k2

max−ω2 < 0 for p ∈ I = [0,
√

k2
max−ω2

2 ], and
under the non restrictive hypothesis kmax > 2ω , we have that p̄ ∈ I. Analyzing the
sign of the derivative shows that it is not useful to look for p∗ in [0, ω√

2
], since both

local maxima would increase. This justifies why we studied G only for p≥ p̄. Since
∂F
∂ p |x=0 > 0 for p > ω√

2
and because

F(
√

k2
max−ω2,

√
k2

max−ω2

2
)=

(
(
√

2−1)2 +1
(
√

2+1)2 +1

)2

<F(0,
ω√

2
)<F(0,

√
k2

max−ω2

2
),

(18)
we conclude that there exists a unique value p∗ such that F(0, p∗)=F(

√
k2

max−ω2, p∗),
which concludes the proof.

Remark 1. It is interesting to note that this problem is different from the ones already
studied in the literature, because the convergence factor is immediately bounded
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from below: it is not possible to get a better convergence factor than ρ2(k, p) =
(
√

2−1)2+1
(
√

2+1)2+1
. We also did not have to exclude the resonnance frequency k = ω by

introducing ω− and ω+, as in the Helmholtz case [8]; the optimized Schwarz method
can benefit from the heterogeneity, leading to |ρ(k = ω, p)|2 < 1.

We now present two asymptotic results. First we want to study how our algorithm
behaves when we take finer and finer meshes. Let h→ 0, h being the mesh size, and
suppose that the maximum frequency supported by the numerical grid scales like
kmax = π/h→ ∞.

Theorem 3. When the physical parameters ω and kmin are fixed, kmax =
π

h and h→
0, then the solution of problem (15) is given by

p∗ =
√

ωπ

2
·h−1/2 +o(h−1/2), |ρ(k, p∗)|2 = 1− 4

√
ω√
π

h
1
2 +o(h1/2). (19)

Proof. For kmax→ ∞, ρ(kmax, p)→ 1, and hence the solution of the minimax prob-
lem is given by equioscillation. Inserting the ansatz p≈Cph−α into |ρ(k=ω, p)|2 =
|ρ(k = kmax, p)|2 and comparing the leading order terms then gives the result.

The second result is typical of the Helmholtz equation. As ω increases, in order to
control the so called pollution effect, we need to decrease significantly h in order to
have a good approximation of the solution. Generally, the scaling relation used is
h = Ch

ωγ , with γ > 1. Common values are γ = 3
2 , or γ = 2.

Theorem 4. If kmin is fixed, kmax = π

h , ω goes to infinity and h = Ch
ωγ , with γ > 1,

then the solution of problem (15) is given by

p∗ =
√

π

2
√

Ch
·ω

1+γ

2 +o(ω
1+γ

2 ), |ρ(k, p∗)|2 = 1− 4
√

Ch√
π

ω
1−γ

2 +o(ω
1−γ

2 ).

Proof. A direct calculation shows that |ρ(k = kmax,
ω√

2
)|2→ 1 for ω→∞, and thus

again the solution is given by equioscillation. Expanding equation |ρ(k = ω, p)|2 =
|ρ(k = kmax, p)|2, with the ansatz p =Cpωα then leads to the desired result.

3 Numerical experiments

We implemented our heterogeneous optimized Schwarz method on a square domain
Ω := (−1,1)× (−1,1), with Ω1 := (−1,0)× (−1,1) and Ω2 := (0,1)× (−1,1).
We used second order centered finite differences for the interior points and first
order approximations for the boundary terms. In Figure 1 on the left, we show the
modulus of the solution of problem (1) for ω2 = 50 and f = 1. On the right in
Figure 1, we show a comparison between the optimal numerical value p and the
theoretical estimation provided by Theorem 2. We see that our simplified analysis
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Fig. 1 Parameters ω2 = 50, h = 0.05. Left: Modulus of u(x,y). Right: Parameter p vs number of
iterations. The optimal p given by equioscillation is indicated by a star.

on unbounded domains is able to give quite a good approximation of the optimal
parameter in the bounded domain context. Finally, we show in Table 1 the behavior
of the algorithm when the mesh size h decreases and for large values of ω , with
hω

3
2 = const. In brackets, we show the number of iterations required for a non-

h Optimal p∗ maxk |ρ2(p∗,k)| iterations
1

50 16.52 0.4225 53 (810)
1

100 23.53 0.55043 73 (1614)
1

200 33.37 0.6543 104 (3284)
1

400 47.27 0.7403 148 (6554)

ω Optimal p∗ maxk |ρ2(p∗,k)| iterations
10π 34.8451 0.2119 31 (839)
20π 84.7084 0.2622 38 (2954)
40π 205.0570 0.3167 46 (8096)
60π 342.6739 0.3506 48 (>10000)

Table 1 The two tables show the behaviour of the heterogeneous optimized Schwarz method under
mesh refinement and when ω increases with hω

3
2 held constant.

optimized case, i.e. using p= 1. We clearly see that the optimization leads to a much
better algorithm, which deteriorates much more slowly when the mesh is refined,
and ω increases.

4 Conclusions

We presented and analysed a heterogeneous optimized Schwarz method for the cou-
pling of Helmholtz and Laplace equations. We proved the well-possedness of the
coupled problem, and then introduced optimized Robin transmission conditions,
giving asymptotic formulas for the optimized parameters and associated conver-
gence factor. Our results indicate that a much weaker dependence on the mesh pa-
rameter can be achieved with optimized transmission conditions, and we are cur-
rently working on further improvement by studying second order optimized trans-
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mission conditions.

Acknowledgements. The authors are grateful to L. Halpern for very useful re-
marks concerning the well posedness analysis.
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Restrictions on the use of sweeping type
preconditioners for Helmholtz problems

Martin J. Gander and Hui Zhang

1 Introduction

Helmholtz problems, and time harmonic problems in general like Maxwell’s equa-
tions, are notoriously difficult to solve numerically. The first problem is that they
require very fine discretizations to avoid the so called pollution effect [1], and then
the discretized systems are so large that one needs to solve them iteratively, and none
of the classical iterative methods are suitable for this task [10]. Over the past decade,
several new ideas arrived for the iterative solution of Helmholtz problems, among
them the shifted Laplace preconditioner [9]. Unfortunately in this preconditioner,
one has to choose the shift small enough (at most O(k) where k is the wave number)
for the preconditioner to be close to the underlying operator to give provable wave
number independent convergence [12], and large enough (at least O(k2)) for the pre-
conditioner to be easily invertible by multigrid independently of the wave number
[5, 6]. In practice, a compromise has to be chosen, which can lead to a growth of up
to O(k2) in the iteration numbers of preconditioned GMRES in the multigrid case
[6]; for a rigorous analysis in the case of classical domain decomposition, see [20].
The best current preconditioners are based on domain decomposition methods using
special transmission conditions, and have their roots in optimized Schwarz methods
[14, 13] and the AILU preconditioner [15, 16]. These algorithms use transmission
conditions adapted to the underlying Helmholtz nature of the problem, and this idea
is so important that it has been rediscovered independently several times over the
last few years, see the sweeping preconditioner [7, 8], the source transfer method,
the methods based on single layer potentials [3, 4], and most recently the method
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of polarized traces [24, 23]. All these methods use the same underlying mathemati-
cal algorithm, which at the continuous level is the class of optimal Schwarz methods
[11], and at the discrete level the block-LU factorization, and one can prove formally
that they are all basically equivalent, see the review monograph [19]. The methods
use a one way decomposition of the domain into a sequence of subdomains, and
between subdomains they use as transmission condition an approximation of the
Dirichlet to Neumann operator. An important technique advocated by these more
recently proposed algorithms is the use of perfectly matched layers (PML) in the
transmission conditions; for an earlier use of PML transmission conditions in a do-
main decomposition setting, see [22, 21], and [2] for high order Padé transmission
conditions, with [17, 18] for their relation to PML transmission conditions. While
one might think intuitively that the absorption at the interfaces is the most impor-
tant property, and with PML one can reach as much absorption as one wants, the
truly important property for the algorithm is not absorption, but approximation of
the Dirichlet to Neumann operator, which is well known from optimized Schwarz
theory [11]. For a constant wave number, these two coincide, and it was therefore
possible to prove for the above methods that they can be made into arbitrarily good
solvers by improving the PML, but this holds only for constant wave number. We
show here that like all the other iterative Helmholtz solvers so far, the performance
of these methods deteriorates as soon as the approximation of the Dirichlet to Neu-
mann operator is not perfect any more in the case of wave propagation. To do so,
we use a common algorithm formulation at the discrete level from [19], and provide
the algorithm without any of the technicalities related to the various inventions, so
that anybody can implement and check the method for themselves.

2 Common formulation of sweeping, source transfer, single layer,
polarized traces and optimal/optimized Schwarz algorithms

To illustrate the limitations of these methods, it suffices to take the Helmholtz equa-
tion in a layered medium,

(∆ + k(x)2)u = f , in Ω := (0,1)2, (1)

with suitable boundary conditions for well posedness, such that after discretization
by a standard five point finite difference method, the piecewise constant wave speeds
are aligned with the block tridiagonal matrix structure

Au :=


D1 L
L D2 L

. . . . . . . . .
L DJ−1 L

L DJ




u1
u2
...

uJ−1
uJ

=


f1
f2
...

fJ−1
fJ

=: f. (2)
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The block LU factorization of the coefficient matrix in (2) is given by

A =


T1
L T2

. . . . . .
L TJ−1

L TJ




I T−1

1 L
I T−1

2 L
. . . . . .

I T−1
J−1L

I

 , (3)

where the Tj are the Schur complements that satisfy the recurrence relation

T1 = D1, Tj = D j−LT−1
j−1L for j ≥ 2, (4)

as one can verify by a direct calculation. The underlying system (2) can then be
solved by a forward block substitution, followed by a backward block substitution,
which corresponds to the sweeping over the domain back and forth, the source trans-
fer from layer to layer, or the alternating solution over subdomains in the optimized
Schwarz setting, see [19]. In the constant wave number case, the dense blocks Tj
can be implemented using PML to arbitrary precision1, and then all these sweeping
type methods can be made arbitrarily close to being direct solvers, which explains
their excellent performance in the constant wave number case. In the variable wave
number case however, the best a PML can do is to be perfectly absorbing for the
neighboring medium, assuming it to be constant up to infinity. To get such a perfect
absorption for our model problem directly algebraically, without PML techniques,
we consider for each wave number block Di the constant coefficient problem

Aiui :=


Di L
L Di L

. . . . . . . . .
L Di L

L Di




ui

1
ui

2
...

ui
J−1
uJ

=


f1
f2
...

fJ−1
fJ

=: f, (5)

with factorization

Ai =


T i

1
L T i

2
. . . . . .

L T i
J−1
L T i

J




I (T i

1)
−1L

I (T i
2)
−1L

. . . . . .
I (T i

J−1)
−1L

I

 , (6)

where T i
j are the Schur complements that satisfy now the recurrence relation

T i
1 = Di, T i

j = Di−L(T i
j−1)

−1L for j ≥ 2. (7)

1 provided the domain has indeed an open end or such a high order PML on the side where the
sweeping begins.
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Then the approximate factorization using this best possible approximation a PML
technique could provide2 is

Ã =


T̃1
L T̃2

. . . . . .
L T̃J−1

L T̃J




I T̃−1

1 L
I T̃−1

2 L
. . . . . .

I T̃−1
J−1L

I

 , (8)

where T̃j are the Schur complements using the exact Schur complements of the
neighboring constant wave number case, namely

T̃1 = D1, T̃j = D j−L(T j−1
j−1 )

−1L for j ≥ 2. (9)

Note that this best possible information a PML could provide is not necessarily
a good approximation to the Dirichlet to Neumann operator which is represented
by the exact blocks Tj, and thus contains information about all the reflections that
will be created by all the layers outside the present subdomain. We will test now
how much variation in the wave number this approximation can tolerate before the
sweeping type algorithms loose their effectiveness, and how this depends on the
source term and the boundary conditions of the underlying problem.

3 Numerical Study

We discretize the Helmholtz equation (1) using n = 64 interior mesh points, so that
the mesh size is h = 1/(n+1), and we use p = 4,8,16 layers. For the case of four
layers, we use the wave numbers

k = [20 20 20 20]+α[0 20 10 −10], (10)

where α is a contrast parameter, and for larger p we just repeat this structure. The
resolution we chose guarantees at least ten points per wavelength resolution for this
experiment. We start with the case of a wave guide in the x direction, where we
used Robin radiation conditions on the left and right, and homogeneous Dirichlet
conditions on top and bottom. We show in Figure 1 the solution3 we obtain for
α = 1 with a point source at x = 2h, y = 1−h

2 for the case of four and sixteen layers
in the top row, and below for the constant source f = 1.

We now test the approximate factorization (8) both as an iterative solver and as
a preconditioner for GMRES for varying contrast parameter α and right hand sides.
We do this both for n = 64 interior meshpoints and the contrast profile (10), and on

2 it is the exact Schur complement, including all boundary information, the only approximation is
the constant wave number.
3 The boundary points are not plotted, so one can not see the homogeneous Dirichlet condition.



Restrictions on the use of sweeping type preconditioners for Helmholtz problems 5

1

0.5

x
00

0.5

y

1.5

1

0.5

0

-0.5

-1

1

×10
-4

1

0.5

x
00

0.5

y

0

-5

15

10

5

1

×10
-5

1

0.5

x
00

0.5

y

0.01

0.015

0.005

0

-0.005

-0.01

1

1

0.5

x
00

0.5

y

0

-0.01

-0.005

0.01

0.005

1

Fig. 1 Top: Solutions computed with a point source. Bottom: Solutions computed with f = 1. Left:
4 layers. Right: 16 layers.

a refined mesh with twice the number of interior meshpoints, n = 128, but also a
profile with twice the size for the wave number, i.e.

k = [40 40 40 40]+α[0 40 20 −20], (11)

so that we still have at least ten points per wavelength resolution. We show in Table
1 the number of iterations the methods took, where we stopped the iterative ver-
sion of the algorithm at the relative error tolerance 1e− 6, and GMRES when the
residual was reduced by 1e− 6, and we started with a zero initial guess. The three
columns within each ’Iterative’ or ’GMRES’ column correspond to the point source
f , constant f = 1 throughout the domain, and also a random f . The top part is for
the smaller wave number experiment (10), and the bottom part is for the larger wave
number experiment (11). We first see that for α = 0, i.e. in the constant wave num-
ber case, the factorization is exact, both the iterative version and GMRES converge
in one iteration step, and the contraction factor ρ (the spectral radius) of the iterative
version equals numerically zero. As soon as we have however a non-constant wave
number, already for α = 0.001, the factorization is not exact any more. Nevertheless
the methods still converge well, up to α = 0.01 in the smaller wave number case in
the top half of the table, i.e. a one percent variation in the wave number k. Here the
contraction factor is ρ = 0.2460 for p = 4 subdomains, and grows when the number
of subdomains p is increasing. For larger contrast, the iterative version of the algo-
rithm can not be used any more, ρ > 1, and GMRES deteriorates now rapidly, for
example if the contrast is at a factor of two, i.e. α = 1, GMRES iteration numbers
double when the number of subdomains doubles, the sweeping type methods are not
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p = 4 p = 8 p = 16
α Iterative ρ GMRES Iterative ρ GMRES Iterative ρ GMRES
0 1 1 1 5.8e-15 1 1 1 1 1 1 6.1e-15 1 1 1 1 1 1 4.6e-15 1 1 1

0.001 4 3 4 0.0250 3 3 4 5 4 5 0.0738 4 3 4 6 4 6 0.0979 5 4 5
0.005 6 4 6 0.1250 4 3 5 13 5 14 0.4031 7 5 7 12 8 11 0.3155 8 6 8
0.01 9 4 9 0.2460 5 4 5 32 7 34 0.6877 9 6 9 25 13 28 0.6244 11 7 11
0.05 - 7 - 1.6072 8 6 8 - - - 11.135 15 11 15 - - - 20.593 21 15 21
0.1 28 11 26 0.6887 9 7 9 - - - 3.0238 17 13 18 - - - 2.7604 25 17 26
1 - - - 2.4141 18 12 19 - - - 173.66 35 29 37 - - - 7.0979 62 44 67
0 1 1 1 5.9e-15 1 1 1 1 1 1 5.3e-15 1 1 1 1 1 1 6.5e-15 1 1 1

0.001 4 4 4 2.49e-2 4 3 4 5 5 5 0.1055 5 4 5 8 5 8 0.1991 6 5 6
0.005 7 7 7 0.1428 5 5 5 84 9 90 0.8824 9 6 9 26 11 27 0.6328 12 8 12
0.01 12 12 12 0.3300 6 5 6 - 18 - 1.9386 12 8 12 - - - 1.1614 19 11 19
0.05 - - - 4.5040 13 9 13 - - - 8.1397 23 17 22 - - - 1408.4 43 34 44
0.1 - - - 2.2412 14 11 15 - - - 20.614 20 14 19 - - - 2515.4 43 38 40
1 - - - 8.7091 31 20 33 - - - 6.9288 61 46 66 - - - 4.079e5 67 99 83

Table 1 Iteration numbers in the wave guide setting.

robust any more4. In the higher wave number case in the bottom part of the table, the
methods start having problems already at α = 0.005, variations of the wave speed
of half a percent, and they deteriorate even more rapidly for higher contrast. We can
also see comparing the last two lines of the top and bottom half of the table that dou-
bling the wave number leads to twice the iteration numbers with GMRES as soon
as the contrast is large enough, and GMRES failed to converge in less than hundred
iterations at the bottom right. We also measured that in certain cases, the relative
residual reduction of 1e−6 for GMRES does not lead to a relative error of the same
size. This is notably the case for α = 1 in the smaller wave number case when p = 8
with point or random source (relative error 1.83e−4 and 1.26e−4 only), and in the
larger wave number case when p = 16 with point or random source, (relative error
0.27317 and 0.52128 only !). So the corresponding GMRES iteration numbers (67
and 83) would need to be substantially higher to reach the same level of accuracy of
1e− 6 as for the other results in the table: we measured 129 instead of 67 to reach
1.8607e−6 and 139 instead of 83 to reach 2.9641e−6 respectively.

We next perform the same set of experiments, but now using Robin boundary
conditions all around the domain, see Table 2. We see that the outer Robin boundary
conditions are better than the wave guide setting for the sweeping type algorithms,
they work now in the iterative version up to about a 10 percent variation of the wave
number in this specific experiment. As soon as however there is a variation as large

4 There are also two interesting apparent anomalies: in the smaller wavenumber case, for p = 4
and α = 0.05 (and also one in the larger wave number case), the spectral radius is bigger than one,
but for the source term f = 1 we observe convergence. We iterated in this case however further,
and then the iterations also start to diverge, it is only that the divergent modes are not stimulated at
the beginning by the source term f = 1 and zero initial guess, a typical phenomenon known from
power iterations, which explains in the table the general observation that the problem with f = 1
is easier to solve than with the other sources, also for GMRES. For the same p = 4 and α = 0.1,
we then get surprisingly a spectral radius again smaller than 1, which is a lucky configuration and
not observed for more subdomains or different α .
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p = 4 p = 8 p = 16
α Iterative ρ GMRES Iterative ρ GMRES Iterative ρ GMRES
0 1 1 1 3.6e-15 1 1 1 1 1 1 4.5e-15 1 1 1 1 1 1 2.8e-15 1 1 1

0.001 2 3 3 1.28e-3 2 2 2 3 3 3 3.40e-3 3 3 3 3 3 3 3.74e-3 3 3 3
0.005 3 3 3 6.58e-3 3 3 3 4 4 4 1.69e-2 4 3 3 4 4 4 1.92e-2 4 4 4
0.01 4 4 4 1.36e-2 3 3 3 4 4 4 3.35e-2 4 4 4 5 4 4 3.79e-2 4 4 4
0.05 6 6 6 8.25e-2 5 5 5 7 7 7 0.1446 6 6 6 10 9 9 0.2403 7 7 7
0.1 8 8 8 0.1677 6 5 6 9 9 9 0.2202 7 7 7 15 16 16 0.4182 9 9 10
1 80 80 80 0.8471 13 10 13 - - - 2.8446 24 19 25 - - - 3.1188 39 30 38
0 1 1 1 3.6e-15 1 1 1 1 1 1 4.0e-15 1 1 1 1 1 1 4.4e-15 1 1 1

0.001 3 3 3 1.91e-3 2 3 3 3 3 3 5.57e-3 3 3 3 4 4 4 1.29e-2 3 3 3
0.005 3 3 3 9.63e-3 3 3 3 4 4 4 2.73e-2 4 4 4 5 5 5 6.58e-2 5 5 5
0.01 4 4 4 1.97e-2 4 4 4 5 5 5 5.29e-2 5 5 5 7 7 7 0.1343 6 6 6
0.05 6 6 6 0.1006 5 5 5 11 11 11 0.2771 8 8 8 21 22 22 0.5287 10 10 11
0.1 10 9 9 0.2353 7 7 7 14 13 13 0.3796 9 9 9 41 44 43 0.7344 12 11 12
1 - - - 1.4684 19 14 19 - - - 2.9234 36 25 35 - - - 36.193 76 65 80

Table 2 Iteration numbers for a domain with Robin conditions all around.

p = 4 p = 8 p = 16 p = 4 p = 8 p = 16
L/h C GMRES GMRES GMRES Iterative GMRES GMRES GMRES
5 4π 18 13 19 36 29 38 62 42 63 20 24 28 12 11 12 23 24 25 32 32 34
10 8π 18 13 19 36 29 38 61 41 62 18 24 25 11 11 12 20 20 22 28 25 29
5 4π 28 17 21 61 46 64 86 86 95 - - - 14 13 13 25 24 24 58 60 61
10 8π 28 17 19 61 46 64 87 81 90 39 47 46 11 11 12 22 21 22 46 45 48

Table 3 Iteration numbers in the presence of outer PMLs. Left: waveguide. Right: PMLs all
around. Bottom part has doubled wavenumber and half the mesh size like in Tables 1 and 2.

as a factor of two, the method is not an effective solver any more, the iterative ver-
sion diverges because ρ > 1, and GMRES iteration numbers deteriorate when the
number of subdomains increases, like in the previous case: we still observe a dou-
bling of the GMRES iteration count when the number of subdomains doubles, and
also when the wave number is multiplied by 2. With Robin conditions all around,
there is less loss of accuracy compared to the residual tolerance than in the wave
guide case: only in the high wave number case for α = 1 and p = 16, the relative
error reached 1.6463e− 05 for the point source and 1.2333e− 05 for the random
source instead of the 1e− 6 asked for in the relative residual, all other results had
the required level also in the relative error.

Finally, we use a complex stretching PML instead of the outer Robin boundary
condition. For example, we extend the right boundary from 1 to 1+L and perform in
the extended region in (1) the transform ∂x→ s∂x, s = 1

1−iC(x−1)2/(L3k(1,y)) , i =
√
−1,

and similarly on the other boundaries. We increase L and C to get more absorption
in the PMLs, and check how this affects the results for α = 1 in Table 1 and Table 2,
see Table 3. The iterative version diverges in most cases except when p = 4 for the
PML-all-around problem. Absorption helps GMRES marginally for the waveguide
problem but remarkably for the PML-all-around problem. Note that, however, the
iteration count still doubles along with the number of subdomains and when dou-
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bling the wave number for many subdomains. We also tested the case of a fixed
wave number profile, namely the one in Table 3 at the bottom right with 16 layers:
for p = 4 we obtain for GMRES the iteration numbers 16 20 21 , and for p = 8
59 69 70 . This indicates that also for a fixed difficulty, i.e. fixed number of lay-
ers, iteration numbers grow when subdomain numbers are increasing. We observe
however also when comparing with p = 16 at the bottom right of Table 3 the inter-
esting phenomenon that once layers are all aligned with subdomains, the problem
becomes apparently a bit easier. We are currently studying this phenomenon theo-
retically. Note that if too many PMLs are used, the 2-norm of the residuals may be
dominated by the residuals in the PMLs, and one should use a more reliable metric
for the stopping criterion.

4 Conclusion

We presented the simplest common form of the fundamental algorithm underlying
the new type Helmholtz (and Maxwell) solvers based on sweeping. These solvers
are among the best currently available solvers for such type of problems, and they
can be made robust in the wave number by increasing the accuracy of the PML,
provided the wave number is constant. If the wave number is not constant however,
the PML is not the right approximation of the Dirichlet to Neumann operator or
the Schur complement any more, which is the essential ingredient for these algo-
rithms to be effective. We showed by a simple set of numerical experiments which
is easy to reproduce that in a layered medium with contrast of only one percent,
these algorithms already perform substantially less well if the layers are not aligned
with the sweeping direction, and when the contrast is as large as a factor of two, the
methods do not work any more as stationary iterations, and preconditioned GMRES
iteration numbers start to grow drastically: they increase linearly in the number of
subdomains and the wave number in our experiments. One must therefore investi-
gate an approximation different from PML for the Dirichlet to Neumann operator in
the case of non-constant wave numbers.
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18. Martin J. Gander and Achim Schädle. On the relationship between the pole condition, absorb-
ing boundary conditions and perfectly matched layers. 2018. in preparation.

19. Martin J. Gander and Hui Zhang. A class of iterative solvers for the Helmholtz equation: fac-
torizations, sweeping preconditioners, source transfer, single layer potentials, polarized traces,
and optimized Schwarz methods. SIAM Review, page to appear, 2018.

20. Ivan G. Graham, Euan A. Spence, and Eero Vainikko. Domain decomposition preconditioning
for high-frequency Helmholtz problems using absorption. ArXiv e-prints, 2015.
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Convergence of Asynchronous Optimized
Schwarz Methods in the plane

José C. Garay, Frédéric Magoulès and Daniel B. Szyld

Abstract A convergence proof of Asynchronous Optimized Schwarz Methods ap-
plied to a shifted laplacian problem, with negative shift, in R2 is presented. Suffi-
cient conditions for convergence involving initial values of the approximation of the
solution are discussed.

1 Introduction

Optimized Schwarz Methods are Domain Decomposition methods in which the
boundary conditions on the artificial interfaces are of Robin type, i.e., containing
one or more parameters that can be optimized [1, 3, 4].

In our context, Asynchronous Schwarz methods are those where each subdomain
solve is performed with whatever new information (to be used for the boundary
conditions) has arrived from the neighboring subdomains since the last update, but
without necessarily waiting for new information to arrive. For more details on asyn-
chronous methods, see, e.g. [2] and references therein. See also Section 1.2 below.

In this paper we add more details to the convergence proof given in [5] of Asyn-
chronous Optimized Schwarz (AOS) where it is used to solve Poisson’s equation
in R2. The results presented here complement those of [5].
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1.1 Preliminaries

The aim is to provide a complete proof of the convergence of AOS for

∆u−ηu = f in R2, (1)

with vanishing value of u at infinity, and η > 0. The space R2 is divided into p
overlapping infinite vertical strips. This means we have p− 1 vertical lines, say at
coordinates x = `1, . . . `p−1; and we assume for simplicity that we have the same
overlap 2L between subdomains. We also assume, without loss of generality, that
except for the subdomains at infinity, that each strip has the same width, i.e., `s−
`s−1 = W for s = 2, . . . , p− 1, so that `s = `1 +(s− 1)W . It follows then, that the
overlap satisfies 2L <W , and usually L�W . Thus, we have Ω (1) =]−∞;`1 +L]×
R, Ω (s) = [`s−1−L;`s +L]×R, s = 2, . . . , p−1, and Ω (p) = [`p−1−L;+∞[×R. In
this context, the normal vector is in the x direction (with the appropriate sign).

Let f (s) and un
s denote the restriction of f and un, the approximation to the

solution at the iteration n, to Ω (s), s= 1, . . . , p, respectively. Thus, un
s ∈V (s), a space

of functions defined on Ω (s). We consider transmission conditions (on the artificial
interfaces) composed of local operators. The local problems and the synchronous
iteration process is described by the following equations

(∆ −η)un+1
1 = f (1) on Ω (1),

∂un+1
1

∂x +Λun+1
1 =

∂un
2

∂x +Λun
2 for x = `1 +L,

For s = 2, . . . , p−1,

− ∂un+1
s

∂x +Λun+1
s =− ∂un

s−1
∂x +Λun

s−1 for x = `s−1−L,
(∆ −η)un+1

s = f (s) on Ω (s),
∂un+1

s
∂x +Λun+1

s =
∂un

s+1
∂x +Λun

s+1 for x = `s +L,

− ∂un+1
p

∂x +Λun+1
p =−

∂un
p−1

∂x +Λun
p−1 for x = `p−1−L,

(∆ −η)un+1
p = f (p) on Ω (p),

(2)

where Λ is a local approximation to the Poincaré-Steklov operator using differential
operators (e.g., Λ = α and for artificial boundary conditions of OO0 family of arti-
ficial conditions, with α constant, and Λ = α +β

∂ 2

∂τ2 for the OO2 family, where ∂ 2

∂τ2

is the tangential second derivative with respect to the boundary and β a constant; α

and β are parameters whose values are chosen to optimize convergence properties
and thus minimize convergence bounds).

Using linearity we obtain that the error of the synchronous iterative procedure is
the solution of (2) with f = 0. The Fourier transform in the y direction of the error
of the local problem s at iteration n then can be written as (see [5])

ûs
n(x,k) = An

s (k)e
−θ(k)|x−(ls−1−L)|+Bn

s (k)e
−θ(k)|x−(ls+L)| (3)

where θ(k) =
√

η + k. Let c(n)T = ((c1(n),c2(n), . . . ,cp−1(n),cp(n)) =
(Bn

1,A
n
2, Bn

2, . . . ,A
n
p−1,B

n
p−1,A

n
p), where c1 = Bn

1 and cp = An
p are scalars, and
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cs = (An
s ,B

n
s ) are ordered pairs for s = 2, . . . , p− 1. Plugging the expression (3)

into (2) (with f = 0), we can write the iteration from u(n) to u(n+ 1) in terms of
the coefficients c(n) and c(n+ 1) obtaining an (2p− 1)× (2p− 1) matrix T̂ such
that c(n+ 1) = T̂ c(n); see [5] for more details. In that reference, it is shown that
the operator T̂ is contracting in max norm, and in this paper we continue the proof
starting precisely from this result1.

1.2 Mathematical model of asynchronous iterative methods

Let X (1), ...,X (p) be given sets and X be their Cartesian product, i.e., X =X (1)×·· ·×
X (p). Thus x ∈ X implies x =

(
x(1), ...,x(p)

)
with x(s) ∈ X (s) for s ∈ {1, ..., p}. Let

T (s) : X → X (s) where s ∈ {1, ..., p}, and let T : X → X be a vector-valued map (it-
eration map) given by T = (T (1), ...,T (p)) with a fixed point x∗, i.e., x∗ = T (x∗). Let
{tn}n∈N be the sequence of time stamps at which at least one processor updates its
associated component. Let {σ(n)}n∈N be a sequence with σ(n)⊂ {1, ..., p} ∀n∈N.
The set σ(n) consists of labels (numbers) of the processors that update their asso-
ciated component at the n-th time stamp. Define for s,q ∈ {1, ..., p}, {τs

q(n)}n∈N
a sequence of integers, representing the time-stamp index of the update of the data
coming from processor q and available in processor s at the beginning of the compu-
tation of x(s)(n) which ends at the n-th time stamp. Let x(0) =

(
x(1)(0), ...,x(p)(0)

)
be the initial approximation (of the fixed point x∗). Then, the new computed value
updated by processor s at the nth time stamp is

x(s)(n) =

{
T (s)

(
x(1)(τs

1(n)), ...,x
(p)(τs

p(n))
)
, s ∈ σ(n)

x(s)(n−1), s /∈ σ(n)·

It is assumed that the three following conditions (necessary for convergence) are
satisfied

∀s,q ∈ {1, . . . , p} ,∀n ∈ N∗,τ(s)q (n)< n, (4)
∀s ∈ {1, . . . , p} ,card{n ∈ N∗|s ∈ σ(n)}=+∞, (5)

∀s,q ∈ {1, . . . , p} , lim
n→+∞

τ
(s)
q (n) = +∞. (6)

Condition (4) indicates that data used at the time tn must have been produced before
time tn, i.e., time does not flow backward. Condition (5) means that no process will
ever stop updating its components. Condition (6) corresponds to the fact that new
data will always be provided to the process. In other words, no process will have a
piece of data that is never updated.

1 In [5] it is indicated that given T̂ is contracting, then T n → 0, where T maps u(n) to u(n+ 1),
but this implication may not always hold. This is why we need to complete the proof in a different
manner. We do so by showing explicitly that (8) holds.
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2 Convergence proof for the asynchronous case

We now present the convergence proof of the asynchronous implementation of Op-
timized Schwarz with transmission conditions composed of local operators (as de-
scribed in section 1.1) when applied to (1). Note that the local problem of AOS is
obtained by replacing, in (2), n+1 by tnew and n by the corresponding update times
of the values of u received from the neighboring subdomains and available at the
begining of the computation of the new update. Let us define a time stamp as the
instant of time at which at least one processor finishes its computation and produces
a new update. Let tm be the m− th time stamp and utm

s be the error of the local prob-
lem s at time t = tm. Note then that the asynchronous method converges if for any
monotonically increasing sequence of time stamps {tm}m∈N we have

lim
m→∞

utm
s = 0 (7)

Thus, in order to prove convergence of the asynchronous iterations, we just need
to prove that (7) holds for any monotonically increasing sequence of time stamps
{tm}m∈N, which is what we prove next.

Theorem 1. Let us define a time stamp tm as the instant of time at which at least
one processor finishes its computation and produces a new update. Let utm

s (x,y)
be the error of the local problem s (of the asynchronous version of (2)), s ∈
{1, ..., p}, and ûtm

s (x,k) be its corresponding Fourier transform in the y direction.
Let S = {ls−1−L : s = 2, ..., p} ∪ {ls +L : s = 1, ..., p−1} (i.e., S is the set of the
x−coordinates of each of the artificial boundaries of each of the local problems.
Then, if û0

s (x,k) is uniformly bounded in k ∈ N and x ∈ S, we have, ∀s ∈ {1, ..., p},
limm→∞ utm

s (x,y) = 0 in Ω (s) for any (monotonically increasing) sequence of time
stamps {tm}m∈N.

Outline of the proof

Note first that all the derivatives of utm
s exist and are continuous. Then, if utm

s
converges to zero uniformly in [l− ε, l + ε]×R as m→ ∞ and the first and deriva-
tives of other orders of utm

s contained in Λ are continuous, it can be shown that
limm→∞

(
∂utm

s
∂x +Λutm

s

)
(x,y) = 0 uniformly in {l}×R.

We want to prove that for any sequence of time stamps {tm}m∈N and for every
s ∈ {1, ..., p} we have limm→∞ |utm

s (x,y)| = 0 in Ω (s). Note that, to prove this state-
ment, by the argument given in the previous paragraph, with Sε = ∪z∈S[z−ε,z+ε],
we just need to prove that for every s ∈ {1, ..., p} it holds limm→∞ |utm

s (x,y)| = 0
uniformly in Sε ∩ [`s−1, `s]×R, since this implies that the values of the boundary
conditions of each local problem will converge to zero, and consequently so will do
the solution of each local problem in its interior domain.

Observe that, if limm→∞ |ûtm
s (x,k)|= 0 and

lim
m→∞

∫
∞

−∞

|ûtm
s (x,k)|dk =

∫
∞

−∞

lim
m→∞
|ûtm

s (x,k)|dk, (8)
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we have

lim
m→∞
|utm

s (x,y)| = lim
m→∞

∣∣∣∣ 1
(2π)2

∫
∞

−∞

ûtm
s (x,k)eiykdk

∣∣∣∣
≤ 1

(2π)2 lim
m→∞

∫
∞

−∞

|ûtm
s (x,k)|dk =

1
(2π)2

∫
∞

−∞

lim
m→∞
|ûtm

s (x,k)|dk = 0.

Thus, in order to prove that limm→∞ |utm
s (x,y)| = 0 in Ω (s), it suffices to prove

that, for every s ∈ {1, ..., p}, the following three statements hold:

1. limm→∞ |Atm
s (k)|= 0 and limm→∞ |Btm

s (k)|= 0.
2. limm→∞ |ûtm

s (x,y)|= 0 for ∀x ∈ Sε ∩ [`s−1, `s] and y ∈ R.
3. For all x ∈ Sε ∩ [`s−1, `s] and y ∈ R, (8) holds.

Item 3. means, in other words, that if |ûtm
s (x, .)| goes to zero as m goes to infinity, so

will do its integral over k ∈R, and, in turn, the inverse Fourier transform of ûtm
s (x, .).

Proof of the Theorem

We first prove that ||c(0)||∞ < ∞. For ease of notation, for each subdomain s,
let the left artificial boundary condition be ps(k) and the right artificial boundary
condition qs(k). Thus, it follows from the expression (3) that, at x = ls−1−L,

û0
s (ls−1−L,k)=A0

s (k)+B0
s (k)e

θ(k)(ls−1−ls−2L) =A0
s (k)+B0

s (k)e
−θ(k)(W+2L) = ps(k)

(9)
and at x = ls +L

û0
s (ls+L,k) = A0

s (k)e
−θ(k)(ls−ls−1+2L)+B0

s (k) = A0
s (k)e

−θ(k)(W+2L)+B0
s (k) = qs(k).

(10)
From (10) we have B0

s (k) = qs(k)−A0
s (k)e

−θ(k)(W+2L). Then, plugging this ex-
pression of B0

s (k) into (9) gives

A0
s (k)+

[
qs(k)−A0

s (k)e
−θ(k)(W+2L)

]
e−θ(k)(W+2L) = ps(k),

A0
s (k)

[
1− e−2θ(k)(W+2L)

]
= ps(k)−qs(k)e−θ(k)(W+2L),

A0
s (k) =

ps(k)−qs(k)e−θ(k)(W+2L)

1− e−2θ(k)(W+2L)
,

|A0
s (k)| =

|ps(k)−qs(k)e−θ(k)(W+2L)|
|1− e−2θ(k)(W+2L)|

≤ |ps(k)|+ |qs(k)|e−θ(k)(W+2L)

1− e−2
√

η(W+2L)
.

By a similar process we obtain

|B0
s (k)| ≤

|qs(k)|+ |ps(k)|e−θ(k)(W+2L)

1− e−2
√

η(W+2L)
.
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Let p∗(k) and q∗(k) be such that

max
s∈{1,...,p}

{
max

{
|ps(k)|+ |qs(k)|e−θ(k)(W+2L)

1− e−2
√

η(W+2L)
,
|qs(k)|+ |ps(k)|e−θ(k)(W+2L)

1− e−2
√

η(W+2L)

}}

=
|p∗(k)|+ |q∗(k)|e−θ(k)(W+2L)

1− e−2
√

η(W+2L)

Then, we have that

||c(0)||∞ ≤
|p∗(k)|+ |q∗(k)|e−θ(k)(W+2L)

1− e−2
√

η(W+2L)
.

By hypothesis, û0
s is uniformly bounded in k ∈ N and x ∈ S. Thus, there exists a

number M > 0 such that û0(x,k) ≤M for any k ∈ R and x ∈ S. Then, we have that
|ps(k)|, |qs(k)| ≤M for any k∈R and s∈{1, ...p}. Then, necessarily,|p∗(k)|, |q∗(k)| ≤
M, and consequently ||c(0)||∞ < ∞.

Let {tm} be a monotonically increasing sequence of time stamps. As mentioned
previously, in [5] it is proven that ||T̂ (k)c(k)||∞ ≤ ρ||c(k)||∞, with ρ < 1. This im-
plies that after one application of a local operator to an arbitrary vector cold(k) we
have

|Anew
s |, |Bnew

s | ≤ ||T̂ s(k)cold(k)||∞ ≤ ρ||cold(k)||∞
and after all processes have updated their values at least once, say at time stamp t∗,
we have at least |At∗

s |, |Bt∗
s | ≤ ρ||c0(k)||∞. This implies, in turn, that given a mono-

tonically increasing sequence {tm}m∈N, at time tm we have

|Atm
s |, |Btm

s | ≤ ρ
φs(m)||c0(k)||∞

where, for each s ∈ {1, ..., p}, φs : N→ N such that φs(m)→ ∞ as m→ ∞. Then,

lim
m→∞
|Atm

s (k)| ≤ lim
m→∞

ρ
φs(m)||c0(k)||∞ = ||c0(k)||∞ lim

m→∞
ρ

φs(m) = ||c0(k)||∞0 = 0.

Similarly, limm→∞ |Btm
s (k)|= 0, and therefore

lim
m→∞
|ûtm

s (x,k)| = lim
m→∞

∣∣∣Atm
s (k)e−θ(k)|x−(ls−1−L)|+Btm

s (k)e−θ(k)|x−(ls+L)|
∣∣∣

≤ lim
m→∞

(∣∣Atm
s (k)

∣∣e−θ(k)|x−(ls−1−L)|+
∣∣Btm

s (k)
∣∣e−θ(k)|x−(ls+L)|

)
=
(

lim
m→∞

∣∣Atm
s (k)

∣∣)e−θ(k)|x−(ls−1−L)|+
(

lim
m→∞

∣∣Btm
s (k)

∣∣)e−θ(k)|x−(ls+L)|

= 0.

To complete the proof, we need to show that (8) holds for x ∈ Sε ∩ [`s−1, `s] and
y ∈R. We show now that, for all m ∈N, |ûtm

s (x, .)| is bounded by an L1(R) function.
To that end, we have that,
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|ûtm
s (x,k)| = |Atm

s (k)e−θ(k)|x−(ls−1−L)|+Btm
s (k)e−θ(k)|x−(ls+L)|| (11)

≤ |Atm
s (k)|e−θ(k)|x−(ls−1−L)|+ |Btm

s (k)|e−θ(k)|x−(ls+L)|

≤ ρ
φs(m)||c(0)||∞(k)

(
e−θ(k)|x−(ls−1−L)|+ e−θ(k)|x−(ls+L)|

)
≤ ρ

φs(m) |p∗(k)|+ |q∗(k)|e−θ(k)(W+2L)

1− e−2
√

η(W+2L)

(
e−θ(k)|x−(ls−1−L)|+ e−θ(k)|x−(ls+L)|

)
.

Let

g(x,k) =
|p∗(k)|+ |q∗(k)|e−θ(k)(W+2L)

1− e−2
√

η(W+2L)

(
e−θ(k)|x−(ls−1−L)|+ e−θ(k)|x−(ls+L)|

)
.

(12)
Thus, we have |ûtm

s (x,k)| ≤ g(x,k) for any m∈N. We show next that g(x, .)∈ L1(R).
Since |p∗(k)|, |q∗(k)| ≤M, we have

g(x,k)≤M
1+ e−θ(k)(W+2L)

1− e−2
√

η(W+2L)

(
e−θ(k)|x−(ls−1−L)|+ e−θ(k)|x−(ls+L)|

)
(13)

Thus,∫
∞

−∞

|g(x,k)|dk ≤
∫

∞

−∞

M
1+ e−θ(k)(W+2L)

1− e−2
√

η(W+2L)

(
e−θ(k)|x−(ls−1−L)|+ e−θ(k)|x−(ls+L)|

)
dk

=
M

1− e−2
√

η(W+2L)

∫
∞

−∞

(
e−θ(k)|x−(ls−1−L)|+ e−θ(k)|x−(ls+L)|

+e−θ(k)[W+2L+|x−(ls−1−L)|]+ e−θ(k)[W+2L+|x−(ls+L)|]
)

dk

≤ M
1− e−2

√
η(W+2L)

(
2

|x− (ls−1−L)|
+

2
|x− (ls +L)|

+
2

W +2L+ |x− (ls−1−L)|
+

2
W +2L+ |x− (ls +L)|

)
. (14)

Note that for x ∈ Sε ∩ [`s−1, `s] we have |x− (ls−1−L)|, |x− (ls−1 +L)| ≥ 2L− ε .
Then, plugging these inequalities in (14), we obtain∫

∞

−∞

|g(x,k)|dk ≤ 4M(W +6L−2ε)

(1− e−2
√

η(W+2L))(2L− ε)(W +4L− ε)
, (15)

i.e., g(x, .) ∈ L1(R). Consequently, for any x ∈ Sε ∩ [`s−1, `s] there exists a g(x, .) ∈
L1(R) such that |ûtm

s (x,k)| ≤ g(x,k) for all m ∈ N, and by the Lebesgue Dominated
Convergence Theorem we have then that (8) holds.

The above argument was for s = 2, ..., p−1. Using the same argument but with
Atm

1 = 0 and −∞ instead of ls−1−L, we can see that (8) holds for s = 1; and, using
the same argument but with Btm

p = 0 and ∞ instead of ls +L, it can be shown that (8)
holds for s = p.

Thus, from (11), (12), (15) we have ∀x ∈ Sε ∩ [`s−1, `s] and y ∈ R that
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|utm
s (x,y)| ≤ 1

(2π)2

∫
∞

−∞

|ûtm
s (x,k)|dk≤ ρφs(m)

π2
M(W +6L−2ε)

(1− e−2
√

η(W+2L))(2L− ε)(W +4L− ε)
.

Consequently, utm
s → 0 uniformly in Sε ∩ [`s−1, `s]×R as m→∞. Then, as explained

in the outline of the proof, the values of the boundary conditions of each local prob-
lem go to zero as m goes to infinity, and therefore ∀s∈ {1, ..., p} we have utm

s → 0 in
Ω (s) as m→ ∞. Given that the sequence of time stamps was arbitrary, the theorem
is proven. ut

Remark 1: Note that the condition that û0
s (x,k) is uniformly bounded in k ∈N and

x ∈ S can be weakened to the condition that p∗ and q∗ be such that g(x, .) ∈ L1(R).
Remark 2: Note that, for synchronous and asynchronous iterations, for a given tm,

the value of φs(tm) is, in general, different for each s, but they have a common lower
bound, i.e., φs(tm)≥ nmin, where nmin = mins∈{1,...,p}{ns} and ns is the local update
number of process s. Also, for any s, the value of φs(tm) can be much larger than
ns. For the synchronous case all the local update numbers are equal to the global
iteration number, therefore, nmin is just the (global) iteration number.

3 Conclusion

In [5], it was shown that the operator T̂ mapping the coefficients of the Fourier
transform of the error at one iteration to those at the next iteration is contracting
in max norm. In this paper, we use this result to complete a proof that, for the
operator ∆ − η , the asynchronous optimized Schwarz method converges for any
initial approximation u0 that gives an initial error with Fourier Transform (along the
y direction) uniformly bounded on each of the artificial interfaces.
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INTERNODES for elliptic problems

Paola Gervasio and Alfio Quarteroni

1 Introduction

The INTERNODES (INTERpolation for NOnconforming DEcompositionS) method
is an interpolation based approach to solve partial differential equations by means
of non-overlapping domain decomposition methods featuring non-conforming dis-
cretizations at the interfaces [2, 4]. The non-conformity at a given interface is in-
duced by independent discretizations (as, e.g., h-fem or hp-fem) on two adjacent
subdomains.

For second order elliptic problems, the well known mortar method uses a single
L2-projection operator per interface to match the non-conforming local solutions.
INTERNODES instead employs two interpolation operators: the first one is used to
enforce the continuity of the traces, the second one to enforce the conservation of
fluxes across the interface.

In this paper we sketch the formulation of INTERNODES when it is applied to
second-order elliptic problems on two-domains decompositions. Then we apply it to
two test problems: the Kellogg’s problem with piece-wise constant diffusion coef-
ficients, and a problem featuring an infinitely differentiable solution. In both cases,
the numerical results show that INTERNODES attains optimal rate of convergence
(i.e., that of the best approximation error in each subdomain), as predicted by the
theoretical estimate proved in [4].

Let Ω ⊂ Rd , with d = 2,3, be an open domain with Lipschitz boundary ∂Ω ,
Ω1 and Ω2 be two non-overlapping subdomains with Lipschitz boundary such that
Ω = Ω1∪Ω2, and Γ = ∂Ω1∩∂Ω2 be their common interface.
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Fig. 1 Γ1 and Γ2 induced by the triangulations T1,h1 and T2,h2

Given α ∈ L∞(Ω), b ∈W 1,∞(Ω), γ ∈ L∞(Ω), and f ∈ H−1(Ω), we look for u1
in Ω1 and u2 in Ω2 such that

−∇ · (αk∇uk)+b ·∇uk + γuk = f in Ωk, k = 1,2
u2 = u1 on Γ

α1
∂u1
∂n1

+α2
∂u2
∂n2

= 0 on Γ

boundary conditions on ∂Ω ,

(1)

where nk is the outward unit normal vector to ∂Ωk and αk = α|Ωk . The transmission
condition (1)2 expresses the continuity of the solution across Γ , while (1)3 enforces
the conservation of normal fluxes across the interface, see [7].

2 Intergrid operators for non-conforming discretization

We consider two a-priori independent families of triangulations: T1,h1 in Ω1 and
T2,h2 in Ω2, respectively. The meshes in Ω1 and in Ω2 can be non-conforming on
Γ and characterized by different mesh-sizes h1 and h2. Moreover, different poly-
nomial degrees p1 and p2 can be used to define the finite element spaces. Inside
each subdomain Ωk we assume that the triangulations Tk,hk are affine, regular and
quasi-uniform ([6, Ch.3]).

For k = 1,2, let Xk,hk = {v ∈C0(Ωk) : v|T ∈ Ppk , ∀T ∈ Tk,hk} be the usual La-
grangian finite element spaces associated with Tk,hh , while Yk,hk = {λ = v|Γ , v ∈
Xk,hk} are the spaces of traces on Γ of functions in Xk,hk , whose dimension is nk.

We denote by Γ1 and Γ2 the internal boundaries of Ω1 and Ω2, respectively,
induced by the triangulations T1,h1 and T2,h2 . If Γ is a straight segment, then
Γ1 = Γ2 = Γ , otherwise Γ1 and Γ2 can be different (see Fig. 1).

For k = 1,2, let {x(Γk)
1 , . . . ,x(Γk)

nk } ∈ Γ k be the nodes induced by the mesh Tk,hk .
We introduce two independent operators that exchange information between the

two independent grids on the interface Γ : Π12 : Y2,h2 →Y1,h1 and Π21 : Y1,h1 →Y2,h2 .
If Γ1 =Γ2, Π12 and Π21 are the classical Lagrange interpolation operators defined

by the relations:
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(Π12µ2,h2)(x
(Γ1)
i ) = µ2,h2(x

(Γ1)
i ), i = 1, . . . ,n1, ∀µ2,h2 ∈ Y2,h2 , (2)

(Π21µ1,h1)(x
(Γ2)
i ) = µ1,h1(x

(Γ2)
i ), i = 1, . . . ,n2, ∀µ1,h1 ∈ Y1,h1 . (3)

If, instead, Γ1 and Γ2 are geometrical non-conforming, we define Π12 and Π21
as the Rescaled Localized Radial Basis Function (RL-RBF) interpolation operators
introduced in formula (3.1) of [3]. More precisely, for i = 1, . . . ,nk let φ̃

(k)
i (x) =

φ(‖x−x(Γk)
i ‖,r) = max{0,(1−‖x−x(Γk)

i ‖/r)4}(1+4‖x−x(Γk)
i ‖/r) be the locally

supported C2 Wendland radial basis function [8] centered at x(Γk)
i with radius r > 0.

For any continuous function f on Ω , for i = 1, . . . ,nk let (γ(k)f )i ∈R be the solutions
of the system

nk

∑
i=1

(γ
(k)
f )iφ̃

(k)
i (x(Γk)

j ) = f (x(Γk)
j ), j = 1, . . . ,nk

and set

(Π
(k)
RBF f )(x) =

nk

∑
i=1

(γ
(k)
f )iφ̃

(k)
i (x).

Then, after setting g(x) ≡ 1, for any µ2,h2 ∈ Y2,h2 and µ1,h1 ∈ Y1,h1 , the RL-RBF
interpolation operators are defined by

(Π12µ2,h2)(x) =
(Π

(2)
RBF µ2,h2)(x)

(Π
(2)
RBF g)(x)

, (Π21µ1,h1)(x) =
(Π

(1)
RBF µ1,h1)(x)

(Π
(1)
RBF g)(x)

.

In both cases, the (rectangular) matrices associated with Π12 and Π21 are, respec-
tively, R12 ∈ Rn1×n2 and R21 ∈ Rn2×n1 and they are defined by

(R12)i j = (Π12µ
(2)
j )(x(Γ1)

i ) i = 1, . . . ,n1, j = 1, . . . ,n2,

(R21)i j = (Π21µ
(1)
j )(x(Γ2)

i ) i = 1, . . . ,n2, j = 1, . . . ,n1,
(4)

where {µ(k)
i } are the Lagrange basis functions of Yk,hk , for k = 1,2 and i = 1, . . . ,nk.

Obviously, in the conforming case for which Γ1 = Γ2, h1 = h2 and p1 = p2, the
interpolation operators Π12 and Π21 are the identity operator and R12 = R21 = I (the
identity matrix of size n1 = n2). Finally, let

(MΓk)i j = (µ
(k)
j ,µ

(k)
i )L2(Γk)

, k = 1,2, (5)

the interface mass matrices. We notice that only information associated with the
interface nodes (more precisely, the nodes coordinates) are needed to assemble both
the interface mass matrices and the interpolation matrices for both the Lagrange and
the RL-RBF interpolation approaches.
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3 Mathematical foundation of INTERNODES for elliptic
problems

Let us consider the transmission problem (1) and, for simplicity, we complete it with
homogeneous Dirichlet boundary conditions on ∂Ω . For k = 1,2 we introduce the
local spaces Vk = {v ∈ H1(Ωk) | v = 0 on ∂Ω ∩∂Ωk}, V 0

k = {v ∈Vk | v = 0 on Γ },
the bilinear forms ak : Vk×Vk→R: ak(u,v) =

∫
Ωk

(αk∇u ·∇v+(b ·∇u)v+γuv)dΩ ,

and the finite dimensional spaces Vk,hk = Xk,hk ∩Vk, V 0
k,hk

= Xk,hk ∩V 0
k , and Λk,hk =

{λ = v|Γ , v ∈Vk,hk}. Let Rk : Λk,hk →Vk,hk , s.t. (Rkηk,hk)|Γ = ηk,hk , ∀ηk,hk ∈Λk,hk
be any linear and continuous discrete lifting from Γk to Ωk (as, e.g., the finite element
interpolant that is zero at all finite element nodes not lying on Γk). Finally, we denote
by Ik the set of indices i ∈ {1, . . . ,nk} of the nodes x(Γk)

i of Γk.
In order to apply the INTERNODES method to problem (1), for any vk,hk ∈Vk,hk

and for k = 1,2 we define the scalar quantities

(r(k)v )i = ak(vk,hk ,Rkµ
(k)
i )− ( f ,Rkµ

(k)
i )L2(Ωk)

, i ∈Ik,

(z(k)v ) j = ∑
i∈Ik

(M−1
Γk

) ji(r
(k)
v )i, j ∈Ik,

(6)

and the functions
(rv)k,hk = ∑

j∈Ik

(z(k)v ) jµ
(k)
j , (7)

belonging to Λk,hk . (The subscript v highlights the dependence of r on v.)

Remark 1. When non-homogeneous Dirichlet boundary conditions are assigned on
∂Ω , we can recover the homogeneous case by a lifting of the Dirichlet data, so that
only the right hand side has to be modified (see, e.g., [6]).

The weak form of INTERNODES applied to (1) reads: find u1,h1 ∈ V1,h1 and
u2,h2 ∈V2,h2 such that

ak(uk,hk ,vk,hk) = ( f ,vk,hk)L2(Ωk)
∀vk,hk ∈V 0

k,hk
, k = 1,2

u2,h2 = Π21u1,h1 on Γ2,

(ru)1,h1 +Π12(ru)2,h2 = 0 on Γ1.

(8)

For k = 1,2, (ru)k,hk ∈ Yk,hk are the so-called residuals at the interface Γk. In fact
they are the discrete fluxes across the interface, i.e., they represent the approxima-
tions of αk∂uk/∂nk on Γk.

Remark 2. The values (r(k)u )i are not the coefficients of (ru)k,hk w.r.t. the Lagrange

basis {µ(k)
i } (on which we can apply the interpolation). Rather, they are the coef-

ficients of (ru)k,hk w.r.t. the dual basis {ψ(k)
i }

nk
i=1 of Y ′k,hk

defined by the relations

(ψ
(k)
i ,µ

(k)
j )L2(Γk)

= δi j, for i, j = 1, . . . ,nk (δi j is the Kronecker delta), precisely,



INTERNODES for elliptic problems 5

(ru)k,hk = ∑
i∈Ik

(ru)
(k)
i ψ

(k)
i .

Yk,hk and Y ′k,hk
are identical linear spaces and it can be proved that ψ

(k)
i = ∑

j∈Ik

(M−1
Γk

) jiµ
(k)
j

for any i ∈Ik, therefore (7) follows. The interface mass matrix MΓk and its inverse
play the role of transfer matrices from the Lagrange basis to the dual one and vicev-
ersa, respectively.

Denoting by zk and rk the arrays whose entries are the values (z(k)u ) j and (r(k)u )i,
respectively, it follows that zk = M−1

Γk
rk.

Then, the algebraic form of the interface condition (8)3 reads

M−1
Γ1

r1 +R12M−1
Γ2

r2 = 0,

or, equivalently, r1 +MΓ1R12M−1
Γ2

r2 = 0.
For k = 1,2 let uk denote the array of the Lagrange coefficients of uk,hk at the

nodes of Tk,hk and λk the array of the Lagrange coefficients of uk,hk at the nodes of
Tk,hk ∩Γk. Denoting by Ak the finite element stiffness matrices associated with the
discretization of (8)1, the algebraic form of (8) reads:

Akuk = fk, k = 1,2,
λ2 = R21λ1,

r1 +MΓ1R12M−1
Γ2

r2 = 0,

(9)

with uk |Γk
= λk.

Under the assumptions that problem (1) is well posed (see, e.g., [6, 4]) the follow-
ing convergence theorem, assessing the optimal error bound for the INTERNODES
method, is proved in [4].

Theorem 1. Assuming that u∈Hs(Ω), with s> 3/2, λ = u|Γ ∈Hσ (Γ ), with σ > 1,
(αk∂u2/∂n2)∈Hν(Γ ), with ν > 0, if pk ≥ 1 is the finite element polynomial degree
in Ωk, k = 1,2, and Lagrange interpolation is used to define Π12 and Π21, there exist
1
2 ≤ q < 1 and 3

2 ≤ z < 2 s.t.

‖u−uh‖∗ . h`1−1
1 ‖u‖Hs(Ω1)+h`2−1

2 ‖u‖Hs(Ω2)

+

(
hρ1−1/2

1 +hρ2−1/2
2 +hρ1−1/2

1

(
h2

h1

)q)
‖λ‖Hσ (Γ )

+

(
hζ1+1/2

1 +hζ2+1/2
2 +hζ1+1/2

1

(
h1

h2

)z)
‖r2‖Hν (Γ ),

with `k =min(s, pk+1), ρk =min(σ , pk+1), ζk =min(ν , pk+1), and being ‖v‖∗=
{‖v‖2

H1(Ω1)
+‖v‖2

H1(Ω2)
}1/2 the broken norm on Ω .

Remark 3. Π21 is used to match the traces, while Π12 is used to match the residuals,
i.e. the fluxes.
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Using instead only one intergrid interpolation operator would not guarantee an
accurate non-conforming method; for example using only Π21 yields to the so-called
point wise matching discussed, e.g., in [1]. At the algebraic level the latter approach
uses only the matrix R21 and its transpose RT

21, whereas INTERNODES uses both
R21 and R12.

Remark 4 (On the conservation of fluxes). The conservation of fluxes across the
interface at the discrete level is enforced by the interface condition (8)3. As this
property depends on the interpolation operator Π12, that in turns depends on the
choice of the local subspaces, the flux jump vanishes, as h1 and h2 go to zero, with
the same order of the broken norm of the error.

Remark 5. The INTERNODES method can be generalized to decompositions with
more than two subdomains, possibly featuring internal cross-points (i.e., points
shared almost among three subdomains). We refer to [4, Sect. 6] for a detailed
description of the algorithm. What follows is a sketch of the generalization of IN-
TERNODES when Ω ⊂ R2. Let Ωk and Ω` be two generic subdomains such that
Γk` = ∂Ωk∩∂Ω` is neither empty nor reduced to a vertex, while γ

(i)
k and γ

( j)
` denote

the edges of ∂Ωk and ∂Ω`, respectively, such that Γk` = γ
(i)
k ∩ γ

( j)
` .

Two typical situations can occur: the end-points of γ
(i)
k coincide with those of γ

( j)
`

(as in Fig. 2), or not (as in Fig. 3). In the first case, each interface Γk` is handled as
in the case of only two subdomains and we build couples of intergrid matrices R`k

and Rk` from γ
(i)
k to γ

( j)
` and viceversa, as done in Sect. 2. In the second case, let us

suppose that the measure of γ
(i)
k is larger than that of γ

( j)
` . Here all the basis functions

living on γ
(i)
k whose support has non-empty intersection with γ

( j)
` must be taken

into account when building the interpolation matrices R`k and Rk` and the interface
mass matrices M`k and Mk`. Alternatively, one can build both the interface mass
matrices and the interpolation matrices on the larger interface γ

(i)
k by assembling the

contributions arising from all the shorter edges of the subdomains adjacent to Ωk on
the other side of γ

(i)
k .

Remark 6. Robin conditions could be used instead of Neumann ones. The formu-
lation of INTERNODES would not change, provided the interface conditions are
imposed weakly (as natural conditions). As a matter of fact, natural interface con-
ditions are automatically accounted for when evaluating the discrete residuals of the
differential problem as done in (6).

4 Numerical results: the Kellogg’s test case

We test INTERNODES on a very challenging problem whose solution features low
regularity. The so-called Kellogg’s function (see, e.g., [5]) is an exact weak solution
of the elliptic problem
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Fig. 2 At left, the decomposition of Ω into four subdomains. In the middle, the nonconforming
P1 meshes for k = 10. At right, the Kellogg’s solution with γ = 0.4 and α1 = 9.472135954999585
computed by INTERNODES and P1

{
−∇ · (α∇u) = 0 in Ω = (−1,1)2

Dirichlet boundary conditions on ∂Ω ,
(10)

with piece-wise constant coefficient α: α = α1 > 0 in the first and the third quad-
rants, and α = 1 in the second and in the fourth ones. It can be written in terms of the
polar coordinates r and θ as u(r,θ) = rγ µ(θ), where γ ∈ (0,2) is a given parameter,
while µ(θ) is a 2π−periodic continuous function (more regular only when γ = 1).
The case γ = 1 is trivial since the solution is a plane. The positive value α1 depends
on γ and on two other real parameters σ and ρ . The set {α1,γ,σ ,ρ} must satisfy a
nonlinear system (see formula (5.1) of [5]). In particular we fixed ρ = π/4.

When γ 6= 1, u ∈ H1+γ−ε(Ω), for any ε > 0; the solution features low regularity
at the origin and its normal derivatives to the axis are discontinuous.

We solve problem (10) by applying INTERNODES to the 4-subdomains decom-
position induced by the discontinuity of α and by using either P1 or Q2 finite ele-
ments in each subdomain (see the P1 mesh in Fig. 2). The meshes at the interfaces
are non-conforming as shown in Figure 2, more precisely given k ∈ N, the subdo-
mains mesh-sizes are: h1 = 1/(k−1), h2 = 1/(k−2), h3 = 1/(k+5) and h4 = 1/k.

By refining the meshes (we cycle on k = 20, 40, 80, 160), we measure the con-
vergence order of INTERNODES on the Kellogg’s solution for different values of
the parameter γ . The results are shown in Table 1 and the convergence estimate pro-
vided by Theorem 1 for two subdomains is here confirmed, although this test case
involves four subdomains instead of two.

We highlight that, although INTERNODES is based on interpolation operators
rather than projections (as in the mortar methods), the best approximation error of
the finite element discretization is preserved and not downgraded.
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Table 1 Convergence orders of INTERNODES for the Kellogg’s test solution. The case γ = 0.4 is
not covered by the convergence Theorem 1 since s < 3/2 and σ < 1. min{`−1,ρ−1/2,ζ +1/2}
is the expected convergence order provided by Theorem 1, the measured convergence orders are
shown in the last two columns

γ s σ ν min{`−1,ρ−1/2,ζ +1/2} P1 order Q2 order
0.4 1.4− ε 0.9− ε 0.4− ε 0.4− ε 0.363 0.429
0.6 1.6− ε 1.1− ε 0.6− ε 0.6− ε 0.574 0.651
1.4 2.4− ε 1.9− ε 1.4− ε 1 for P1, 1.4− ε for Q2 0.955 1.394
1.8 2.8− ε 2.3− ε 1.8− ε 1 for P1, 1.8− ε for Q2 0.949 1.615

0 0.5 1 1.5 2

0

0.5

1

1.5

2

Fig. 3 At left, a partition of the computational domain into 10 subdomains; in each subdomain
the quad hp-fem mesh is plotted, different colours refer to different subdomains. At right, the
corresponding INTERNODES solution

5 Numerical results: infinite differentiable solution

Let us consider the problem (1) with α = 1, b = [1,1], γ = 1 on Ω = (0,2)2.
The boundary data and the function f are such that the exact solution is u(x,y) =
sin(3π exp(3(x−2)/2))cos(3π exp(3(y−2)/2)).

A decomposition of Ω = (0,2)2 in 10 subdomains as in Fig. 3 is considered,
and independent triangulations in each Ωk are designed so that on each interface
both polynomial non-conformity and geometric non-conformity may occur. Either
P1 and quadrilateral hp-fem (Qp) are used to approximate the numerical solution. A
non-conforming grid, obtained with Qp discretizations in each subdomain, is shown
in Fig. 3, left. In order to guarantee full non-conformity on each interface, we have
set on two adjacent domains the polynomial degree equal to either p = 3 or p = 4
and the local mesh size equal to either h = 1/4 or h = 1/3. In Fig. 3, right, the
corresponding numerical solution computed by INTERNODES is shown.

In order to measure the errors in broken norm, we take the same polynomial
degree p in each subdomain and we consider only geometric non-conformity as in
Fig. 3, left, but with a variable number k (or k−1) of elements (more precisely, k = 4
in Fig. 3, left). The reference parameter is the mesh size h = 1/k of the left-bottom
subdomain. In Fig. 4, the errors in broken norm are reported, w.r.t. to both h and p.
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Fig. 4 At left, the broken norm error w.r.t. the mesh-size h of the bottom-left subdomain, p is
fixed. At right, the broken norm error w.r.t. p, here the meshes sizes are fixed: that of the left-
bottom subdomain is h = 1/4

The error behaviour versus h (see Fig. 4 left) agrees with the theoretical estimate
of Theorem 1, for which we expect ‖u−uh‖∗ ≤ c(u)hp (in this case p = 1,2,4), as
u is infinitely differentiable.

The convergence rate vs p shown in Fig. 4, right, is more than algebraic, as
typical in hp-fem.
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A Nonlinear Elimination Preconditioned Newton
Method with Applications in Arterial Wall
Simulation

Shihua Gong and Xiao-Chuan Cai

Abstract Arterial wall can be modeled by a quasi-incompressible, anisotropic and
hyperelastic equation that allows large deformation. Most existing nonlinear solvers
for the steady hyperelastic problem are based on pseudo time stepping, which often
requires a large number of time steps especially for the case of large deformation.
It is also reported that the quasi-incompressibility and high anisotropy have nega-
tive effects on the convergence of both Newton’s iteration and the linear Jacobian
solver. In this paper, we propose and study a nonlinearly preconditioned Newton
method based on nonlinear elimination to calculate the steady solution directly with-
out pseudo time integration. We show numerically that the nonlinear elimination
preconditioner accelerates Newton’s convergence in cases with large deformation,
quasi-incompressibility and high anisotropy.

1 Introduction

Some biological soft tissues, such as the arterial wall, are quasi-incompressible and
are reinforced by collagen fibers, which induce the anisotropy in the mechanical
response. Polyconvex hyperelastic models [2, 4], which are based on polycon-
vex energy-stored functions, provide a unified framework to describe the quasi-
incompressibility, the anisotropy and the nonlinearly elastic behavior of arterial
walls in the regime allowing large deformations. By using finite element discretiza-
tions [3] for these models and Newton-type nonlinear solvers, numerical simulation
of arterial walls becomes a promising approach in clinical diagnosis and treatment
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assistance. However, the design of robust nonlinear and linear solvers is a challeng-
ing problem due to the sophisticated mechanical properties of arterial walls.

In [5], the authors consider several material models for arterial walls in order to
study the mechanical response and the influence on the nonlinear iteration as well
as on the finite element tearing and interconnecting-dual primal (FETI-DP) iterative
linear solver. The stagnation of Newton’s method is observed for some parameter
sets. In order to cope with the quasi-incompressible condition, an augmented La-
grange approach is proposed in [6]. The penalty parameter for the incompressibility
can be chosen much smaller and therefore the resulting linear systems have better
properties. Both nonlinear solvers mentioned above are based on pseudo time step-
ping, which often requires a large number of global nonlinear iterations especially
for the case of large deformation.

To accelerate the convergence of the nonlinear iteration, we consider a nonlin-
early preconditioned Newton method based on nonlinear elimination to calculate the
solution directly without pseudo time integration. The nonlinear elimination method
is first proposed and analyzed in [12] and then developed in [7, 11] for the problems
with high local nonlinearity. For our cases of hyperelasticity, we numerically ob-
serve that the variables with stronger nonlinearity are not fixed, but change as the
propagation of the elastic wave. Thus, we adaptively detect the variables and equa-
tions with stronger nonlinearity by the residuals. After eliminating these equations,
the approximate solution is more accurate in some key locations of the elastic wave
and therefore the global Newton’s method converges better.

2 Modeling and Discretization

In this section, we discuss a hyperelastic model for arterial walls and its finite el-
ement discretization. First, we introduce some basic notations in continuum me-
chanics. The body of interest in the reference configuration is denoted by Ω̂ ∈ R3,
parameterized in x̂, and the current configuration by Ω ∈R3, parametrized by x. The
deformation map ϕ : Ω̂ 7→ Ω is a differential isomorphism between the reference
and current configuration. The deformation gradient F is defined by F(x̂) = ∇ϕ(x̂)
with the Jacobian J(x̂) = detF(x̂)> 0. The right Cauchy-Green tensor is defined as
C = FT F.

The hyperelastic materials postulate the existence of a so-called store-energy
function ψ , defined per unit reference volume. According to the axiom of material
frame-indifference [8], the energy functional depends on the Cauchy-Green tensor,
i.e., ψ = ψ(C). The first and second Piola-Kirchhoff stress tensor can be derived as
P=FS, S= 2∂Cψ(C).And then the Cauchy stress is given by σ = J−1FSFT . The
balance of the momentum is governed by the following partial differential equation

divP =− f ,

plus appropriate boundary condition. Here f is the body force vector.
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We focus on the polyconvex energy functional proposed in [4],

ψA = ψ isochoric + ψvolumetric + ψ ti

:= c1

(
I1

I1/3
3

−3

)
+ ε1

(
Iε2
3 +

1
Iε2
3
−2
)

+
2

∑
i=1

α1

⟨
I1J(i)4 − J(i)5 −2

⟩α2
,

(1)

which models the quasi-incompressible and fibre-enforcing arterial wall. Here, ⟨b⟩
denotes the Macaulay brackets defined by ⟨b⟩ = (|b|+ b)/2, with b ∈ R. And
I1, I2, I3 are the principal invariants of C; i.e. I1 := trC, I2 := tr[cof C], I3 := detC,
where cof C = (detC)C−T . The additional mixed invariants J(i)4 ,J(i)5 characterize the

anisotropic behavior of arterial wall and are defined as J(i)4 := tr[CM(i)], J(i)5 :=
tr[C2M(i)], for i = 1 : 2, where M(i) := a(i)⊗a(i), i = 1,2 are the structural tensors
with a(i), i = 1,2 denoting the direction fields of the embedded collagen fibers.

The polyconvexity condition in the sense of [2] is the essential condition to en-
sure the existence of energy minimizers. There are three parts in ψA:

• ψ isochoric is the isochoric part of the isotropic energy. Similar to the Neo-Hookean
material, c1 is stress-type coefficient with upper and lower bounds.

• ψvolumetric is the penalty function to account for the quasi-incompressibility. The
coefficients ε1,ε2 would be very large for the incompressible material.

• ψ ti is the transversely isotropic part. The anisotropy comes from the exponential
stiffening of the fibers when increasing loads are applied. Relative large coeffi-
cients α1,α2 indicate large anisotropy.

According to [3], the lowest-order Lagrange finite element with linear shape
functions is not sufficient to provide a good approximation for the arterial wall
stresses, whereas for the Lagrange finite elements or F-bar formulations with
quadratic shape functions, suitable results are obtained. Instead of concerning about
the stress, we focus on the nonlinear solvers for the resulting system. Thus, for sim-
plicity, we use the P1 Lagrange finite element to approximate the displacement.

3 Inexact Newton Method with Nonlinear Preconditioning

With a slight abuse of notation, we denote the nonlinear system after the discretiza-
tion as described above

F(u∗) = 0

where F : Rn 7→ Rn. Inexact Newton (IN) algorithms [9, 10] are commonly used for
solving such system and can briefly be described here. Suppose u(k) is the current
approximate solution, a new approximate solution u(k+1) can be computed through

u(k+1) = u(k)+λ (k)p(k),

where the inexact Newton direction p(k) satisfies
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∥F(u(k))+F ′(u(k))p(k)∥ ≤ ηk∥F(u(k))∥.

Here ηk ∈ [0,1) is a scalar that determines how accurately the Jacobian system needs
to be solved, and λ (k) is another scalar that determines how far one should go in the
selected direction.

3.1 Nonlinear Elimination

It is reported in [5, 6], the incompressibility and large anisotropy have a negative
effect on the convergence of both Newton’s iteration and the Jacobian solver. To
accelerate Newton’s convergence, we introduce a nonlinear elimination precondi-
tioner [7, 11, 12], which balances the nonlinearity of the global problem by solving
the subproblems defined in the subdomains or subspaces. Let S = {1, · · · ,n} be an
index set; i.e., one integer for each unknown ui and residual Fi. We choose a sub-
set Sb ⊂ S of the indices corresponding to the “bad” degrees of freedom (d.o.f.), of
which the nonlinearity is dominant. The corresponding subspace is denoted by

Vb = {v | v = (v1, · · · ,vn)
T ∈ Rn,vk = 0, if k ̸∈ Sb}.

The corresponding restriction operator is denoted by Rb ∈ Rn×n, whose kth column
is either zero if k ̸∈ Sb or the kth column of the indentity matrix In×n. Thus the
subspace and the corresponding restriction for the “good” d.o.f. are denoted by Vg
and Rg = In×n−Rb.

Given an approximate solution u and a sub index set Sb, the nonlinear elimination
algorithm finds the correction by approximately solving ub ∈Vb,

Fb(ub) := RbF(ub +u) = 0. (2)

The new approximate solution is then updated as w = ub + u. It is easy to see that
the Jacobian of the sub nonlinear problem (2) is Jb(ub) = RbJ(ub + u)RT

b . Here

J = F ′ =
(

∂Fi
∂u j

)
n×n

is the Jacobian of F .

Suppose we are at the iteration k and u(k) is the current approximation, the inexact
Newton algorithm with nonlinear elimination is described as below

Algorithm 1. (IN-NE)

Step 1. Compute the next approximate solution u(k+1) by solving the following
nonlinear system

F(u) = 0

with one step of IN iteration using u(k) as the initial guess. If the global conver-
gent condition is satisfied, stop. Otherwise, go to Step 2.

Step 2. (Nonlinearity checking)
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2.1 If ∥F(u(k+1))∥< ρ1∥F(u(k))∥, go to Step 1.
2.2 Finding “bad” d.o.f. by

Sb := { j ∈ S
∣∣ |Fj(u(k+1))|> ρ2∥F(u(k+1))∥∞}.

And extend Sb to Sδ
b by adding the neighbor d.o.f..

2.3 If #(Sδ
b )< ρ3n, go to Step 3. Otherwise, go to Step 1.

Here ρ1,ρ2,ρ3 ∈ (0,1) and δ ∈ Z+ are pre-chosen constants.
Step 3. Compute the correction uδ

b ∈ Vb by solving the sub nonlinear system ap-
proximately

Fδ
b (uδ

b ) := Rδ
b F(uδ

b +u(k+1)) = 0,

with an initial guess uδ
b = 0 and a relative tolerance tol=max(γa,γr∥Rδ

b F(u(k+1))∥).
If ∥F(uδ

b + u(k+1))∥ < ∥F(u(k+1))∥, accept the correction and update u(k+1) ←
uδ

b +u(k+1). Go to Step 1.

There are three tolerance parameters in the nonlinear checking step: ρ1 is the
tolerance for the reduction of the residual norm, ρ2 is the tolerance to pick up the bad
d.o.f. and ρ3 is the tolerance to limit the size of the subproblem. In Step 3, we only
accept the correction by nonlinear elimination if the residual norm decreases. But
in practice, if the norm of the corrected residual does not decrease for 3 successive
steps, we choose to accept the correction without checking the residual.

Different to the nonlinear elimination method proposed in [12], where the au-
thors fix for all steps the set of equations to eliminate, we construct adaptively the
index set Sb by the residual F(u(k+1)). Actually, the residual can be viewed as a
measurement of the Hessian of F by the Taylor expansion,

F(u(k+1)) = F(u(k))+F ′(u(k))p(k)+ ⟨F ′′(u(k)+θ p(k))p(k), p(k)⟩

≈ ⟨F ′′(u(k)+θ p(k))p(k), p(k)⟩,

since the Jacobian system is solved approximately. From this perspective, eliminat-
ing the equations with large residual is a way to control the higher order terms of
F such that it can be linearly approximated much better during the global Newton
iteration. However, the nonlinear elimination just on the equations with indices in
Sb could lead to thrashing (i.e., the norm of the residual ∥F∥ could become larger
due to the boundary effect). To ease this phenomenon, we extend the index set Sb to
Sδ

b by adding the neighbor d.o.f, of which the distances to Sb are smaller than δ .

4 Numerical Results

We implement the discretization for hyperelasticity and the nonlinear solvers de-
scribed in the previous sections by using FEniCS [13] and PETSc [1], respectively.
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Based on the parameter sets of the model ψA in Table. 1, we propose three test exam-
ples to investigate the performance of nonlinear elimination for the materials with
large deformation, quasi-incompressibility and high anisotropy. In all of the tests,
the backtracking line search strategy is used to determine the maximum amount to
move along the search direction computed by a direct solver.

Set Layer c1 ε1 ε2(-) α1 α2 Purpose
L – 1.e3 1.e3 1.0 0.0 0.0 Deformations by different pulls

C1 – 1.e3 1.e3 1.0 0.0 0.0
Different penalties for compressiblityC2 – 1.e3 1.e4 1.0 0.0 0.0

C3 – 1.e3 1.e5 1.0 0.0 0.0

A1 Adv. 7.5 100.0 20.0 1.5e10 20.0

Anisotropic arterial walls

Med. 17.5 100.0 50.0 5.0e5 7.0

A2 Adv. 6.6 23.9 10 1503.0 6.3
Med. 17.5 499.8 2.4 30001.9 5.1

A3 Adv. 7.8 70.0 8.5 1503.0 6.3
Med. 9.2 360.0 9.0 30001.9 5.1

Table 1: Model parameter sets [5, 6] of ψA

Example 1. This example simulates the deformations of a cylindrical rod by differ-
ent pulls. We fix one end of the rod and then pull it down from the other end. The
material parameters are given in Set L of Table 1. It is an isotropic model since
α1 = 0.0. The deformations by three different pulls L1 = 1.e1 Pa,L2 = 1.e2 Pa and
L3 = 1.e3 Pa are plotted in Fig. 1b. The convergence history of the Newton iteration
with nonlinear elimination (IN-NE) is shown in Fig. 1a. We compare the results with
those obtained by using a standard inexact Newton (IN) method. The blue lines are
for the IN-NE algorithm while the red lines for the IN method. As indicated by Fig.
1a, the nonlinear elimination method accelerates the convergence of the Newton
iteration even for the case of large deformation.

Newton Iterations
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(a) Convergence history of IN and IN-NE (b) Deformations by different pulls

Fig. 1: Numerical results of Example 1.
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Example 2. This example studies the performance of nonlinear elimination for the
cases of different compressibility. The parameters are given in the sets C1,C2 and
C3 of Table 1. For consistency with linear elasticity, C1 =

µ
2 ,ε1 =

κ
2 , where µ,κ are

the shear and bulk modulus. The Poisson ratio can be computed by ν = 3κ−2µ
2(3κ+µ) ;

see Table 2. We use the same setting of the geometry and the boundary conditions
with that of the previous example. Fig. 2 shows the superiority of the nonlinear
elimination in the quasi-incompressible case.

Newton Iterations
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Fig. 2: Convergence histories for Example 2.

Set Poisson’s Ratio
C1 0.125
C2 0.452
C3 0.495

Table 2: Poisson’s ratio
of materials C1, C2 and
C3.

Example 3. We consider an artificial arterial segment with a plaque and fibre-
enforcing layers. The problem setting, including the geometry and boundary condi-
tions, originates from [5]. More precisely, a pressure of up to 24 kPa (< 180 mmHg)
is applied to the interior of the arterial segment, of which the von Mises stress is
shown in Fig. 3b. The parameter sets A1 and A2 of Table 1 are adjusted in [5] to
fit the experiment data, and A3 in [6] with slight modification. The convergence
histories of IN and IN-NE are shown in Fig. 3b. Similar to the previous examples,
the nonlinear elimination increases the residual at the first few steps of Newton’s
iteration, but then the iteration converges faster.
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(a) Convergence histories of IN and IN-NE (b) von Mises stress

Fig. 3: Numerical result of Example 3.
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5 Conclusions

The main contribution of this paper was to investigate the performance of a nonlin-
ear elimination preconditioner with applications in computational hyperelasticity.
A robust strategy of nonlinearity checking was adapted to capture the subregions
with stronger nonlinearity, which coincide with the propagation of the elastic wave.
Moreover, we found that the extension for the eliminating index set by adding the
neighbor d.o.f. is an effective trick to ease the thrashing phenomenon of nonlinear
elimination. As future work, we will use more feasible linear solvers for the Jacobian
system and consider other arterial wall problems with patient-specific geometry.
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Parallel-in-Time for Parabolic Optimal Control
Problems Using PFASST

Sebastian Götschel and Michael L. Minion

Abstract In gradient-based methods for parabolic optimal control problems, it is
necessary to solve both the state equation and a backward-in-time adjoint equa-
tion in each iteration of the optimization method. In order to facilitate fully parallel
gradient-type and nonlinear conjugate gradient methods for the solution of such op-
timal control problems, we discuss the application of the parallel-in-time method
PFASST to adjoint gradient computation. In addition to enabling time parallelism,
PFASST provides high flexibility for handling nonlinear equations, as well as poten-
tial extra computational savings from reusing previous solutions in the optimization
loop. The approach is demonstrated here for a model reaction-diffusion optimal
control problem.

1 Introduction

Gradient-based methods for parabolic optimal control problems are computationally
expensive due to the need to solve both a forward state equation and a backward-
in-time adjoint equation to compute gradient information in each iteration of the
optimization procedure. One potential way to reduce the overall computational time
is to employ parallel-in-time (PinT) methods for solving state and adjoint equations.
Attempts to construct PinT methods for the solution of differential equations date
back more than 50 years and have gained increasing interest in the last 15 years [8].
More recently, the application of space-time parallel methods to the solution of opti-
mization problems governed by PDEs has become an active research area, with ap-
proaches including multiple shooting (e.g. [11] and the references therein), Schwarz
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methods [1, 9], the application of parareal preconditioners [14, 18], and space-time
parallel multigrid methods [10].

Here we apply the PFASST method [7] (“Parallel Full Approximation Scheme
in Space and Time”) to both the state and adjoint equation to provide a fully time-
parallel gradient- or nonlinear conjugate gradient method. This approach is some-
what related to the time-parallel gradient type method presented in [5]. There the
time interval of interest is subdivided into time steps, which are solved in paral-
lel using quantities from the previous optimization iteration as input. This leads
to jumps in the solutions of state and adjoint equation such that these equations
are not satisfied during optimization. While convergence is demonstrated in [5] if
sufficiently small step sizes for updating the control are used, it is unclear how to
automatically select such a step size. In our approach, the usual line search criteria,
e.g. the (strong) Wolfe conditions, can be used to guarantee convergence.

2 Background

2.1 SDC, MLSDC, and PFASST

A distinguishing factor of the PFASST algorithm compared to other PinT methods is
that, in each iteration, the solution on a given time step is improved using a deferred
correction approach rather than being computed in full using a given ODE method.
The correction sweeps are based on spectral deferred corrections (SDC) [6] and are
applied on a hierarchy of space-time representations of the problem as in multi-level
SDC (MLSDC) methods [17]. PFASST exposes parallelism in the time direction
because MLSDC iterations are pipelined so that SDC sweeps are done concurrently
on all but the coarsest level.

One advantage of SDC methods is the flexibility in choosing the type of sub-
stepping for the correction sweep. In the numerical example, we will use both a
semi-implicit or IMEX approach [15] (wherein one component of the solution is
treated explicitly and one implicitly) and a multi-implicit (MISDC) approach [2]
(wherein one component of the solution is treated explicitly and two components
implicitly but uncoupled). The motivation for using IMEX and MISDC variants are
to replace the solution of coupled nonlinear systems in the time stepping by simpler
linear equations (see Sect. 4.1 for further discussion).

Finally, PFASST is an iterative method, and the typical way in which the solu-
tion is initialized on each parallel time slice is by serial time stepping on the coarsest
level. In optimal control problems, an alternative is to use the solution from the pre-
vious optimization iteration as the initial guess for the next state and adjoint equa-
tion solve. As the optimization procedure converges, the initial solutions improve in
quality, and hence the number of PFASST iterations needed for convergence should
decrease. We demonstrate this savings in Sect. 4.
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2.2 Optimal Control of Parabolic PDEs

We consider optimal controls problems

min
y∈Y,u∈U

J(y,u) subject to c(y,u) = 0, (1)

with c : Y ×U→ Z? a semi-linear parabolic PDE on Banach spaces Y,Z and Hilbert
space U over a spatial domain Ω ⊂Rd . We assume that there exists a unique solution
y = y(u) ∈ Y of the state equation c(y,u) = 0 for each control u ∈ U . To avoid a
full, typically 4D, discretization of this problem, methods working on the reduced
functional

min
u∈U

j(u) := J(y(u),u) (2)

are often employed. Under standard assumptions, the reduced gradient is given by

j′(u) = Ju(y(u),u)+ cu(y(u),u)?p(u),

where p solves the adjoint equation

Jy(y(u),u)+ cy(y(u),u)?p(u) = 0, (3)

which is backward in time, see, e.g., [13] for details. Due to the occurrence of
−Jy(y(u),u) as a source term, and—in the nonlinear case—the dependence of
cy(y(u),u) on the state solution y(u), the adjoint gradient computation consists of
three steps:

1. solve c(y,u) = 0 for y ∈ Y and store the solution trajectory,
2. solve cy(y,u)?p =−Jy(y,u) for p ∈ Z,
3. set j′(u) = Ju(y,u)+ cu(y,u)?p.

In order to facilitate fully parallel algorithms to solve the optimal control prob-
lem (1), state and adjoint equations need to be solved using PinT methods.

3 PFASST for Optimal Control

Minimizing the objective function (2) is done via gradient- or nonlinear conjugate
gradient (ncg) methods

uk+1 = uk +αkdk

dk+1 =− j′(uk+1)+βkdk,

where d0 =− j′(u0), αk denotes the step size, required to satisfy the (strong) Wolfe
conditions [16], and the choice of βk defines the type of method (βk = 0 for the gra-
dient method; various possibilities for βk leading to different ncg methods, see [4]
for a brief overview and the method used in the experiments). For the numerical
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solution we apply a method of lines approach, discretizing first in space, then in
time.

Parallelization in time for these methods requires three ingredients: time-parallel
computation of inner products, step size selection, and the solution of state and ad-
joint equations. The first two ingredients are straightforward: on each time interval,
local scalar products are computed, and then communicated to all other processors,
summing them up. These scalar products are used to compute βk, as well as to
check sufficient decrease and curvature conditions during step size selection. For
the time-parallel solution of state and adjoint equations we propose two different
strategies using PFASST. In the first approach, the state and adjoint problems are
solved separately using PFASST for both. The state solution at each time step and
quadrature node is stored for subsequent use in the solution of the adjoint equation.
Alternatively, PFASST could be used to solve the state and adjoint equation at the
same time. Each SDC sweep of the state equation would be followed by a back-
ward sweep of the adjoint equation on the same nodes, leading to more complicated
communication patterns. In the numerical example, we focus on the first approach.
Details and results for the second approach will be reported elsewhere.

4 Numerical Example

Here we consider the following optimal control problem ([3, 12]) governed by a
semi-linear reaction-diffusion equation on Ω = (0,20):

min
y,u

1
2

∫ T

0

∫
Ω

(y− yd)
2 dx dt +

λ

2

∫ T

0

∫
Ω

u2 dx dt,

where T = 5, and y(x, t) is subject to

yt − yxx + y(
1
3

y2−1) = u(x, t) in Ω × (0,T )

y(x,0) = y0(x) in Ω ,
(4)

with homogeneous Neumann boundary conditions. The initial condition and desired
state are

y0(x) =

{
1.2
√

3, x ∈ [9,11]
0, elsewhere

and yd(x, t) =

{
ynat(x, t), t ∈ [0,2.5]
ynat(x,2.5), t ∈ (2.5,T ],

where ynat denotes the solution to the PDE (4) for u≡ 0. For λ = 0, an exact optimal
control is known:

uexact =

{
0, t ≤ 2.5
1
3 y3

nat(x,2.5)− ynat(x,2.5)− ∂ 2

∂x2 ynat(x,2.5), t > 2.5.
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4.1 IMEX and MISDC Formulations

As mentioned in Sect. 2.1, there is great flexibility in how the substepping proce-
dure in SDC is constructed since it need only be a first-order approximation. For our
numerical example, two strategies are investigated, IMEX SDC and multi-implicit
SDC. In both cases, the diffusion term in (4) is treated implicitly to avoid the se-
vere time-step restriction inherent in explicit temporal methods. In the IMEX strat-
egy, only the diffusion term is treated implicitly, while in the MISDC method, both
diffusion and reaction are treated implicitly, but the implicit solutions are done in-
dependently as in operator splitting methods. In addition, we employ a lagging of
nonlinear terms in MISDC iteration to turn the nonlinear solve into a linear problem.

Methods that employ operator splitting are desirable when the reduced cost of
split implicit solvers compared to coupled solvers is significant. The overall accu-
racy of PFASST (assuming convergence of SDC iterations) does not depend on the
form of the substepping, rather on the choice of number and type of integration
nodes. Hence, the main concern in terms of efficiency is the computational cost of
each SDC iteration and the number of iterations required for convergence.

The IMEX and MISDC approach are explained by examining a single substep of
an SDC sweep. Letting k denote the SDC iteration, m the substep index, and D2 the
discretization of the second derivative term, then the correction equation for a single
fully implicit, backward-Euler type discretization of the substep for (4) will take the
form

y[k+1]
m+1 = y[k+1]

m +∆ tm(D2y[k+1]
m+1 − y[k+1]

m+1 (
1
3
(y[k+1]

m+1 )
2−1))+S[k]j , (5)

where the term S[k]j contains terms that either depend on the previous iteration [k] or
values at iteration [k+1] already computed at substep j < m+1, including the con-
trol terms arising from the discretization of u(x, t). Note that the implicit equation
couples nonlinear reaction and diffusion terms and hence would require a global
nonlinear solver in each substep. For problems in which the reaction terms are non-
stiff and can be treated explicitly, the reaction terms at node m+1 do not appear in
the implicit equation, giving the form

y[k+1]
m+1 = y[k+1]

m +∆ tm(D2y[k+1]
m+1 − y[k+1]

m (
1
3
(y[k+1]

m )2−1))+S[k]j . (6)

Each substep now requires only the solution of a linear implicit equation, and hence
is computationally cheaper than a fully implicit approach, assuming that the explicit
treatment of the reaction term does not impose an additional time step restriction.

When the reaction term is stiff, and hence it is advantageous to treat it implicitly,
a standard MISDC approach applies an operator splitting between diffusion and
reaction in the correction equation. For example,

y∗ = y[k+1]
m +∆ tmD2y∗+S∗,[k]j , (7)

y[k+1]
m+1 = y[k+1]

m +∆ tm(D2y∗− y[k+1]
m+1 (

1
3
(y[k+1]

m+1 )
2−1))+S[k]j . (8)
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For the numerical methods here, the MISDC approach is further modified, so that
the nonlinear solve for reaction in (8) is made linear by lagging terms in [k]:

y[k+1]
m+1 = y[k+1]

m +∆ tm(D2y∗− y[k+1]
m+1 (

1
3
(y∗)2−1))+S[k]j . (9)

This form creates an implicit solve with roughly the same cost as treating reaction
explicitly but is more stable. In all the numerical examples presented here, a DIRK
type approach [19] is used so that the generic form of S[k]j contains both the usual
SDC terms from iteration [k] and a linear combination of previously computed right-
hand-side terms from SDC iteration [k+1].

4.2 Results

In this section we show the results using IMEX and MISDC approaches to solve the
state and adjoint equation. In both cases, a method of lines is employed by using
a spectral discretization in space with spatial derivatives computed with the fast
Fourier transform. The PFASST iterations are stopped when the relative or absolute
residual falls below 10−11. For solving the optimization problem we set λ = 10−6

and use the ncg method from [4], with initial control u0 = 0.5uexact. As described
in [3], the ncg method converges quite slowly for this particular problem; it was
stopped after at most 200 iterations.

IMEX. Since the reaction terms in our example are not highly stiff, an IMEX ap-
proach can be used for the state and adjoint equations. PFASST is employed using
three levels (32/64/128 spatial points and 3/5/9 LobattoIIIA nodes in time) with 20
parallel time intervals. Note the temporal method is formally 16th order. Running on
20 processors in parallel, the final objective function value after 200 ncg iterations
is 2.4 · 10−3, and the computed control has a relative L2-error of 0.15 compared to
uexact. In contrast, the sequential version stops with a slightly worse objective func-
tion value of 3.2 · 10−3, and a relative L2-error of 0.15 in the computed control. A
plot of the computed control, the error in the computed control, and the correspond-
ing computed optimal state can be found in Fig. 1. By parallel execution, the overall
runtime was reduced by a factor 3.8, yielding a parallel efficiency of 19%.

MISDC. For testing MISDC we used 20 parallel time intervals with two PFASST
levels consisting of 64/128 spatial points and 5/9 LobattoIIIA nodes. After 200 ncg
iterations, the sequential version reached an objective function value of 3.8 · 10−3

and a relative L2-error of 0.15 in the computed control. Running in parallel reduced
the computation time by a rather small factor 2, but lead to improved results (objec-
tive: 1.8 · 10−3, control: relative L2-error 0.14). Initializing the state solution at the
collocation nodes in optimization iteration k with their values from iteration k− 1
(“warm start”) reduced the required sweeps by 48% while reaching an objective
function value of 1.5 · 10−3 and relative L2-error in the control of 0.13. The reduc-
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Fig. 1 Computed optimal control with λ = 10−6 (left), difference to exact control for λ = 0 (mid-
dle) and optimal state (right) using IMEX.

tion in sweeps translates to a significant reduction of overall computation time by
45%. This is in contrast to the IMEX experiment, where for a reduction in sweeps
by 39% the gain in overall speed was a mere 7%. Lagged linearization as in (9) in-
creases the total number of PFASST sweeps for a state equation solve from 570 (on
average 28.5 per time step) to 642 (avg. 32.1/time step). Using smaller time steps
(40 parallel intervals), the average number of iterations is 28.3 in both cases.

For this example, it is unreasonable to attempt to compare the IMEX and MISDC
approaches in terms of overall efficiency since MISDC is designed for problems
where both diffusion and reaction components are stiff. The pertinent point here is
that employing the MISDC procedure with a lagged linearization of reaction terms
does not appear to increase the number of PFASST iterations needed for conver-
gence substantially, thus offering the possibility of greatly reducing the cost of im-
plicit substepping compared to fully implicit methods.

5 Discussion

An approach using PFASST for the time-parallel solution of PDE-constrained op-
timization problems has been presented, and non-trivial parallel speedup and ef-
ficiency have been obtained. It is important to note that the parallel efficiency of
PFASST is improved when solutions on coarsest levels are much cheaper than in
finer levels, and spatial coarsening has a larger effect in multiple dimensions com-
pared to the one-dimensional example used here. In addition, applying PFASST si-
multaneously to state and adjoint equations with proper handling of communication
offers further improved parallel speedup. The flexibility of SDC/PFASST has been
used to reduce the cost of implicit solutions in the substepping and also to re-use in-
formation from previous optimization iterations. Future research will, for example,
deal with adaptive control of the accuracy for inexact gradient computations, and
different strategies for storing or recomputing state solutions for the adjoint solve.
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An Adaptive GDSW Coarse Space for
Two-Level Overlapping Schwarz Methods in
Two Dimensions

Alexander Heinlein1, Axel Klawonn1, Jascha Knepper1, and Oliver Rheinbach2

1 Introduction

We consider the second order elliptic problem in two dimensions

−∇ · (A(x)∇u(x)) = f (x) in Ω ⊂ R2,

u = 0 on ∂Ω ,
(1)

where the scalar coefficient function A(x) > 0 is highly heterogeneous, possibly
with high jumps. While convergence of standard two-level Schwarz preconditioners
depends on the contrast of the coefficient function, we propose a coarse space for
two-level overlapping Schwarz methods which yields a condition number that is in-
dependent of the coefficient function. Our approach can be viewed as an extension
to the GDSW (Generalized Dryja, Smith, Widlund) method [1, 2] since it always
contains the standard GDSW coarse space. Originally, the method was inspired
by the ACMS (Approximate Component Mode Synthesis) special finite element
method [9, 6], which uses enrichment of the discretization space by local eigen-
functions. The ACMS space was first considered as a coarse space for overlapping
Schwarz methods in [7].

Our new coarse space consists of simple nodal finite element functions and of en-
ergy minimizing extensions of solutions of generalized eigenvalue problems on the
edges. Here, we restrict ourselves to the two-dimensional case. For the description
of the three-dimensional case and the proof of the condition number bound, we refer
to [8]. A related method is the SHEM (Spectral Harmonically Enriched Multiscale)
coarse space, introduced in [5], however, our eigenvalue problems do not use mass
matrices; see (5). Other related coarse spaces for overlapping Schwarz methods are,
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e.g., [3, 4]. In our new coarse space and in the one based on the ACMS discretization
method, the construction of the generalized eigenvalue problems is computationally
slightly more expensive than in the SHEM coarse space [5]. However, the dimension
of the coarse space can be reduced significantly in certain cases.

The variational problem corresponding to (1) reads: find u ∈ H1
0 (Ω), such that

aΩ (u,v) = L(v) ∀v ∈ H1
0 (Ω) (2)

with the bilinear form and the linear functional

aΩ (u,v) :=
∫

Ω

(∇u(x))T A(x)∇v(x)dx and L(v) :=
∫

Ω

f (x)v(x)dx,

respectively, where f ∈ L2(Ω). We define the semi-norm corresponding to the bilin-
ear form aΩ (·, ·) as |u|2a,Ω := aΩ (u,u). Let Ku = f be the discretization of prob-
lem (2) by piecewise linear or bilinear finite elements on a family of triangulations
(τh)h. We solve the discretized system using the conjugate gradient method precon-
ditioned by a suitable two-level overlapping Schwarz preconditioner.

2 The GDSW Preconditioner

The GDSW preconditioner [1, 2] is a two-level additive overlapping Schwarz pre-
conditioner with exact solvers; cf. [10]. It can therefore be written in the form

M−1
GDSW = ΦK−1

0 Φ
T +

N

∑
i=1

RT
i K̃−1

i Ri, (3)

where K0 = ΦT KΦ and K̃i = RT
i KRi. The matrices Ri are the restriction operators

to the overlapping subdomains Ω̃i, i = 1, ...,N, and the columns of Φ are the coarse
basis functions. The coarse basis functions are discrete harmonic extensions of in-
terface functions into the interior degrees of freedom of the corresponding nonover-
lapping subdomains. On the interface, the values are defined as the restrictions of
the nullspace of the operator to the edges and vertices of the nonoverlapping domain
decomposition.

The condition number estimate for the GDSW Schwarz operator in case of a
constant coefficient function A is

κ
(
M−1

GDSWK
)
≤C

(
1+

H
δ

)(
1+ log

(
H
h

))2

; (4)

cf. [1, 2]. If A is not constant, the constant C also depends the contrast of A.
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eΩ̂e
Ωi Ω j

eΩ̂ l
e

Ωi Ω j

lh lh

Fig. 1 (left) Graphical representation of Ωe =Ωi∪Ω j and Ω̂e. The set Ω̂e is obtained by removing
from Ωe all elements which are adjacent to the coarse nodes. From this, we also obtain the interior
edge ê := e∩ Ω̂e. (right) Graphical representation of the slab Ω̂ l

e corresponding to the edge e.

3 Adaptive GDSW in 2D

The adaptive GDSW coarse space is an extension to the standard GDSW coarse
space since it automatically includes the standard GDSW coarse space. However, if
necessary due to coefficient jumps, additional coarse constraints are selected. These
additional coarse constraints are constructed from solving local generalized eigen-
value problems. Let the interface Γ be partitioned into edges E and vertices V , i.e.,
Γ = (

⋃
e∈E e)∪ (

⋃
v∈V v). For each edge e, we define the sets Ωe and Ω̂e as depicted

in Fig. 1 (left) and the following extension operator:

we : V h
0 (e)→V h

0 (Ωe) , v 7→ we(v) :=
{

v in all interior nodes of e,
0 on all other nodes in Ωe,

where V h
0 (e) := {v|e : v ∈V,v = 0 on ∂e}. Then, we consider on each edge e ∈ E

the generalized eigenvalue problem: find τ∗,e ∈V h
0 (e) such that

a
Ω̂e

(
Hê→Ω̂e

(τ∗,e),Hê→Ω̂e
(θ)
)
= λ∗,e aΩe (we(τ∗,e),we(θ)) ∀θ ∈V h

0 (e) . (5)

Here, Hê→Ω̂e
denotes the discrete harmonic extension from the interior edge ê

into Ω̂e with respect to the bilinear form a
Ω̂e

(·, ·). Let the corresponding eigen-
values be sorted in non-descending order, i.e., λ1,e ≤ λ2,e ≤ ... ≤ λm,e, and the
eigenmodes accordingly, where m = dim

(
V h

0 (e)
)
. We select all eigenmodes τ∗,e

where the eigenvalues are below a certain tolerance, i.e., λ∗,e ≤ tolE . Then we ex-
tend the selected eigenfunctions by zero to Γ \ e, denoted by τ̃∗,e, and subsequently
compute the discrete harmonic extension into the interior of the subdomains, i.e.,
v∗,e := HΓ→Ω (τ̃∗,e).

Note that for every edge e, the left hand side of the eigenvalue problem (5) is
singular. Therefore, since tolE ≥ 0, eigenmodes which span the nullspace are always
selected and added to the coarse space. Therefore, the standard GDSW coarse space
is always a subspace of our automatic coarse space.

In addition to the edge basis functions, we use the nodal coarse basis functions
from the GDSW coarse space, which span the space VV . We denote the resulting
coarse space as the AGDSW (Adaptive GDSW) coarse space:
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V tolE
AGDSW =VV ⊕

(⊕
e∈E

span
{

vk,e : λk,e ≤ tolE
})

Remark 1: For tolE ≥ 0, we obtain VGDSW =V 0
AGDSW ⊆V tolE

AGDSW.
Remark 2: The right hand side of the eigenvalue problem (5) can be extracted from
the fully assembled global stiffness matrix K.
Remark 3: The condition number of the AGDSW Schwarz operator is bounded by

κ
(
M−1

AGDSWK
)
≤C

(
1+

1
tolE

)
; (6)

see [8]. The constant C is independent of H, h, and the contrast of the coefficient
function A. In [8], the three-dimensional case is also covered including the theory.

4 Variants of Adaptive GDSW

Here, we will briefly discuss some possible variants of the AGDSW method.

Mass matrix As in other adaptive coarse spaces where a spectral estimate is used
to replace a Poincaré type inequality, cf., e.g., [3, 4, 5, 7], we can use a (scaled) mass
matrix on the right hand side of the eigenvalue problems. The scaled mass matrix
corresponding to an edge e⊂ (Ω̄i∩ Ω̄ j) arises from the discretization of the scaled
L2-inner product

be (u,v) :=
1
h2 (A ·we(u),we(v))L2(Ωe)

. (7)

Therefore, we obtain for each edge the modified generalized eigenvalue problem:
find τ∗,e ∈V h

0 (e) such that

a
Ω̂e

(
Hê→Ω̂e

(τ∗,e),Hê→Ω̂e
(θ)
)
= λ∗,ebe (τ∗,e,θ) ∀θ ∈V h

0 (e) . (8)

The condition number bound (6) can also be proven for this variant; see [8].

Slabs In order to reduce the computational cost of constructing the generalized
eigenvalue problems, the set Ω̂e can be replaced by a slab of width l elements
around the edge e in (5); cf. Fig. 1 (right) for the graphical representation of a slab
corresponding to the edge e. We denote the slab by Ω̂ l

e. This idea, to use slabs
in the eigenvalue problems, has already been introduced in [7] for related multi-
scale coarse spaces based on the ACMS space and is also common in FETI-DP and
BDDC domain decomposition methods with adaptive coarse spaces.

The modified generalized eigenvalue problem reads: find τ∗,e ∈V h
0 (e) such that

a
Ω̂ l

e

(
Hê→Ω̂ l

e
(τ∗,e),Hê→Ω̂ l

e
(θ)
)
= λ∗,eaΩe (we(τ∗,e),we(θ)) ∀θ ∈V h

0 (e) . (9)
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Fig. 2 Discontinuous coefficient functions A with different types of channels and inclusions inter-
secting the interface. Maximum coefficient (dark blue color): Amax = 106 (left), Amax = 108 (right);
1/H = 4; H/h = 30 (left); H/h = 40 (right); δ = 2h.

Coeff. function A from Fig. 2 (left) Coeff. function A from Fig. 2 (right)
V0 tolE it. κ dimV0 tolE it. κ dimV0

VGDSW 264 1.04 ·106 33 45 26.18 33
VAGDSW 10−1 29 7.15 93 10−1 34 10.06 81

10−2 29 7.15 93 10−2 44 26.20 57
VAGDSW−M 10−1 29 7.15 93 10−1 44 26.20 57

10−2 29 7.15 93 10−2 44 26.20 57
VSHEM 10−3 20 4.33 69 10−3 23 5.03 213

10−6 20 4.33 69 10−6 23 5.03 213

Table 1 Results for the coefficient functions in Fig. 2: tolerance for the selection of the eigen-
functions, iterations counts, condition numbers, and resulting coarse space dimension for different
coarse space variants; 1/H = 4, H/h = 30 (left), H/h = 40 (right), and δ = 2h; maximum coeffi-
cient Amax = 106 (left) and Amax = 108 (right).

The slab variant is computationally cheaper and the bound can be proven anal-
ogously to the standard version with no modifications. However, the coarse space
dimension can increase due to the use of this variant (if Ω̂ l

e ⊂ Ω̂e).

5 Numerical Results

We present numerical results for model problem (1) for f ≡ 1 and various coefficient
functions, comparing the different AGDSW approaches with the standard GDSW
as well as the SHEM coarse space, recently introduced by Gander, Loneland, and
Rahman in [5]. Finally, we show results using slabs of varying widths.

In all figures, the light and dark blue colors correspond to the minimum co-
efficient (Amin = 1.0) and maximum coefficient (Amax = 106 or Amax = 108), re-
spectively. We use piecewise bilinear finite elements, and solve the discrete lin-
ear system using the conjugate gradient method with a relative stopping criterion,
||r(k)||2/||r(0)||2 ≤ 10−8, where r(0) and r(k) are the initial and the k-th unprecondi-
tioned residual, respectively. By VGDSW, we denote the standard GDSW space and
by V tol

AGDSW the new adaptive GDSW coarse space. The variant which uses a scaled
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Fig. 3 (Left:) Sample random coefficient function with a density of approximately 40% high co-
efficients Amax = 106 (dark blue color). 1/H = 4; H/h = 40; δ = 1h. (Right:) Detailed view of a
coefficient function with Amax = 108 (dark blue color) and 1/H = 20, H/h = 40, δ = 1h.

Random coeff. function A from Fig. 3 (left) Coeff. fn. A from Fig. 3 (right)
V0 tolE it. κ dimV0 tolE it. κ dimV0

VGDSW > 500 ( - ) 2.8 ·105 ( 6.9 ·104) 33 ( 0.0) 3 042 4.9 ·107 1 121
VAGDSW 10−1 34.3 ( 1.7) 11.8 ( 2.0) 185.1 ( 7.0) 10−1 47 16.2 3 087
VAGDSW−M 10−1 51.6 ( 3.7) 22.6 ( 7.6) 148.4 ( 8.5) 10−1 75 40.1 1 862
VAGDSW 5 ·10−2 62 28.5 2 257
VAGDSW−M 5 ·10−2 85 59.4 1 706
VAGDSW 10−2 78.9 ( 6.4) 81.7 ( 25.1) 127.7 ( 9.5) 10−2 92 97.2 1 702
VAGDSW−M 10−2 112.2 (11.6) 119.5 ( 44.8) 181.1 (10.7) 10−2 92 97.2 1 702
VSHEM 10−3 36.6 ( 3.3) 18.2 ( 6.8) 215.0 ( 8.4) 10−2 48 19.9 4 450
VSHEM 10−6 80.1 (28.2) 14 283.8 (15 740.5) 189.2 ( 8.1) 10−4 60 32.3 4 324

Table 2 Results for the coefficient functions in Fig. 3: tolerance for the selection of the eigen-
functions, iteration counts, condition numbers, and resulting coarse space dimension for different
coarse space variants. (Left:) Averaged results for 100 random coefficient functions (≈ 40% den-
sity); standard deviation in brackets. GDSW never converged within the maximum iteration num-
ber of 500. 1/H = 4, H/h= 40, and δ = 1h; maximum coefficient Amax = 106. (Right:) 1/H = 20;
H/h = 40; δ = 1h; maximum coefficient Amax = 108.

mass matrix in the right hand side of the eigenvalue problem, cf. section 4, is denoted
by V tol

AGDSW−M, the variant using a slab of width w = lh is denoted by V tol
AGDSW−E(l),

and the SHEM coarse space by V tol
SHEM; cf. [5].

In Table 1, we compare the different coarse spaces for the two coefficient func-
tions illustrated in Fig. 2. It is evident that, for the coefficient function from Fig. 2
(left), the GDSW coarse space is not sufficient to yield a low condition number
and a small number of iterations; see Table 1 (left). This is due to multiple discon-
nected, high coefficient channels and inclusions intersecting the interface. However,
the GDSW coarse space is sufficient for the coefficient function from Fig. 2 (right);
see Table 1 (right). Here, only one connected high coefficient component exists per
edge, all other high coefficient components are entirely contained in the overlap. Let
us remark that a reduction of the overlap to one element, i.e., δ = 1h, and only us-
ing the standard GDSW coarse space leads to 207 iterations and a condition number
of 8.97 · 107. In Table 1, all adaptive methods achieve low condition numbers and
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Coeff. function A from Fig. 4
V0 slab width (lh) it. κ dimV0

VGDSW - 55 761 497.6 5
VAGDSW−E(l) 1h 26 10.8 23
VAGDSW−E(l) 2h 26 10.8 23
VAGDSW−E(l) 3h 26 10.8 23
VAGDSW−E(l) 4h 26 10.8 19
VAGDSW−E(l) 7h 28 10.8 15
VAGDSW−E(l) 10h 30 15.0 11
VAGDSW−E(l) 13h 32 19.9 7
VAGDSW−E(l) 42h 31 19.9 7
VSHEM - 24 8.3 21

Fig. 4 Coefficient function with many connected channels intersecting the interface. Maximum
coefficient Amax = 106 (dark blue); 1/H = 2; H/h = 42; δ = 2h.

Table 3 Results for the coefficient function in Fig. 4: slab width, iterations counts, condition num-
bers, and resulting coarse space dimension for different coarse space variants. A tolerance for the
selection of the eigenfunctions of 10−3 was used for VAGDSW−E(l) and VSHEM; 1/H = 2, H/h = 42,

and δ = 2h; maximum coefficient Amax = 106.

converge in few iterations for both coefficient functions. For the coefficient func-
tion from Fig. 2 (left), both adaptive GDSW coarse spaces have higher coarse space
dimensions compared to the SHEM coarse spaces. This can be explained as fol-
lows: first, the entire GDSW coarse space is always included in the AGDSW coarse
space and second, all high coefficient components intersecting the interface are dis-
connected. For the coefficient function from Fig. 2 (right), many channels of high
coefficients intersecting the interface are connected. Here, the coarse space V 10−6

SHEM
has a dimension of 213, where both AGDSW approaches lead to a significantly
lower coarse space dimension of 57 using a tolerance of 10−2.

In Fig. 3 (left), a randomly generated coefficient function is displayed. Averaged
results for 100 random coefficient functions are listed in Table 2 (left). The coeffi-
cient functions are constructed as follows: uniformly distributed numbers are ran-
domly generated in the interval [0,1]. A value above 0.6 corresponds to a high coef-
ficient Amax = 106 in a finite element. Otherwise the coefficient is set to Amin = 1.0.
The coefficient of an element that touches the global domain boundary is always set
to Amin.

The results in Table 2 (left) show that all adaptive coarse spaces (AGDSW and
SHEM) yield low condition numbers and numbers of iterations. On average, com-
pared to the SHEM coarse space, for these problems, the adaptive GDSW ap-
proaches have lower coarse space dimensions. For example, V 10−6

SHEM and V 10−2

AGDSW
converge in approximately the same number of iterations, i.e., 80.1 and 78.9, re-
spectively. However, V 10−6

SHEM has a coarse space dimension of 189.2, whereas the
dimension of V 10−2

AGDSW is 127.7. This corresponds to a reduction by 33 percent.
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We also consider a foam-like coefficient function, as depicted in Fig. 3 (right).
The results in Table 2 (right) show that a robust preconditioner, with additional
coarse constraints, is needed as VGDSW requires over 3 000 iterations to converge.
The adaptive GDSW variants and VSHEM need few iterations to converge. How-
ever, V 10−4

SHEM requires a much larger coarse space, of dimension 4 324, compared to
V 5·10−2

AGDSW, dimension 2 257, while requiring approximately the same number of iter-
ations to converge. This corresponds to a reduction by 48 percent.

We now investigate the use of different slab widths in the variant VAGDSW−E(l);
cf. section 4. We are able to reduce the computational cost by using small slabs.
However, when the detection of connected high coefficient components is weak-
ened, we may enlarge the coarse space. This can be observed clearly for the coef-
ficient function in Fig. 4. Increasing the slab width decreases the resulting coarse
space dimension for VAGDSW−E(l); also cf. Table 3. In this particular example, a slab
width of 13 is sufficient to achieve the same result as with the maximum slab width
of 42 since the slab then contains only two high coefficient components per edge.
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Improving the Parallel Performance of
Overlapping Schwarz Methods by Using a
Smaller Energy Minimizing Coarse Space

Alexander Heinlein1, Axel Klawonn1, Oliver Rheinbach2, and Olof Widlund3

1 Introduction

The GDSW preconditioner (Generalized Dryja, Smith, Widlund; see also [8]) is
a two-level additive overlapping Schwarz preconditioner with exact local solvers
(cf. [16]) using a coarse space constructed from energy-minimizing functions. It
can be written in the form

M−1
GDSW = ΦK−1

0 Φ
T +

N

∑
i=1

RT
i K̃−1

i Ri, (1)

where K0 = ΦT KΦ is the coarse space matrix and the K̃i = RiKRT
i represent the

overlapping local problems; cf. [4]. The matrix Φ is the essential ingredient of the
GDSW preconditioner. It is composed of coarse space functions which are dis-
crete harmonic extensions from the interface into the interior degrees of freedom
of nonoverlapping subdomains. The values on the interface are restrictions of the
elements of the nullspace of the operator to the edges, vertices, and faces of the de-
composition. Therefore, for a scalar elliptic problem, the coarse basis functions form
a partition of unity on all subdomains which do not touch the Dirichlet boundary.

For Ω ⊂ R2 being decomposed into John subdomains, the condition number of
the GDSW preconditioner is bounded by

κ
(
M−1

GDSWA
)
≤C

(
1+

H
δ

)(
1+ log

(
H
h

))2

, (2)
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cf. [3, 4]. Here, H is the size of a subdomain, h the size of a finite element, and δ is
the overlap.

GDSW-type preconditioners have succesfully been developed for almost incom-
pressible elasticty, e.g., [5] and problems in H(curl) [2]. An efficient parallel imple-
mentation of the GDSW preconditioner based on Trilinos [13] was recently intro-
duced by the authors in [10]. Although the preconditioner can use geometric infor-
mation, a focus in [10] was to make use of the Trilinos infrastructure to construct
the preconditioner algebraically from the assembled sparse stiffness matrix.

A coarse space for Overlapping Schwarz methods in two dimensions related to
but smaller than the standard GDSW coarse space has been considered in [6]. Fol-
lowing [7], in this paper, we consider two reduced versions of the GDSW coarse
space in three dimensions denoted by Option 1 and Option 2.2 in [7]. These spaces
are also smaller than the standard GDSW coarse space. In the following, we will
denote this reduced GDSW coarse space as RGDSW. Our reduced coarse spaces
have a relation to discretization methods such as Multiscale Finite Element Meth-
ods (MsFEM), which also use harmonic extensions; see, e.g., [14, 17].

2 A Reduced GDSW Coarse Space

We have implemented the RGDSW coarse space in our parallel preconditioner [10]
since, among the proposed options in [7], it is the most algebraic. As in the standard
version, we introduce coarse basis functions that form a partition of unity on the
interface of the domain decomposition. Again, we extend the values on the interface
as discrete harmonic functions into the interior of the nonoverlapping subdomains.

Let Sn be the index set of all subdomains which share the node n. A node ni is
called an ancestor of n j if Sn j ⊂Sni . If no other node is an ancestor of a node n j, it
is called a coarse node. Using this definition, we can construct for each coarse node
ni a coarse basis function ϕi such that

∑
ni coarse node

ϕi = 1

on all subdomains which do not touch the Dirichlet boundary. A coarse basis func-
tion ϕi is constructed as follows:

ϕi(n) =
{ 1
|Cn| if ni ∈ Cn,

0 otherwise,

with Cn being the set of all ancestors of the interface node n; cf. Fig. 1 (top). On the
Dirichlet boundary, we set all coarse basis functions to zero.

Another option to define a reduced coarse space, using basis function based on an
inverse distance weighting approach, has been introduced in [7, eq. (5)]. In particu-
lar, according to [7, eq. (5)], the values of the coarse basis function on the interface
are chosen as
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Fig. 1 Plot of the coarse basis function corresponding to the center node for the reduced GDSW
coarse spaces, denoted Option 1 (top) and Option 2.2 (bottom) in [7]. Here, we assume the struc-
tured decomposition of a cube into 4x4x4 cubic subdomains.

ϕi(n) =

{
1/di(n)

1/d1(n)+1/d2(n)+1/d3(n)+1/d4(n)
if ni ∈ Cn, i ∈ {1,2,3,4}

0 otherwise
(3)

for components with four coarse nodes. Here, di(n), i = 1, . . . ,4 is the distance to
the coarse node ni. For components with any number of coarse nodes, we set

ϕi(n) =


1/di(n)

∑
n j∈Cn

1/d j(n)
if ni ∈ Cn,

0 otherwise
(4)

on the interface; cf. Fig. 1 (bottom). This construction is denoted as Option 2.2
in [7]. As we will observe in section 4, this choice leads to a better convergence,
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Dimension of the Coarse Space
# subdomains Standard GDSW RGDSW (Option 1&2.2) Reduction

23 19 1 94.74%
43 279 27 90.32%
83 2863 343 88.02%

163 25695 3375 86.87%
243 89999 12167 86.48%
323 217279 29791 86.29%
403 429039 59319 86.17%
803 3507679 493039 85.94%

1003 6880599 970299 85.90%
10003 7.0 ·109 1.0 ·109 85.73%

100003 7.0 ·1012 1.0 ·1012 85.72%

Table 1 Dimension of the coarse spaces and the reduction due to the use of the reduced coarse
spaces in percent. We use one subdomain for each processor core.

scalar elliptic compressible linear elasticity
face paths edge paths face paths

Option 1 α = 1 α = 2 α = 1
Option 2.2 α = 0 α = 1 α = 0

Table 2 Values of α in the condition number bound (5). For the definition of quasi-monotone
paths, see [7].

however, it relies on additional geometric information to allow for the computation
of the distance between interface nodes and the relevant coarse nodes. Therefore, it
can be regarded as less algebraic compared to Option 1.

The advantage of these two reduced GDSW coarse problems over the classical
GDSW coarse problem is their smaller size; cf. Fig. 2. Indeed, in 3D, for struc-
tured decompositions, they are smaller by more than 85 percent; cf. Table 1. This
can be a significant advantage when striving for better parallel scalability on larger
supercomputers.

For the reduced coarse spaces, for scalar elliptic problems in 3D as well as elas-
ticity, the condition number of the preconditioned operator satisfies

κ(M−1
RGDSWA)≤C

(
1+

H
δ

)(
1+ log

(
H
h

))α

, (5)

where α is given in Table 2; cf. [7] and also see Fig. 4.

3 Implementation

Our parallel implementation of the GDSW preconditioner and its more recent ver-
sion with a reduced coarse space size (here denoted by RGDSW) is based on the
implementation described in [10, 9, 12, 11]. We use Trilinos version 12.0; cf. [13].
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Fig. 2 We compare for a Laplace model problem in three dimensions: dimension of the coarse
spaces (left) and corresponding numbers of iterations for the standard and the reduced GDSW
coarse space (right); we use H/h = 30 and two layers of overlap. Computations run on the
JUQUEEN supercomputer.

In our experiments presented here, for simplicity, we use a structured decomposition
of our cubic computational domain into cubic subdomains. The overlapping subdo-
main problems and the coarse problem are solved using Mumps 4.10.0 (cf. [1])
in sequential mode. On the JUQUEEN BG/Q supercomputer, we use the IBM XL
compilers 12.1 and the ESSL 5.1 when compiling Trilinos and the GDSW precon-
ditioner. On the magnitUDE supercomputer at Universität Duisburg-Essen, we use
the Intel compiler and the Intel MKL 2017.1.132.

4 Numerical Results

Based on the infrastructure given by our parallel implementation [10], we com-
pare the reduced coarse space (denoted by RGDSW) to the standard coarse space
(denoted by GDSW) for a scalar elliptic problem in 3D. Our numerical results in
Fig. 2, and 3 show that the smaller dimension of the new coarse spaces Option 1
and Option 2.2 proposed in [7] indeed help to increase the parallel efficiency of the
method significantly; see also Tables 3 and 4. By “Total Time”, we denote the total
time to solution including the assembly of the problem. The “Setup Time” includes
the assembly of the problem and the setup of the preconditioner. This includes the
factorization of the subdomain matrices. Finally, “Solver Time” only denotes the
time spent in the GMRES iteration. The number of Krylov iterations for the new
methods increases but only slightly in comparison with the standard GDSW pre-
conditioner (cf. Fig. 2, right), as also demonstrated in [7]; the increase is too small
to be reflected in the computation times. Indeed, as shown in Fig. 3, the total time
to solution is always smaller for the new coarse spaces.

Acknowledgements
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Fig. 3 Detailed times for the computations of a Laplace model problem in three dimensions using
the standard GDSW coarse space and the reduced GDSW coarse space; we use H/h = 30 and two
layers of overlap. Computations run on the JUQUEEN supercomputer.

H/h Option 1 Option 2.2
H/δ = 4 H/δ = 8 H/δ = 4 H/δ = 8

4 18 - 17 -
8 20 23 19 21

16 21 26 20 23
32 22 28 21 25
64 23 28 21 25

Fig. 4 Numbers of iterations versus log(H/h) for the reduced GDSW coarse space and 1/H = 4.
Computations run on the magnitUDE supercomputer.
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Nordrhein-Westfalen (MIWF).



8 Alexander Heinlein, Axel Klawonn, Oliver Rheinbach, and Olof Widlund

References

1. Patrick R. Amestoy, Iain S. Duff, Jean-Yves L’Excellent, and Jacko Koster. A fully asyn-
chronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal.
Appl., 23(1):15–41, January 2001.

2. Juan G. Calvo. A two-level overlapping Schwarz method for H(curl) in two dimensions with
irregular subdomains. Electron. Trans. Numer. Anal., 44:497–521, 2015.

3. Clark R. Dohrmann, Axel Klawonn, and Olof B. Widlund. Domain decomposition for
less regular subdomains: overlapping Schwarz in two dimensions. SIAM J. Numer. Anal.,
46(4):2153–2168, 2008.

4. Clark R. Dohrmann, Axel Klawonn, and Olof B. Widlund. A family of energy minimizing
coarse spaces for overlapping Schwarz preconditioners. In Domain decomposition methods in
science and engineering XVII, volume 60 of Lect. Notes Comput. Sci. Eng., pages 247–254.
Springer, Berlin, 2008.

5. Clark R. Dohrmann and Olof B. Widlund. Hybrid domain decomposition algorithms for com-
pressible and almost incompressible elasticity. Internat. J. Numer. Methods Engrg., 82(2):157–
183, 2010.

6. Clark R. Dohrmann and Olof B. Widlund. An alternative coarse space for irregular subdo-
mains and an overlapping Schwarz algorithm for scalar elliptic problems in the plane. SIAM
J. Numer. Anal., 50(5):2522–2537, 2012.

7. Clark R. Dohrmann and Olof B. Widlund. On the design of small coarse spaces for domain de-
composition algorithms. SIAM Journal on Scientific Computing, 39(4):A1466–A1488, 2017.

8. Maksymilian Dryja, Barry F. Smith, and Olof B. Widlund. Schwarz analysis of iterative
substructuring algorithms for elliptic problems in three dimensions. SIAM J. Numer. Anal.,
31(6):1662–1694, December 1994.

9. Alexander Heinlein. Parallel Overlapping Schwarz Preconditioners and Multiscale
Discretizations with Applications to Fluid-Structure Interaction and Highly Heterogeneous
Problems. PhD thesis, Universität zu Köln, Germany, 2016.
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Inexact Dual-Primal Isogeometric
Tearing and Interconnecting Methods

Christoph Hofer, Ulrich Langer, and Stefan Takacs

1 Introduction

Isogeometric Analysis (IgA), cf. Hughes et al. [2005], Beirão da Veiga et al.
[2014], is a variant of the Galerkin method where both the geometry of
the computational domain and the solution of the partial differential equa-
tion (PDE) are represented by B-splines or Non Uniform Rational B-splines
(NURBS). One of the strengths of IgA consists in its capability of creat-
ing high-order smooth function spaces, while keeping the number of degrees
of freedom relatively small. Originally, IgA was formulated by means of one
global geometry mapping, which restricts the method to simple domains being
topologically equivalent to the unit square or the unit cube. More complicated
domains are represented as a non-overlapping composition of such simple do-
mains, called patches. In such a multi-patch setting, each of the patches has
its own geometry mapping, and all of the patches are discretized separately.

We are interested in fast solvers for linear systems arising from the dis-
cretization of elliptic PDEs in such a multi-patch setting. The local discretiza-
tion on each patch has typically tensor-product structure.

We use a non-overlapping domain decomposition (DD) method to couple
the problem across the patches, namely the dual-primal IsogEometric Tearing
and Interconnecting (IETI-DP) method, a variant of the FETI-DP method,
see Kleiss et al. [2012]. In general, the geometry mapping does not exhibit
more than C0-continuity across the interfaces. Thus, we only aim to guar-
antee C0-continuity of the solution across the interfaces. Moreover, also for
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a decomposition of the patches into smaller subpatches, e.g., for paralleliza-
tion, the choice of C0 continuity is reasonable if the number of inner dofs
stays large enough, cf. Hofer [2017]. The IETI method is closely related to
the BDDC method, see Toselli and Widlund [2005], Beirão da Veiga et al.
[2013, 2017] and references therein.

So far, the local problems have been solved using direct solvers. Since we
want to choose the given patches also as subdomains of the DD-method, the
local problems become large if the discretization is refined. In this case, inex-
act solvers for the local subproblems, as introduced in Klawonn and Rhein-
bach [2007], could be superior to direct solvers. The aim of this work is to in-
vestigate such approaches in combination with the p-robust multigrid solvers,
which were proposed by Hofreither and Takacs [2017], as inexact solvers.

In the present paper, we consider the Poisson problem on a bounded Lip-
schitz domain Ω ⊂ Rd, with d ∈ {2, 3}, as model problem: For a given,
sufficiently smooth f , find u ∈ V0 := H1

0 (Ω) such that

a(u, v) := (∇u,∇v)L2(Ω) = (f, v)L2(Ω) =: 〈F, v〉 ∀v ∈ V0. (1)

2 Isogeometric Analysis and IETI-DP

On the unit interval, for any spline degree p and number of basis functionsM ,
we define the basis (N̂i,p)Mi=1 of univariate B-splines of maximum smoothness
Cp−1 via Cox-de Boor’s algorithm. A basis for the parameter domain Ω̂ :=
(0, 1)d, is realized by the tensor product of such basis functions, again denoted
by N̂i,p, where i = (i1, . . . , id) ∈ I := {1, . . . ,M1} × . . . × {1, . . . ,Md} and
p = (p1, . . . , pd) are multi-indices.

In standard (single-patch) IgA, the physical domain Ω is given as the
image of the parameter domain under the geometry mapping G : Ω̂ → Rd,
defined by G(ξ) :=

∑
i∈I PiN̂i,p(ξ), with the control points Pi ∈ Rd, i ∈ I.

In a multi-patch setting, the domain Ω (multipatch domain) is composed
of non-overlapping patches Ω(k), k = 1, . . . , N , such that Ω :=

⋃N
k=1Ω

(k)
.

Each patch Ω(k) := G(k)(Ω̂) is represented by its own geometry mapping.
We call Γ :=

⋃
k>l ∂Ω

(k) ∩ ∂Ω(l) the interface, and denote its restriction to
one of the patches Ω(k) by Γ (k) := Γ ∩ ∂Ω(k). Throughout the paper, the
superscript (k) denotes the restriction of the underlying symbol to Ω(k).

We use B-splines not only for defining the geometry, but also for repre-
senting the approximate solution of (1). Once the basis functions are defined
on the parameter domain Ω̂, we define the bases on the patches Ω(k) via the
pull-back principle, and obtain the basis functions Ni,p := N̂i,p ◦ G−1.

The main idea of IETI-DP is to decouple the patches by tearing the in-
terface unknowns which introduces additional degrees of freedom (dofs). We
denote the resulting space by Vh. Then, continuity is again enforced using
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Lagrange multipliers λ. Hence, the local subproblems on each patch are es-
sentially pure Neumann problems (at least for interior patches). Due to the
presence of a kernel, a straight-forward Schur complement formulation is not
possible. In order to overcome this problem, certain continuity conditions are
enforced by incorporating them into the space Vh, (strongly enforced conti-
nuity conditions) which yields the smaller space Ṽh. There, we formulate the
following problem. Find (u, λ) ∈ Ṽh × Λ such that[

K̃ B̃T

B̃ 0

] [
u
λ

]
=

[
f̃
0

]
, (2)

where K̃ is the stiffness matrix, B̃ the jump operator, and f̃ the right hand
side. Here and in what follows, we do not distinguish between the IgA func-
tions and their vector representation with respect to the chosen basis.

Now, we split Vh into interior dofs and interface dofs, which yields an
interface spaceW . By splitting Ṽh analogously, we obtain the space W̃ . Based
on this splitting, we formulate the problem using the Schur complement of
the stiffness matrix K in Vh with respect to the interface dofs: S := KBB −
KBIK

−1
II KIB , where the subindices B and I denote the boundary and interior

dofs, respectively. The restriction of S to W̃ is denoted by S̃, which yields
the following saddle-point formulation: Find (w, λ) ∈ W̃ × Λ such that[

S̃ B̃T

B̃ 0

] [
w
λ

]
=

[
g̃
0

]
, (3)

where g̃ := ĨT (fB−KBIK
−1
II fI) and Ĩ : W̃ →W is the canonical embedding.

We denote the subspace of W̃ satisfying the strongly enforced continuity
conditions homogeneously by W∆ and the S-orthogonal complement by WΠ .
In the literature, our choice of WΠ is often called energy minimizing primal
subspace. Finally, we can define the Schur complement F of the saddle-point
problem (3), and obtain the problem: Find λ ∈ Λ such that

Fλ := (B̃S̃−1B̃T )λ = B̃S̃−1g̃ := d. (4)

Equation (4) is solved by means of the conjugate gradient (CG) method
using the scaled Dirichlet preconditioner M−1sD := BDSB

T
D, where BD is a

scaled version of the jump operator B on Vh. Note that we can approximate
S̃−1 because S̃ can be represented (by reordering of the dofs) as a block
diagonal matrix of matrices S(k)

∆∆ for each patch and the matrix SΠΠ . For a
summary of the algorithm and a more detailed explanation, we refer, e.g., to
Toselli and Widlund [2005], Hofer and Langer [2017] and references therein.
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3 Incorporating Multigrid in IETI-DP

We investigate different possibilities to incorporate a multigrid solver into the
IETI-DP algorithm. The application of the IETI-DP algorithm requires the
solution of local Neumann and Dirichlet problems.

3.1 Local Dirichlet problems

We have to solve linear systems with the system matrix K(k)
II in the appli-

cation of S in the preconditioner and when calculating the right hand side
g̃. These linear systems are Dirichlet problems (up to boundary conditions).
The right hand side g̃ has to be computed very accurately, i.e., at least up to
discretization error. However, for the preconditioner, a few MG V-cycles are
usually enough, since we only have to ensure the spectral equivalence of the
inexact scaled Dirichlet preconditioner to the exact one, cf. Klawonn et al.
[2016] and references therein.

3.2 Local Neumann problems

Local Neumann problems appear in the construction of the S-orthogonal
basis for WΠ and in the application of S∆∆. In order to construct the nodal
and S-orthogonal basis {φ(k)j }j of W

(k)
Π , we have to solve[

S(k) C(k)T

C(k) 0

][
φ
(k)
j

µ
(k)
j

]
=

[
0

e
(k)
j

]
, ∀j ∈ {1, . . . , n(k)

Π }, (5)

where e
(k)
j ∈ Rn

(k)
Π is the j-th unit vector, and the matrix C(k) realizes the

n
(k)
Π strongly enforced continuity conditions contributing to the patch Ω(k).

Instead of solving (5) directly, we solve[
K(k) C(k)T

C(k) 0

][
φ
(k)

j

µ
(k)
j

]
=

[
0

e
(k)
j

]
, ∀j ∈ {1, . . . , n(k)

Π }, (6)

and obtain the desired basis functions by φj = φj |Γ (k) . Note that {φ(k)j }j is
a K-orthogonal basis. The system is solved with the Schöberl-Zulehner (SZ)
preconditioner, see Schöberl and Zulehner [2007].

The SZ preconditioner for (6) requires preconditioners K̂(k) and Ĥ(k)

for the upper left block K(k) and its inexact Schur complement H(k) :=

C(k)(K̂(k))
−1
C(k)T , respectively. The preconditioner K(k) is realized by a few
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MG V-cycles. It is required that K̂(k) > K(k), which implies that K̂(k) has to
be positive definite. In order to handle also the case where K(k) is singular,
we need to set up MG based on a regularized matrix K(k)

M := K(k) + αM̂ (k),

where α is chosen to be 10−2 and M̂ (k) is the mass matrix on the parameter
domain. Note that we can exploit the tensor product structure to efficiently
assemble the mass matrix M̂ (k). Secondly, the SZ preconditioner requires that
Ĥ(k) < H(k). Since in our case the number of rows of C(k) is given by n(k)Π , a
small number that does not change during refinement, we calculate the inex-
act Schur complement exactly. This can be performed by applying (K̂(k))

−1

to n
(k)
Π vectors. Finally, by a suitable scaling, e.g., Ĥ(k) := 0.99H(k), we

obtain the desired matrix inequality.
The second type of Neumann problem appears in the application of F . We

look for a solution of the system S
(k)
∆∆w

(k)
∆ = f

(k)
∆ , which can be written as[

S(k) C(k)T

C(k) 0

] [
w

(k)
∆

µ(k)

]
=

[
f (k)

0

]
. (7)

Certainly, one can use the same method as above. However, we can utilize
the fact that we search for a minimizer of 1

2 (S
(k)w(k), w(k)) − (w(k), f (k)) in

the subspace given by C(k)w(k) = 0. This solution can be computed by first
solving the unconstrained problem, and then projecting the minimizer into
the subspace using a energy-minimizing projection. The projection is trivial
because the decomposition of W̃ into WΠ and W∆ is S-orthogonal.

Note that the CG algorithm, when applied to a positive semidefinite ma-
trix, stays in the factor space with respect to the kernel and computes one
of the minimizers. The solution of the constrained minimization problem is,
as outlined above, obtained by applying the projection. As long as the num-
ber of CG iterations is not too large, numerical instabilities are not observed
when applying CG to a positive semidefinite problem.

The S-orthogonal basis has to be computed very accurately in order to
maintain the orthogonality. Since the equation S

(k)
∆∆w

(k)
∆ = f

(k)
∆ appears in

the system matrix F , its solution also requires an accuracy of at least the
discretization error.

3.3 Variants of inexact formulations

From the discussion above, we deduce four (reasonable) versions:

(D-D) The classical IETI-DP method, using direct solvers everywhere.
(D-MG) We use MG in the scaled preconditioner for the solution of the

local Dirichlet problems and the transformation of the right hand side, see
Section 3.1. As already mentioned, the required accuracy for computing g̃ has
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to be of the order of discretization error, whereas a few V-cycles are enough
for the preconditioner.

(MG-MG) We use MG for all patch-local problems, i.e., the local Dirich-
let and Neumann problems. This implies that also the calculation of the basis
forW∆ is performed by means of MG, which turns out to be very costly. More-
over, for each application of F , we have to solve a local Neumann problem in
W∆ with the accuracy in the order of the discretization error.

(MG-MG-S) To overcome the efficiency problem of the requirement of
solving a linear system with MG very accurately, we use the saddle point
formulation instead of F . On the one hand, at each iteration step, we only
have to apply a given matrix instead of solving a linear system. On the other
hand, we now have to deal with a saddle point problem. Moreover, the it-
eration is not only applied to the interface dofs, but also to the dofs in the
whole domain.

We will always assume that the considered multipatch domain has only
a moderate number of patches, such that the coarse problem can still be
handled by a direct solver. For extensions to inexact version for the coarse
problem, we refer to Klawonn and Rheinbach [2007].

For the first three methods, we use the CGmethod to solve Fλ = d as outer
iteration. For (MG-MG-S), we have to deal with the saddle point problem (2),
which we solve using the Bramble-Pasciak CG (BPCG) method, cf. Bramble
and Pasciak [1988]. The building blocks for this method are a preconditioner
ˆ̃
K for K̃ and F̂ for the Schur complement F . The construction of ˆ̃

K follows
the same steps as in the previous section, but we only apply a few MG V-
cycles. Concerning F̂ , a good choice is the scaled Dirichlet preconditioner
M−1sD , cf. Klawonn and Rheinbach [2007].

4 Numerical Experiments

We solve the model problem (1) on a two and a three dimensional com-
putational domain. In the two dimensional case, we use the quarter annulus
divided into 32 = 8×4 patches, as illustrated in Fig. 1(left). The three dimen-
sional domain is the twisted quarter annulus, decomposed into 128 = 4×4×8
patches as presented in Fig. 1(right). We use B-splines of maximal smoothness
inside a patch and C0-coupling across the patch interfaces.

We have chosen the continuity of the vertex values and the edge averages
for the two dimensional example, and the continuity of the edge averages for
the three dimensional example as strongly enforced continuity conditions.

For the examples with polynomial degree p = 2, we use a standard MG
method based on a hierarchy of nested grids keeping p fixed and use a stan-
dard Gauss Seidel (GS) smoother. For the examples with higher polynomial
degree (p = 4 or 7), we have used p = 1 on all grid levels but the finest grid.
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Fig. 1 Quarter annulus in 2d (left), twisted quarter annulus in 3d (right).

This does not yield nested spaces. Thus, we cannot use the canonical em-
bedding and restriction. Instead, we use L2-projections to realize them. On
the finest grid, we use a MG smoother suitable for high-order IgA, namely
a variant of the subspace-corrected mass smoother proposed and analyzed
in Hofreither and Takacs [2017]. For this smoother, it was shown that a re-
sulting MG method is robust with respect to both the grid size and the
polynomial degree. However, for p = 1 or 2, standard approaches are more
efficient. Thus, we again use this smoother only for the finest level, while for
all other grid levels we use standard GS smoothers. To archive better results,
we have modified the subspace-corrected mass smoother by incorporating a
rank-one approximation of the geometry transformation.

For the outer CG or BPCG iteration, we use a zero initial guess, and
the reduction of the initial residual by the factor 10−6 as stopping criterion.
The local problems related to the calculation of the S-orthogonal basis are
solved up to a tolerance of 10−12. In case of the (MG-MG) version, the local
Neumann problems (7) in W∆ are solved up to a relative error of 10−10. The
number of MG cycles in the preconditioner is fixed. For the local Dirichlet
problems in the scaled Dirichlet preconditioner, we use 2 V-cycles. The local
Neumann problems, which appear in the preconditioner of the (MG-MG-S)
version, are approximately solved by 3 V-cycles. In the following, we report
on the number of CG iterations to solve (4) and BPCG iterations for (2) and
the total time in seconds, which includes the assembling, the IETI-DP setup
and solving phase. For the weak scalability tests in Table 1 and Table 2, we
observe in all cases a polylogarithmic growth of the outer iterations and a
quasi-optimal behavior of the computation time.

The algorithm is realized with the open source C++ library G+Smo1 We
utilize the PARDISO 5.0.0 Solver, cf. Kuzmin et al. [2013], for performing
the LU factorizations. To allow a better comparison of the different variants,
we only perform serial computations.2

1 G+Smo (Geometry plus Simulation modules) v0.8.1, http://gs.jku.at/gismo.
2 Our code is compiled with the gcc 4.8.3 compiler with optimization flag -O3. The results
are obtain on the RADON1 cluster at Linz. We use a single core of a node, equipped with
2x Xeon E5-2630v3 “Haswell” CPU (8 Cores, 2.4Ghz, 20MB Cache) and 128 GB RAM.
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D-D MG-D MG-MG MG-MG-S
p = 2\Dofs It. Time It. Time It. Time It. Time

134421 9 10 9 8 9 13 14 14
530965 10 45 10 37 10 54 15 90

2110485 11 224 11 172 11 272 16 568
8415253 11 1005 11 762 11 1181 15 3394

33607701 OoM OoM 13 5070 OoM
p = 7\Dofs It. Time It. Time It. Time It. Time

45753 10 26 10 27 10 57 14 54
155961 11 108 11 110 11 225 15 211
572985 12 498 12 495 12 1048 17 1013

2193465 13 2384 13 2265 14 4427 18 4344
8580153 OoM OoM 15 18484 20 19958

Table 1 Numerical results for the quarter annulus in 2d.

D-D MG-D MG-MG MG-MG-S
p = 2\Dofs It. Time It. Time It. Time It. Time

14079 11 3 11 3 11 8 25 7
86975 12 19 12 19 12 59 26 59

606015 14 213 14 197 14 484 30 616
4513343 OoM 16 2764 16 5244 35 11657

p = 4\Dofs It. Time It. Time It. Time It. Time
40095 13 30 13 33 13 112 23 104

160863 15 234 15 254 15 659 28 633
849375 16 2237 17 2356 17 5403 32 5298

5390559 OoM OoM 19 45243 37 52831

Table 2 Numerical results for the twisted quarter annulus in 3d.

In Table 1, we summarize the results for the two dimensional domain for
p = 2 and 7. The size of the coarse space WΠ is 73. We observe that re-
placing the direct solver in the preconditioner with two MG V-cycles does
not change the number of outer iterations. Moreover, going from the Schur
complement to the saddle point formulation and using BPCG there, leads
only to a minor increase in the number of outer iterations. In all cases, the
logarithmic dependence of the condition number on h is preserved. The ad-
vantage of the formulation using only MG, especially (MG-MG), is its smaller
memory footprint, therefore, the possibility of solving larger systems. How-
ever, the setting with the best performance is (MG-D). Concluding, for small
polynomial degrees and using the GS smoother, (MG-MG) gives reasonable
trade off between performance and memory usage and for larger polynomial
degrees, this setting can be still recommended if memory consumption is an
issue.

In the case p = 2, for the inner iterations, we have observed that the
CG needed on average 8 iterations to compute g̃, the calculation of the S-
orthogonal basis needed on average 14 iterations, and the solution of (7)
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required on average 10 iterations. For the second case, p = 7, we needed 9
iterations to compute g̃, 13 iterations for the calculation of the S-orthogonal
basis and 10 iterations for the solutions of (7). Here and in what follows,
we have taken the average over the patches, the individual levels and the
individual steps of the outer iteration. We mention that the number of inner
iterations was only varying slightly.

In Table 2, we summarize the results for the three dimensional domain
and for p = 2 and 4. The size of the coarse space WΠ is 240. We observe that
replacing the direct solver in the preconditioner with two MG V-cycles does
not change the number of outer iterations. We further observe that the results
are similar to the one of the two dimensional case. However, the number of
iterations almost doubled when using BPCG for (MG-MG-S). In all cases,
the logarithmic dependence of the condition number on h is preserved. The
advantage of the formulation using only MG, especially (MG-MG), is its
smaller memory footprint, therefore the possibility of solving larger systems.
The best performance is obtained sometimes by (D-D) and sometimes by
(MG-D), where both approaches are comparable in all cases.

Concerning the inner iterations, for p = 2, we need on average 15 CG
iterations to compute g̃, 22 CG iterations to build up each S-orthogonal basis
function, and 18 CG iterations to solve (7). In the case of p = 4, we needed
on average only 10 iterations to compute g̃, 14 iterations for the construction
of the S-orthogonal basis functions, and 11 iterations for solving (7).

The last test deals with the weak scalability of the method, where we only
investigate the two dimensional setting for p = 7. We fix the ratio H/h and
increase the number of patches. We expect constant number of iterations and
a linear increase of the computation time. In Table 3, beside the Dofs, we
report the size of the coarse space nΠ and the number of patches N . For
each method, we provide the number of iterations and the computation time
in seconds. We observe that the number of iterations and computation time
behave as expected.

p = 7 D-D MG-D MG-MG MG-MG-S
nΠ N Dofs It. Time It. Time It. Time It. Time
73 32 45753 10 27 10 27 10 62 20 60

337 128 183921 11 111 11 108 11 268 15 234
1441 512 737505 11 446 11 438 11 1111 13 943
5953 2048 2953665 10 1777 10 1729 10 4468 12 3821

24193 8192 11821953 OoM OoM 10 19691 11 15392

Table 3 Weak scalability of the methods with respect to the number of patches.

Acknowledgements This work was supported by the Austrian Science Fund (FWF)
under the grant W1214, project DK4. This support is gratefully acknowledged.
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Abstract In Isogeometric Analysis (IgA), non-trivial computational do-
mains are often composed of volumetric patches where each of them is dis-
cretized by means of tensor-product B-splines or NURBS. In such a set-
ting, the dual-primal IsogEometric Tearing and Interconnecting (IETI-DP)
method, that is nothing but the generalization of the FETI-DP method to
IgA, has proven to be a very efficient solver for huge systems of IgA equa-
tions. Using IETI-DP, basically any patch-local solver can be extended to the
global problem. So far, only direct solvers have been considered as patch-local
solvers. In the present paper, we compare them with the option of using ro-
bust multigrid as patch-local solver. This is of special interest for large-scale
patch-local systems or / and for large spline degrees, because the convergence
of standard smoothers deteriorates with large spline degrees and the robust
multigrid smoother chosen is only available on tensor-product discretizations.



Coupling Parareal and
Dirichlet-Neumann/Neumann-Neumann
Waveform Relaxation Methods for the Heat
Equation

Yao-Lin Jiang1 and Bo Song2

1 Introduction

We introduce two new space-time Waveform Relaxation (WR) methods based on
the parareal algorithms and Dirichlet-Neumann waveform relaxation (DNWR) and
Neumann-Neumann waveform relaxation (NNWR). The WR method was first in-
troduced by Lelaramee, Ruehli and Sangiovanni-Vincentelli [15], which has been
applied to analyze for many different kinds of problems, such as differential alge-
braic equations[11], fractional differential equations [13] , reaction diffusion equa-
tions [17]; for further details, see [12]. Domain decomposition methods for time-
dependent partial differential equations (PDEs) can also lead to WR methods, i.e.
Schwarz waveform relaxation (SWR) algorithm [8, 10], optimized Schwarz wave-
form relaxation (OSWR) algorithm [2, 3], and Dirichlet-Neumann and Neumann-
Neumann waveform relaxation methods [6, 7, 22].

The parareal algorithm is a time-parallel method that was proposed by Lions,
Maday, and Turinici in the context of virtual control to solve evolution problems
in parallel [16]. In this algorithm, initial value problems are solved on subintervals
in time, and through iterations the initial values on each subinterval are corrected to
converge to the correct values of the overall solution [1, 9, 5]. The parareal algorithm
has also been combined with waveform relaxation methods [18].

Parallel algorithms based on the decomposition of both time and space domain
have been also studied [21, 19]. However, there was no parallel mechanism in the
time direction. In [20], it was the first time that the combination of Schwarz wave-
form relaxation and parareal for PDEs had been introduced. Further, in [4], a new
parallel algorithm where there is no order between the Schwarz waveform relaxation
algorithm and the parareal algorithm was introduce.

1 School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, China, e-mail:
yljiang@xjtu.edu.cn ·2 Corresponding author. School of Science, Northwestern Polytech-
nical University, Xi’an 710072, China, e-mail: bosong@nwpu.edu.cn
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0−a b
x

t

Tn

Tn+1

Ω1,n Ω2,n

Fig. 1 Space time decomposition on which the proposed algorithms are based.

In this paper, we propose the parareal Dirichlet-Neumann waveform relax-
ation (PA-DNWR) and the parareal Neumann-Neumann waveform relaxation (PA-
NNWR) methods for the time-dependent problem. For ease of presentation for the
new algorithms, we derive our results for two subdomains in one spatial dimension.

We consider the following initial-value problem of heat equation on bounded
Ω ⊂ R 

∂u
∂ t
−∆u = f (x, t), x ∈Ω , 0< t < T,

u(x,0) = u0(x), x ∈Ω ,
u(x, t) = g(x, t), x ∈ ∂Ω , 0< t < T.

(1)

2 Parareal Dirichlet-Neumann/Neumann-Neumann waveform
relaxation algorithms

We define the new algorithms for the model problem (1) on the space-time domain
Ω × (0,T ) = (−a,b)× (0,T ). We assume that Ω is decomposed into two nonover-
lapping subdomains, i.e. Ω1 =(−a,0) and Ω2 =(0,b), and the time interval (0,T ) is
decomposed into N equal time subintervals (Tn,Tn+1) with ∆T = Tn+1−Tn = T/N,
n = 0,1, . . . ,N− 1. We then can define the non-overlapping space-time subdomain
Ωi,n = Ωi× (Tn,Tn+1), i = 1,2,n = 0,1, . . . ,N−1; see Figure 1.

In order to introduce the parareal Dirichlet-Neumann waveform relaxation algo-
rithm for the model problem (1), we first introduce several propagators. We define
two propagator F1,n(U(x),ω(t)) and G1,n(U(x),ω(t)) to solve the following Dirich-
let problem in Ω1,n

∂u1,n

∂ t
=

∂ 2u1,n

∂x2 + f (x, t), (x, t) ∈Ω1,n,

u1,n(−a, t) = g(−a, t), t ∈ (Tn,Tn+1),

u1,n(0, t) = ω(t), t ∈ (Tn,Tn+1),

u1,n(x,Tn) =U(x), x ∈Ω1,

(2)

using an accurate approximation and a rough approximation, where U(x) and ω(t)
are given data. Furthermore, two propagators F2,n(U(x),ω(x, t)) and G2,n(U(x),ω(x, t))
are defined to solve the following Neumann problem in Ω2,n
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∂u2,n

∂ t
=

∂ 2u2,n

∂x2 + f (x, t), (x, t) ∈Ω2,n,

∂xu2,n(0, t) = ∂xω(0, t), t ∈ (Tn,Tn+1),

u2,n(b, t) = g(b, t), t ∈ (Tn,Tn+1),

u2,n(x,Tn) =U(x), x ∈Ω2,

(3)

using an accurate approximation and a rough approximation. Therefore the parareal
Dirichlet-Neumann waveform relaxation algorithm for the model problem (1) con-
sists of the following steps: Given an initial guess ω0

n (t) along the interface Γ =
{x = 0}×(Tn,Tn+1), and an initial guess U0

i,n(x, t), and for k = 0,1,2, . . ., Step I: use
the more accurate evolution operator from (2) and (3) to calculate

uk+1
1,n (x, t) := F1,n(Uk

1,n(x),ω
k
n(t)),

uk+1
2,n (x, t) := F2,n(Uk

2,n(x),u
k+1
1,n (x, t));

Step II: update interface information

ωk+1
n (t) = θuk+1

2,n (0, t)+(1−θ)ωk
n(t);

Step III: update new initial conditions using a parareal step both in space and time
for n = 0,1, . . . ,N−1 by

Uk+1
1,n+1 = uk+1

1,n (·,Tn+1)+G1,n(Uk+1
1,n (x),ωk+1

n (t))−G1,n(Uk
1,n(x),ω

k
n(t)),

Uk+1
2,n+1 = uk+1

2,n (·,Tn+1)+G2,n(Uk+1
2,n (x),Uk+1

1,n+1(x, t))−G2,n(Uk
2,n(x),U

k
1,n+1(x, t)).

(4)
Next we will introduce the parareal Neumann-Neumann waveform relaxation al-

gorithm. Similar, we first introduce two propagators FDi,n(U(x),h(t)) and GDi,n(U(x),h(t))
to solve the following Dirichlet problem in Ωi,n

∂ui,n

∂ t
=

∂ 2ui,n

∂x2 + f (x, t), (x, t) ∈Ωi,n,

ui,n(x, t) = g(x, t), x ∈ ∂Ω ∩Ωi, t ∈ (Tn,Tn+1),

ui,n(0, t) = h(t), t ∈ (Tn,Tn+1),

ui,n(x,Tn) =U(x), x ∈Ωi,

(5)

and two propagators FNi,n(u1,n(x, t),u2,n(x, t)) and GNi,n(u1,n(x, t),u2,n(x, t)), i =
1,2 to solve the following Neumann problem in Ωi,n

∂Ψi,n

∂ t
=

∂ 2Ψi,n

∂x2 , (x, t) ∈Ωi,n,

Ψi,n(x, t) = 0, x ∈ ∂Ω ∩Ωi, t ∈ (Tn,Tn+1),

∂niΨi,n(0, t) = ∑
j

∂n j u j,n(0, t), x ∈ Γ , t ∈ (Tn,Tn+1),

Ψi,n(x,Tn) = 0, x ∈Ωi,

(6)
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using an accurate approximation and a rough approximation.
Therefore the parareal Neumann-Neumann waveform relaxation algorithm for

the model problem (1) consists of the following steps: Given an initial guess h0
n(t)

along the interface Γ = {x = 0}× (Tn,Tn+1), and an initial guess U0
i,n(x, t), and for

k = 0,1,2, . . ., Step I: use the more accurate evolution operator from (5) to calculate
the Dirichlet problem

uk+1
i,n (x, t) := FDi,n(Uk

i,n(x),h
k
n(t)), i = 1,2;

Step II: use the more accurate evolution operator from (6) to calculate the Neumann
problem

Ψ k+1
i,n (x, t) := FNi,n(uk+1

1,n (x, t),uk+1
2,n (x, t))), i = 1,2;

Step III: update interface information

hk+1
n (t) = hk

n(t)−θ(Ψ k+1
1,n (0, t)+Ψ k+1

2,n (0, t));

Step IV: update the new initial conditions using a parareal step both in space and
time for n = 0,1, . . . ,N−1 by

Uk+1
1,n+1 = uk+1

1,n (·,Tn+1)+GD1,n(Uk+1
1,n (x),hk+1

n (t))−GD1,n(Uk
1,n(x),h

k
n(t)),

Uk+1
2,n+1 = uk+1

2,n (·,Tn+1)+GD2,n(Uk+1
2,n (x),hk+1

n (t))−GD2,n(Uk
2,n(x),h

k
n(t)).

(7)

Different from regular DNWR/NNWR and using parareal to solve the subprob-
lems, our new methods are in parallel both in space and time, and there is no order
between DNWR/NNWR and parareal. Meanwhile, we don’t need to using parareal
to achieve the convergence for each subproblem for each DNWR/NNWR iteration.

Theorem 1 (Convergence for parareal DNWR). Assuming that the F-propagator
is an exact solver and G-propagator is chosen as backward Euler method, if a = b,
then θ = 1/2 is the optimal parameter and fixed T > 0, and the parareal DNWR
algorithm is convergent in finite steps; if a ̸= b, for θ = 1/2 and fixed T > 0, the
parareal DNWR algorithm is convergent.

Theorem 2 (Convergence for parareal NNWR). Assuming that the F-propagator
is an exact solver and G-propagator is chosen as backward Euler method, if a = b,
then θ = 1/4 is the optimal parameter and fixed T > 0, and the parareal DNWR
algorithm is convergent in finite steps; if a ̸= b, for θ = 1/4 and and fixed T > 0,
the parareal DNWR algorithm is convergent

Proof. The first parts of both theorems can be directly obtained by the convergence
results of parareal in [9], and DNWR and NNWR in [6]; and the proves of the
second parts are technical and will in [14], a detailed numerical study of how the
algorithm depends on the various parameters in Section 3.
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Fig. 2 Convergence of parareal DNWR for various values of the parameter θ with T = 2 and
∆T = 1/5 for a = b = 3 on the left and a = 2, b = 3 on the right.

3 Numerical experiments

The numerical experiments in this section were performed for the model problem (1)
on the domain (−a,b)× (0,T ) with f = 0, u0(x) = x(x+1)(x+3)(x−2)exp(−x),
g(−a, t) = t and g(b, t) = t exp(t). The diffusion problem is discretized using a cen-
tered finite differences with mesh size h = ∆x = 2× 10−2 in space and backward
Euler with ∆ t = 4× 10−3 in time. The domain is decomposed into the space-time
subdomains Ωi,n as described in Section 2. We test the algorithms by choosing
h0

n(t) = t2, t ∈ (Tn,Tn+1) as an initial guess.
We first test the parareal DNWR algorithm. Figure 2 shows the convergence be-

havior for different values of θ with T = 2 and ∆T = 1/5 for the case a = b = 3
on the left, and for the case a = 2, b = 3 on the right. Note that θ = 1/2 is the best
parameter in both cases as sated in Theorem 1, and the performance of the parareal
DNWR algorithm is similar when compared to the parareal algorithm, especially
when chose the parameter θ = 1/2. Then we show the convergence behavior for the
best parameters θ = 1/2 for different numbers of the time subintervals N with T = 2
for both cases in Figure 3, and for different time window length T with ∆T = 1/5
in Figure 4. We observe that the convergence of the parareal DNWR slows down
when the number of time intervals N is increased and time interval T is increased,
which is similar to the performance of the parareal algorithm; see [9].

For the parareal DNWR algorithm, Figure 5 shows the convergence behavior for
different values of θ with T = 2 and ∆T = 1/5 for the case a= b= 3 on the left, and
for the case a = 2, b = 3 on the right. Note that θ = 1/4 is the best parameter in both
cases. Then we show the convergence behavior for the best parameters θ = 1/4 for
different numbers of the time subintervals N with T = 2 for both cases in Figure 6,
and for different time window length T with ∆T = 1/5 in Figure 7. We observe that
parareal NNWR also has the similar perfomance as that of the parareal algorithm
and parareal DNWR. However, compared to parareal DNWR, the parareal NNWR
needs almost double numbers of iterations to achieve convergence in the same cases.
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Fig. 3 Convergence of parareal DNWR for various values of the number of time subintervals N
with T = 2 and θ = 1/2 for a = b = 3 on the left and a = 2, b = 3 on the right.
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Fig. 4 Convergence of parareal DNWR for various values of the time window length T with ∆T =
1/5 and θ = 1/2 for a = b = 3 on the left and a = 2, b = 3 on the right.

4 Conclusions

We introduced the parareal DNWR and parareal NNWR algorithms for the heat
equation, and provide their convergence properties for the two subdomain decom-
position in one spatial dimension case. We showed that the convergence can be
achieved in a finite number of iterations when choosing a proper relaxation param-
eter as chose for the DNWR and NNWR algorithms. Numerical results illustrate
our analysis, which also indicate that the performance of parareal DNWR is better
than that of parareal NNWR. We will further find the possible way to improve the
performance parareal NNWR.
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Preconditioning of Iterative Eigenvalue Problem
Solvers in Adaptive FETI-DP

Axel Klawonn1, Martin Kühn1, and Oliver Rheinbach2

Abstract Adaptive FETI-DP and BDDC methods are robust methods that can be
used for highly heterogeneous problems when standard approaches fail. In these
approaches, local generalized eigenvalue problems are solved approximately, and
the eigenvectors are used to enhance the coarse problem. Here, a few iterations of an
approximate eigensolver are usually sufficient. Different preconditioning options for
the iterative LOBPCG eigenvalue problem solver are considered. Numerical results
are presented for linear elasticity problems with heterogeneous coefficients.

1 Introduction

Adaptive coarse spaces for FETI-DP or BDDC methods make use of locally com-
puted (approximate) eigenvectors to enhance the coarse problem for faster Krylov
convergence; for different approaches to domain decomposition methods with adap-
tive coarse spaces, see, e.g., [13, 5, 3, 17, 10, 6, 2, 14, 1, 15]. Of course, the solution
of the corresponding local generalized eigenvalue problems in all these approaches
adds a certain computational overhead to the setup of the method which then needs
to be amortized in the iteration phase. It has been observed that an approximation
of the eigenvectors already yields good convergence behavior; see [7]. In this paper,
we consider different types of preconditioners for the iterative eigensolvers to obtain
good approximate eigenvectors in a few steps.

We will give numerical results for the adaptive method of [8] for the equations
of linear elasticity on a bounded polyhedral domain Ω ⊂ R3, i.e., we search for
u ∈ {v ∈ H1(Ω)d : v = 0 on ∂ΩD} such that
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Ω

2µε(u) : ε(v)dx+
∫

Ω

λdiv(u)div(v)dx =
∫

Ω

f · vdx+
∫

∂ΩN

g · vds. (1)

Here, ∂ΩD ⊂ ∂Ω is a subset with positive surface measure where Dirichlet bound-
ary conditions are prescribed. Moreover, ∂ΩN := ∂Ω \∂ΩD is the Neumann bound-
ary, and λ ,µ are the Lamé constants.

2 FETI-DP with a Generalized Transformation of Basis

For an introduction of FETI-DP; see, e.g., [4, 18]. Given a polyhedral domain Ω ⊂
R3, we subdivide Ω into N nonoverlapping subdomains Ω1, . . . ,ΩN such that Ω =⋃N

i=1 Ω i. The FETI-DP system is given by Fλ = d, where

F = BBK−1
BB BT

B +BBK−1
BB K̃T

ΠBS̃−1
ΠΠ

K̃ΠBK−1
BB BT

B = BΓ S̃−1BT
Γ .

Here, S̃ΠΠ constitutes the a priori coarse space where all vertex variables are chosen
to be primal.

We then use the generalized transformation-of-basis approach, as presented in
[9] and applied to the adaptive context in [8], to enforce additional, adaptively com-
puted constraints, which we also denote as a posteriori constraints. The idea of the
transformation-of-basis approach is to make a constraint vector c corresponding to
a (generally local) constraint on the displacements u, i.e., cT u = 0 an explicit basis
vector and enforce the constraint by partial subassembly at the degree of freedom
where the new basis vector is introduced. Given these (orthogonal) transformations
T (i), i = 1, . . . ,N, we therefore solve systems with transformed stiffness matrices
K(i)

= T (i)T K(i)T (i), transformed displacements u(i) = T (i)T u(i), and transformed
right hand sides f (i) = T (i)T f (i), i = 1, . . . ,N. In the standard approach, constraints
in the jump operator B corresponding to these a posteriori primal constraints are
removed. In the generalized approach, we do not remove these rows but assem-
ble the a posteriori primal variables and directly redistribute the continuous values
subsequently to all connected subdomains. That means, in contrast to the standard
transformation-of-basis approach, we also allow for scalings of a posteriori primal
variables, e.g., obtained from the adaptive approach in the next section. For more
details, see [9, 8].

3 Adaptive FETI-DP with a Generalized Transformation of Basis

3.1 Generalized Local Eigenvalue Problems and Constraints for a
Transformation of Basis

We now present briefly the adaptive approach introduced in [7, 8]. Given a domain
decomposition Ω =

⋃N
i=1 Ω i, we define as an edge E il the interior of ∂Ωi∩ ∂Ω j ∩
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∂Ωl , i.e., excluding the end points, and as a face F i j the interior of ∂Ωi ∩ ∂Ω j.
Subsequently, we will use the index s ∈ { j, l} to describe eigenvalue problems and
their operators defined on faces (s = j) and edges (s = l), respectively. Let us note
that eigenvalue problems on faces are defined on the closure of the face.

Let Z be either a face or an edge shared by two subdomains Ωi and Ωs. We
introduce B

Z
is = [B(i)

Z
isB

(s)

Z
is ] consisting of all the rows of [B(i)B(s)] that contain

exactly one +1 and one −1. Analogously, we introduce the scaled jump operator
B

D,Z
is = [B(i)

D,Z
is B

(s)

D,Z
is ] as the submatrix of [B(i)

D B(s)
D ]. We need the local operators

Sis := blockdiag(S(i),S(s)) and P
D,Z

is := BT
D,Z

isBZ
is .

We now want to solve generalized eigenvalue problems on a subspace where Sis
is positive definite since Sis is in general only semidefinite. We therefore study the
problem of finding wk

is ∈ (kerSis)
⊥ with µk

is ≥ TOL, such that

sis(PD,Z
isvis,PD,Z

iswk
is) = µ

k
issis(vis,wk

is) ∀vis ∈ (kerSis)
⊥. (2)

There, sis(·, ·) := (·,Sis·) for uis× vis with uis,vis ∈Wi×Ws and Wi, Ws are the local
finite element spaces on Ωi and Ωs. In practice, this is achieved by implementing
projections Πis and Π is and making the computation numerically stable; cf. [13].

The constraint vectors qk
is := PT

D,Z
isSisPD,Z

iswk
is computed from the eigenvalue

problems are either defined on edges or on closed faces. The constraints on closed
faces are then split into (additional) edge constraints and constraints on the open
face. This also enables an edge by edge and face by face orthogonalization.

In our approach, an edge constraint resulting from the eigenvalue problem of two
subdomains sharing this edge will always be enforced for all subdomains sharing
this edge. This does not increase the size of the coarse problem.

All the adaptive constraints are stored in an (orthogonalized) transformation ma-
trix T which is block diagonal with respect to the subdomains and with respect to
blocks corresponding to the faces and edges. The operator RT performs the finite
element assembly in the a posteriori primal variables, i.e., in all degrees of freedom
which belong to an adaptively computed new basis vector. The transposed operator
R then redistributes the values to the individual subdomains. We define the operator
RT

µ := (RT R)−1RT . For more details, see [9, 8].
In contrast to the standard transformation-of-basis approach, we use the same

jump operator B as in the original FETI-DP master system. As a result, as in defla-
tion, the preconditioned system has at least one zero eigenvalue for each adaptively
computed constraint, i.e., for the a posteriori constraints.

The adaptive FETI-DP system using a generalized transformation of basis writes

M̂−1
T F̂λ := (B̂D

̂̃SB̂T
D) (B̂

̂̃S−1
B̂T )λ

:= (BDT Rµ(RT T T S̃T R)RT
µ T T BT

D)(BT R(RT T T S̃T R)−1RT T T BT )λ = d,
(3)
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where F̂ is the transformed FETI-DP operator and M̂−1
T is the transformed Dirichlet

preconditioner. For this system, we now give, without proof, the condition number
bound. For more details, see [8].

Theorem 1. Let NF denote the maximum number of faces of a subdomain, NE the
maximum number of edges of a subdomain, ME the maximum multiplicity of an edge
and TOL a given tolerance for solving the local generalized eigenvalue problems. If
all vertices are chosen to be primal, the condition number κ(M̂−1

T F̂) of the FETI-DP
algorithm with adaptive constraints enforced by the generalized transformation-of-
basis approach satisfies

κ(M̂−1
T F̂)≤ 4max{NF ,NE ME }2TOL.

3.2 Solving the Local Generalized Eigenvalue Problems

Adaptive methods are most suitable for hard problems that are not solvable by
standard techniques, e.g., as a result of strong heterogeneities present in the prob-
lem. However, as a result of these heterogeneities the local generalized eigenvalue
problems can also be expected to be ill-conditioned, and unpreconditioned itera-
tive eigensolvers may also struggle; see, e.g., [16]. As in [16], we use the iterative
LOBPCG eigenvalue problem solver; see [12]. In practice, when using two projec-
tions Πis and Π is to remove the rigid body modes from Sis, the right hand side of
the eigenvalue problems writes

Π is(ΠisSisΠis +σis(I−Πis))Π is +σis(I−Π is) (4)

where σis is chosen as σis = max(diag(Sis)). The projection I−Π is consists of the
sum of several rank one matrices, and we usually avoid to building the matrix ex-
plicitly. The operator ΠisSisΠis +σis(I−Πis) can be built cheaply by only scaling
a few rows and columns of the Schur complements and adding some constants; see
Figure 1 for the nonzero pattern of Sis and ΠisSisΠis +σis(I−Πis).

We test five different preconditioners for the iterative eigensolver. First, we take
a Cholesky decomposition of the fully assembled right hand side (4) as the (expen-
sive) base line to compare against. We also test an LU and ILU(0) decomposition
of ΠisSisΠis +σis(I−Πis) and use the projection Π is to remove the corresponding
kernel from the preconditioner, i.e., we, e.g., use

Π isLU
(

ΠisSisΠis +σis(I−Πis)
)

Π is,

where LU(·) denotes the computation of the LU decomposition of the argument.
Finally, we also test two different local lumped versions, i.e., an LU and a ILU(0)
decomposition of KΓ Γ ,is = blockdiag(K(i)

Γ Γ
,K(s)

Γ Γ
), so for the LU decomposition, we

implement the preconditioner
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Fig. 1 Representative nonzero pattern of the matrices Sis (left) and Sis−
[
ΠisSisΠis +σis(I−Πis)

]
(center) for two randomly chosen subdomains Ωi, Ωs. Composite material with irregular decom-
position (right; visualization for N = 27 and 1/h = 10N1/3). In the right picture, large coefficients
E2 = 1e+ 06 are shown in dark purple in the picture and low coefficients are not shown; subdo-
mains are shown in different colors in the background and by half-transparent slices.

Π isΠisLU
(

KΓ Γ ,is

)
ΠisΠ is.

3.3 Heuristic Modifications

As in [7], we will introduce two heuristic variants (denoted Algorithm Ib and Ic).
The original algorithm is denoted Algorithm Ia.

Algorithm Ib: Reducing the number of edge eigenvalue problems We dis-
card edge eigenvalue problems for edges that do not have high coefficient jumps in
their neighborhood of one finite element.

Algorithm Ic: Reducing the number of edge constraints In addition, we also
discard all edge constraints from face eigenvalue problems if there are no coefficient
jumps in the neighborhood of the edge.

The condition number bound derived for Algorithm Ia will, in general, not hold
for the two variants, however, it is likely that a modified theory, using slab tech-
niques as in [10], can be derived for Algorithm Ib.

4 Numerical Results

We present numerical results for Algorithms Ia, Ib, and Ic. We have a soft matrix
material with E1 = 1 with 4N2/3 stiff beams with E2 = 1e+ 06; see Fig. 1. We
consider Ω = [0,1]3 with Dirichlet boundary conditions for the face with x = 0
and zero Neumann boundary conditions elsewhere; we have f = [0.1,0.1,0.1]T and
E(x) ∈ {1,1e + 6}. For the domain decomposition, the METIS graph partitioner
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with options -ncommon=3 and -contig is used. Each local eigenvalue problem
is solved using LOBPCG with a block size 10, a given number of maximum iter-
ations from {5,25,100}, and a preconditioner; see Section 3.2. Our a priori coarse
space uses at least three primal vertices on each edge in order to remove local hinge
modes; see [13, 7]. We also set edge nodes primal that belong to an single noded
edges. The corresponding edge eigenvalue problem becomes superfluous. We as-
sume the Young modulus E(x) to be constant on each finite element, and we use
ρ-scaling in the form of patch-ρ-scaling. The coefficient (E(x∗)) at a node x∗ will
be set as the maximum coefficient on the support of the corresponding nodal basis
function ϕx∗ ; cf. [11]. In the tables, “κ” denotes the condition number of the adap-
tively preconditioned FETI-DP operator, “its” the number pcg iterations, “|Π ′|” the
size of the initial vertex coarse space and “|Π |” the size of the corresponding a pos-
teriori coarse space; the number of subdomains is “N”. The pcg algorithm is stopped
after a relative reduction of the starting residual by 10−10 or when 500 iterations are
reached.

5 Conclusion

We have presented results for different preconditioniers of the local generalized
eigenvalue problems. Obviously, the most expensive algorithm, the Cholesky de-
composition of the assembled right hand side of the eigenvalue problem yields the
best results with respect to the condition numbers and the iteration counts of the
FETI-DP algorithm. In this case, only a few iterations (e.g., 1-5) of the LOBPCG
solver are sufficient; cf. also our results in [7, 8]. However, an LU or ILU(0)-
factorization of ΠisSisΠis +σis(I−Πis) with a few more iterations can suffice. To
choose an LU or ILU decomposition of ΠisSisΠis + σis(I −Πis) is a reasonable
choice since this matrix can be built easily but just manipulating a few rows and
columns of Sis; see Figure 1. Note that the slight differences in the condition num-
bers and iteration counts result from a small difference in the coarse space size. The
results for the lumped preconditioner, an LU or ILU decomposition of KΓ Γ ,is are
given for completeness and to show that the results were not as satisfactory as ex-
pected. Eventually, note from [8] that also too many iterations (e.g., 200) of the local
solver might not be helpful if the local scheme diverges without notice. A heuristic
strategy for an (almost) optimal a priori choice of the maximum LOBPCG iteration
number is still under development.
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ΠisΠ is.

Algorithm Ia Algorithm Ib Algorithm Ic
N |Π ′| LOBPCG κ its |Π | κ its |Π | κ its |Π |
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25 3.83e+04 500 441 3.83e+04 500 441 1.56e+05 500 102
100 452.95 126 442 452.95 126 442 468.46 129 81

43 351 5 1.06e+06 500 0 1.06e+06 500 0 1.06e+06 500 0
25 5.97e+04 500 1254 5.97e+04 500 1254 1.72e+05 500 273
100 677.56 181 936 677.56 181 936 685.30 183 213

Local Preconditioner: Π isΠisILU(0)
(

KΓ Γ ,is

)
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9. Axel Klawonn, Martin Kühn, and Oliver Rheinbach. FETI-DP and BDDC methods with
a transformation of basis for heterogeneous problems: Connections to deflation. Technical
report, Technische Universität Bergakademie Freiberg, Fakultät für Mathematik und Infor-
matik, Preprint 2017-01, 2017. http://tu-freiberg.de/fakult1/forschung/
preprints. Submitted.

10. Axel Klawonn, Patrick Radtke, and Oliver Rheinbach. FETI-DP methods with an adaptive
coarse space. SIAM J. Numer. Anal., 53(1):297–320, 2015.

11. Axel Klawonn and Oliver Rheinbach. Robust FETI-DP methods for heterogeneous three
dimensional elasticity problems. Comput. Methods Appl. Mech. Engrg., 196(8):1400–1414,
2007.

12. Andrew V. Knyazev. Toward the optimal preconditioned eigensolver: Locally optimal block
preconditioned conjugate gradient method. SIAM J. Sci. Comput., 23(2):517–541, 2001.
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Using Algebraic Multigrid in Inexact BDDC
Domain Decomposition Methods

Axel Klawonn, Martin Lanser, and Oliver Rheinbach

1 Introduction

Traditionally, domain decomposition methods use sparse direct solvers as building
blocks, i.e., to solve local subdomain problems and/or the coarse problem. Often,
the sparse direct solvers can be replaced by spectrally equivalent preconditioners
without loss of convergence speed. In FETI-DP and BDDC domain decomposition
methods, such approaches have first been introduced in [9, 8, 4], and have since then
successfully been used in large parallel codes [6, 1].

2 An Inexact BDDC Method

2.1 A BDDC Preconditioner for the Assembled System

Let us briefly describe the BDDC preconditioner which can directly be applied to a
linear system

Au = b (1)

arising from a finite element discretization of a partial differential equation on a
computational domain Ω ⊂Rd , d = 2,3. The variant discussed here was first intro-
duced in [9]. Let Ωi, i = 1, . . . ,N, be a nonoverlapping domain decomposition of
Ω such that Ω =

⋃N
i=1 Ω i. Each subdomain Ωi is discretized using finite elements,
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{axel.klawonn,martin.lanser}@uni-koeln.de

Oliver Rheinbach
Institut für Numerische Mathematik und Optimierung, Fakultät für Mathematik und Infor-
matik, Technische Universität Bergakademie Freiberg, Akademiestr. 6, 09596 Freiberg, e-mail:
oliver.rheinbach@math.tu-freiberg.de

1



2 Axel Klawonn, Martin Lanser, and Oliver Rheinbach

the corresponding local finite element spaces are denoted by Wi, i = 1, . . . ,N, and
the product space is defined by W =W1× . . .×WN . Let us also introduce the global
finite element space V h corresponding to the discretization of Ω and a restriction
R : V h→W . We obtain local problems in the spaces Wi

Kiui = fi, i = 1, · · · ,N.

Introducing the block operators

K =

K1
. . .

KN

 , f =

 f1
...
fN

 ,

we can write A := RT KR and b := RT f . Finally, the interface between the subdo-
mains is Γ :=

⋃N
i=1 ∂Ωi \∂Ω . Let us assume that the degrees of freedom (d.o.f.) on

the Dirichlet boundary ∂ΩD ⊂ ∂Ω are eliminated.
We use the index Γ for degrees of freedom on Γ . For degrees of freedom in the

interior of the subdomains and on the Neumann boundary ∂ΩN ⊂ ∂Ω , we use the
index I. For the construction of a BDDC preconditioner directly applicable to the
assembled linear system Au = b, we subdivide, as usual in BDDC and FETI-DP
methods, the interface Γ into primal (Π ) and the remaining dual (∆ ) degrees of
freedom. As primal variables usually subdomain vertices or averages over edges or
faces are chosen.

Let us introduce the space W̃ ⊂W of functions, which are continuous in all primal
variables and the restriction operator R̄ : W̃ →W . We can now define a partially
assembled system matrix

K̃ := R̄T KR̄ (2)

and the corresponding right hand side f̃ := R̄T f . Using a scaled restriction operator
R̃D : V h→ W̃ , we define the BDDC preconditioner by

M−1
BDDC :=

(
R̃T

D−H PD

)
K̃−1

(
R̃D−PT

D H T
)

; (3)

see [9]. Here, H : W̃ →V h is a discrete harmonic extension operator defined by

H :=
(

0 −(KII)
−1 K̃T

Γ I
0 0

)
, (4)

where KII and K̃Γ I are blocks of the partially assembled stiffness matrix

K̃ =

(
KII K̃T

Γ I
K̃Γ I K̃Γ Γ

)
, (5)

which are common to both, BDDC and FETI-DP methods. The matrix KII is block-
diagonal and applications of K−1

II only require local solves on the interior parts of
the subdomains and are thus easily parallelizable.
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Finally, let PD : W̃ → W̃ be a scaled jump operator defined by

PD = I−ED := I− R̃R̃T
D. (6)

In the FETI-DP literature this operator is often defined as PD = BT
DB; see [12, Chap-

ter 6] and [9] for more details. There, B is the standard jump matrix used in FETI-
type methods. Let us remark that the preconditioned system M−1

BDDCA has, except for
some eigenvalues equal to 0 and 1, the same spectrum as the standard BDDC pre-
conditioner formulated on the Schur complement; see [9, Theorem 1]. Therefore,
under sufficient assumptions (see [9, Assumption 1]), the condition number of the
preconditioned system is bounded by

κ(M−1
BDDCA)≤Φ(H,h). (7)

For a homogeneous linear elasticity problem, if appropriate primal constraints are
chosen, we obtain the well known BDDC (and FETI-DP) condition number bound
with Φ(H,h) = C(1+ log(H/h))2. Here, H always denotes the maximal diameter
of all subdomains and h the minimal diameter of all finite elements.

2.2 Using Inexact Solvers and Implementation Remarks

In this paragraph, we describe the use of inexact solvers in the preconditioner M−1
BDDC

as suggested in [9] and also provide some remarks on our implementation. We as-
sume that K̂−1 and K̂−1

II are spectrally equivalent preconditioners for K̃ and KII ,
respectively. In this paper, we always choose a fixed number of V-cycles of an
AMG method for solving problems including K̃−1 and K−1

II for those precondi-
tioners. While K̂−1 requires an MPI parallel implementation of an AMG method,
an application of K̂−1

II requires only a sequential AMG, due to the block diagonal
structure of KII . Using K̂−1

II , we define an approximate discrete harmonic extension
Ĥ by

Ĥ :=
(

0 −K̂−1
II K̃T

Γ I
0 0

)
. (8)

We investigate two different variants of the inexact BDDC preconditioner in this
paper, namely

M̂−1
BDDC,1 :=

(
R̃T

D−H PD

)
K̂−1

(
R̃D−PT

D H T
)

(9)

and
M̂−1

BDDC,2 :=
(

R̃T
D−Ĥ PD

)
K̂−1

(
R̃D−PT

D Ĥ T
)
. (10)

Let us remark that in M−1
BDDC,1 the discrete harmonic extension is applied exactly

using a direct solver, while in M−1
BDDC,2 the approximate discrete harmonic extension
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Ĥ is used. Assuming that we have chosen an appropriate K̂, i.e., satisfying

c̃uT K̃u≤ uT K̂u≤ C̃uT K̃u, ∀u ∈ W̃ , (11)

a condition number bound of the same quality as (7) is valid,

κ(M−1
BDDC,2A)≤ C̃C

c̃
(1+Φ(H,h));

see [9, Theorem 4]).
Our parallel implementation uses C/C++ and PETSc version 3.6.4 [3]. While

the matrix K̃ is an MPI parallel matrix, all other matrices are completely local
to the computational cores. All restrictions and prolongations are performed using
PETSc VecScatter and VecGather operations. More details on the implementation
of the linear BDDC preconditioner can be found in [7], where a parallel imple-
mentation of an nonlinear inexact BDDC method is applied to hyperelasticity and
elasto-plasticity problems.

2.3 The GM (Global Matrix) Interpolation

Good constants c̃,C̃ in equation (11) are important for fast convergence. It is well
known, that for scalability of multigrid methods the preconditioner should preserve
nullspace or near-nullspace vectors of the operator. This is especially important for
K̃. It is a bit less important for the blocks K(i)

II in KII , where a large portion of the
boundary has Dirichlet data. In this latter case, standard methods can also work well.

Since the AMG method should preserve the nullspace of the operator on all lev-
els, these nullspace vectors have to be in the range of the AMG interpolation. While
classical AMG guarantees this property only for constant vectors, the global matrix
approach (GM), introduced in [2], allows the user to specify certain near-nullspace
vectors, which are interpolated exactly from the coarsest to the finest level; details
on the method and its scalability can be found in [10, 2]. Since we are interested in
linear elasticity problems, we choose the rotations of the body in W̃ for the exact in-
terpolation. All translations of the body are already interpolated exactly in classical
AMG approaches for systems of PDEs since they use classical interpolation applied
component-by-component. We partially assemble the rotations of the subdomains
Ωi in the primal variables. In our implementation, we always use BoomerAMG
from the hypre package [5], where a highly scalable implementation of the GM2
approach is integrated; see [2]. We will compare the use of the GM2 approach with
a hybrid AMG approach for systems of PDEs. By hybrid AMG approaches, we refer
to methods, where the coarsening is based on the physical nodes (nodal coarsening)
but the interpolation is based on the unknowns. In general, a nodal coarsening ap-
proach is beneficial for the solution of systems of PDEs, and all degrees of freedom
belonging to the same physical node are either all coarse or fine on a certain level.
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The latter fact is also mandatory for the GM approach. Therefore, GM is based on
the same nodal coarsening and can also be considered as a hybrid approach.

3 Numerical Results

As model problems, we choose linear elasticity problems in two and in three dimen-
sions. In two dimensions, we consider a beam Ω = [0,8]×[0,1] with a homogeneous
Dirichlet boundary condition on the left; see also Fig. 1. A constant volume force is
applied in y-direction and the material is chosen to be homogeneous with E = 210
and ν = 0.3.

Fig. 1 Beam problem in two dimensions; exemplary decomposition in 32 subdomains depicted.

We first provide a comparison of the preconditioners M−1
BDDC,1 and M−1

BDDC,2 using
a hybrid AMG approach or the GM2 approach for K̂, respectively; see Fig. 2 for
the results. Let us remark that we always use the standard hybrid approach for the
approximation of the discrete harmonic extension Ĥ in the case of M−1

BDDC,2, since
this appears to be sufficient so far; also see the remark above on the large Dirichlet
boundary. We always use an HMIS coarsening, extended + i interpolation, and a
threshold of 0.375 for the detection of strong coupling. The interpolation operators
of the AMG method are truncated to a maximum of Pmax entries per row, to keep the
operator complexity low and to obtain sufficient weak scalability. We always choose
Pmax such that the operator complexity of the hybrid approach and GM2 approach
are similar, to provide a fair comparison. We always use preconditioned GMRES
with a relative stopping criteria of 10−8.

In Fig. 2, we present results for the two dimensional beam which is decomposed
into 512 subdomains. We increase the problem size by increasing the subdomain
size. As primal constraints, we only consider subdomain vertices. We use piecewise
quadratic finite elements and thus, the smallest problem carries 882 and the largest
problem 136K degrees of freedom per subdomain. We always use one MPI rank per
subdomain but use two MPI ranks for each core of the JUQUEEN BlueGene/Q at
Forschungszentrum Jülich, Germany, to make use of the hardware threads. There-
fore, we have 500 MB of memory available for each subdomain. Using direct solvers
for the discrete harmonic extension (i.e., M−1

BDDC,1), we always have slightly lower
GMRES iteration counts and faster runtimes compared to M−1

BDDC,2, but M−1
BDDC,2

is more memory efficient. The largest problem, which can be solved with M−1
BDDC,1
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carries 81K d.o.f. per subdomain (H/h = 100), while M−1
BDDC,2 can handle problems

twice as large, with 136K d.o.f. per subdomain (H/h = 130).
As expected, BDDC using the GM2 approach clearly outperforms the hybrid

approach. While the iteration count grows with H/h for the hybrid approach, it stays
nearly constant for the GM2 approach. For the problem with H/h = 120, M−1

BDDC,2

with GM2 is six times faster than M−1
BDDC,2 combined with the hybrid approach,

and for H/h = 130, M−1
BDDC,2 with the hybrid approach does not fit in the memory.

Choosing Pmax = 2 solves this problem, but the number of iterations is even higher.

Fig. 2 Comparison for growing H/h and 512 subdomains of the different preconditioners M−1
BDDC,1

using direct solvers (UMFPACK) for the discrete harmonic extension and M−1
BDDC,2 using an inexact

discrete harmonic extension. Both variants are equipped with hybrid AMG (marked with an H)
or GM2, respectively. pmax denotes the truncation of the interpolation matrices. Left: GMRES
iterations. Right: Time to solution. Computation performed on JUQUEEN BlueGene/Q at FZ
Jülich, Gemany.

We also present a weak scaling study for the best performing combination of
M−1

BDDC,2 and the GM2 approach using H/h = 80 and H/h = 100; see Fig. 3. While
a radical truncation of Pmax = 2 works fine for up to 8192 subdomains, Pmax = 4 is
necessary for the larger configurations. All in all, the parallel efficiency of 91% on
131K MPI ranks and 65K cores and a total problem size of 10 billion degrees of
freedom is satisfying.

Finally, we present a weak scaling study in three dimensions. We again consider a
linear elastic material and deform a heterogeneous cube. We have a single spherical
stiff inclusion (E = 21000, nu = 0.3) in each subdomain. The remaining material
is softer with E = 210, nu = 0.3. This time, we choose piecewise linear finite ele-
ments, H/h = 20, and, as primal constraints, we enforce continuity in all subdomain
vertices and in the midpoints of all edges. We use the same AMG settings as before.
In Fig. 4, we again observe a sufficient weak scaling behavior using M−1

BDDC,2 with
the GM2 approach, while the hybrid approach cannot deliver satisfying convergence
behavior, since it cannot fulfill (11) with good bounds.



Using Algebraic Multigrid in Inexact BDDC Domain Decomposition Methods 7

Fig. 3 Weak scalability for H/h = 80 and H/h = 100 and different truncations pmax. Setup de-
notes the BDDC setup time, including all AMG setup times and Solve the time spent in the GMRES
iteration. Computation performed on JUQUEEN BlueGene/Q at FZ Jülich, Gemany.

Fig. 4 Heterogeneous and linear elastic material in three dimensions; H/h = 20. See Fig. 2 for
the remaining notation. Good scalability is achieved using the GM2 interpolation. Computation
performed on JUQUEEN BlueGene/Q at FZ Jülich, Gemany.

4 Conclusion

We have shown that a classical AMG approach based on nodal coarsening for sys-
tems of PDEs is not sufficient as a preconditioner of the partially coupled matrix in
the inexact BDDC approach introduced in Li and Widlund [9], since, for elasticity,
it does not fulfill (11) with good bounds. This can be resolved using the GM2 ap-
proach, which preserves the nullspace of the partially assembled stiffness matrix in
the inexact BDDC method [9]. Our results show that the inexact BDDC approach
from [9] using a classical AMG preconditioner with GM2 interpolation is highly
parallel scalable and memory efficient.
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On the Accuracy of the Inner Newton Iteration
in Nonlinear Domain Decomposition

Axel Klawonn, Martin Lanser, Oliver Rheinbach, and Matthias Uran

1 Introduction

Nonlinear FETI-DP methods [4, 5, 6, 7] belong to the family of nonoverlapping non-
linear domain decomposition methods and can be used to solve discrete nonlinear
problems A(u) = 0 arising from the discretization of nonlinear partial differential
equations. They can be characterized by decomposition before linearization, and
they can be interpreted as nonlinearly right-preconditioned Newton-Krylov meth-
ods; see [6]. These methods localize work and have shown to be highly scalable to
more than 131072 cores [6].

We decompose the computational domain Ω ⊂Rd , d = 2,3, into N nonoverlap-
ping subdomains Ωi, i = 1, . . . ,N, such that Ω =

∪N
i Ωi. The associated local finite

element spaces are denoted by W (i) and the product space by W =W (1)×·· ·×W (N).
We introduce W̃ ⊂W as the space of all finite element functions from W which are
continuous in certain primal variables, e.g., subdomain vertices.

The fully assembled original finite element problem is equivalent to the nonlinear
FETI-DP saddle point system

A(ũ,λ ) =
[

K̃(ũ)+BT λ − f̃
Bũ

]
=

[
0
0

]
, ũ, f̃ , K̃(ũ) ∈ W̃ ; (1)

see [4]. Nonlinear FETI-DP methods are based on solving (1). Here, Lagrange mul-
tipliers λ ∈V are used to decompose the nonlinear problem into parallel local prob-
lems on subdomains, and the linear constraint Bũ = 0 enforces the continuity of
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1. Mapping: M : W̃ ×V → W̃ ×V .
2. M puts the current iterate into the neighborhood of the solution; see also [1].
3. M(ũ,λ ) is easily computable compared to the inverse action of A(ũ,λ ).

Fig. 1 Properties on the nonlinear preconditioner M for nonlinear FETI-DP methods.

the solution across the interface for nonprimal variables. Here, B is the standard
finite element jump operator and the space of Lagrange multipliers is defined as
V := range(B).

Instead of solving A(ũ,λ ) = 0 directly with Newton’s method, which was de-
noted Nonlinear-FETI-DP-1 in [4, 6], we introduce a nonlinear right-preconditioner
M(ũ,λ ); see Figure 1 for some desirable properties the preconditioner should fulfill.
The resulting nonlinear equation

A(M(ũ,λ )) = 0 (2)

is solved by a Newton-Krylov method. In each Newton iteration the evaluation of the
preconditioner g(k) = M(ũ(k),λ (k)) is computed. The nonlinear right-preconditioner
can be used to describe a (partial) nonlinear elimination of variables [3]. We intro-
duce the index sets E and L, where E is the set of variables which will be eliminated
nonlinearly by the application of M and L is the set of variables which will be lin-
earized. According to these two index sets, we split the variables ũ, and the jump
operator B, ũ = (ũE , ũL), B =

[
BE BL

]
. Using this splitting, the nonlinear system

(1) writes

A(ũE , ũL,λ ) =

AE(ũE , ũL,λ )
AL(ũE , ũL,λ )
BE ũE +BLũL

=

 K̃E(ũE , ũL)+BT
Eλ − f̃E

K̃L(ũE , ũL)+BT
L λ − f̃L

BE ũE +BLũL

=

0
0
0

 . (3)

Since the nonlinear elimination process is restricted to the variables ũE , the non-
linear preconditioner M(ũ,λ ) is linear in ũL and λ . Therefore, we introduce the
following notation

M(ũ,λ ) = M(ũE , ũL,λ ) := (MũE (ũE , ũL,λ ), ũL,λ ) = (MũE (ũL,λ ), ũL,λ ) (4)

and MũE (ũE , ũL,λ ) is defined implicitly by

K̃E(MũE (ũE , ũL,λ ), ũL)+BT
Eλ − f̃E = 0. (5)

Hence, for the evaluation of g(k) := M(ũ(k)E , ũ(k)L ,λ (k)), the nonlinear system

AE(g(k)) = 0 (6)

has to be solved for fixed ũ(k)L and λ (k) until a sufficient tolerance εI is reached, e.g.,
by Newton’s method with the partial update



On the Accuracy of the Inner Newton Iteration in Nonlinear Domain Decomposition 3

g(k)0 = (ũ(k),λ (k)) and l = 0

while ||AE(g
(k)
l )||> εI do

Newton update to g(k)l+1
l = l +1
g(k) = g(k)l

end while

g(k)0 = (ũ(k),λ (k)), l = 0, Jold =
1
2 ||A(g

(k)
0 )||2

while ||AE(g
(k)
l )||> εI do

Newton update to g(k)l+1

Compute: Jnew = 1
2 ||A(g

(k)
l+1)||

2

if Jnew > τJold then
g(k) = g(k)l
break while

else
Jold = Jnew

end if
l = l +1
g(k) = g(k)l

end while

Fig. 2 Left: Computation of M. Right: Computation of M .

g(k)E,l+1 = g(k)E,l− (DũE AE(g
(k)
l ))−1AE(g

(k)
l ); (7)

see also Figure 2 on the left. Thus, the application of the nonlinear right-preconditioner
is nothing else than minimizing the energy JE(ũ,λ ) := 1

2 ||AE(ũ,λ )||2.

Replacing ũE in the second and third line of (3) by MũE (ũL,λ ) yields the nonlin-
ear Schur complement

SL(ũ,λ ) :=
[

K̃L(MũE (ũL,λ ), ũL)+BT
L λ − f̃L

BEMũE (ũL,λ )+BLũL

]
. (8)

Finally, we can solve the resulting nonlinear Schur complement system SL(ũ,λ ) = 0
with standard Newton-Krylov-FETI-DP (see [4]). For more details, we also refer
to [6].

2 Nonlinear FETI-DP Methods Using Energy Reducing
Nonlinear Preconditioning

It is possible that the nonlinear elimination presented above leads to an increase in
the global energy J(ũ,λ ) = 1

2 ||A(ũ,λ )||
2, e.g., if the strong nonlinearities are not

contained in the index set E. In this case, our nonlinear FETI-DP methods can show
a loss of robustness and performance compared to the traditional Newton-Krylov-
FETI-DP approach; see Section 3. It can also happen, that our nonlinear FETI-DP
methods do not converge to a solution due to an inappropriate coarse space.

To increase the convergence radius for Newton type methods it is standard to en-
force a sufficient decrease in the global energy J in each Newton step [9]. This can be
achieved by controlling the Newton update. If the Newton update does not result in
a sufficient decrease of the energy, the Newton step is rejected and replaced, e.g., by
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a steepest descent step. To prove global convergence properties, usually additional
assumptions about the step length have to be fulfilled, which can be controlled by a
line search approach enforcing certain conditions of, e.g., Armijo or Wolfe type [8].
For the use of line search in nonlinear FETI-DP methods, see [4].

Analogously to classical Newton-Krylov approaches, it is also possible to apply
these strategies to nonlinear right-preconditioned Newton-Krylov methods, which
is not considered in this paper. Nevertheless, we additionally have to control the
application of the nonlinear preconditioner to enforce an energy decrease in each
step, or, at least, to avoid an increase with respect to J.

To enlarge the convergence radius of our nonlinear FETI-DP methods we there-
fore have to compute g(k) not only with respect to JE = 1

2 ||AE ||2 but also J = 1
2 ||A||

2;
cf. (3).

As described above, the application of the nonlinear preconditioner M in our
nonlinear FETI-DP methods leads to a minimization of 1

2 ||AE(ũ,λ )||2, but we do
not control how the global energy J evolves during this update process. To do so,
we introduce an approximation M (ũ,λ ) of M(ũ,λ ), which at least does not in-
crease the global energy J. The idea is, to stop the Newton iteration and choose
M (ũ,λ ) = gl whenever the updated gl+1 does not fulfill the simple decrease prop-
erty J(gl+1) ≤ τJ(gl) for the global energy functional. We thus avoid oversolving
in the inner Newton iteration, somewhat analogously to inexact Newton methods
with carefully chosen forcing terms [2]. To make this property a robust decrease
condition, we choose 0 < τ ≤ 1 and, if not noted otherwise, we use τ = 0.8 in our
experiments. For more details see Figure 2 on the right.

It is obvious that this approach never leads to an increased number of inner New-
ton iterations but it can end up with two extreme cases. First, if the decrease prop-
erty is fulfilled for all inner Newton steps we have M (ũ,λ ) = M(ũ,λ ). Second,
if the decrease condition is not fulfilled for the first inner Newton step, we obtain
M (ũ,λ ) = (ũ,λ ) and the application of M reduces to the identity. The latter case is
identical to a single step of Nonlinear-FETI-DP-1, regardless which set of variables
E is chosen. Let us briefly recall the definition of Nonlinear-FETI-DP-1 from [6],
where the variable set E is chosen to be the empty set. Let us also remark that in the
second case all factorizations from the inner Newton iteration can be recycled for
the subsequent outer Newton iteration and therefore no additional work compared
with a Nonlinear-FETI-DP-1 step is necessary.

Let us remark that we handle the very first computation of M in a slightly dif-
ferent way, since we do not want to rely on the initial value ũ(0). We do not stop the
Newton iteration if J(g1) > τJ(g0) but we also compute gl until J(gl) ≤ τJ(gl−1),
l ≥ 2, is not fulfilled. In a similar way we can control the computation of the initial
value K̃(ũ(0)) = f̃ −BT λ (0) (see [4]) in the Nonlinear-FETI-DP-1 approach.

In each outer Newton iteration, we now have to solve the linear system

DA
(
M (ũ(k),λ (k))

)(
δ ũ(k),λ (k)

)T
= A

(
M (ũ(k),λ (k))

)
. (9)

Here, the entries in the right hand side belonging to the index set E can not be
guaranteed to be zero due to the fact that M might just be an approximation to M.
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3 Numerical Results

In this section, we present numerical results for nonlinear FETI-DP methods using
the newly introduced energy reducing and robust preconditioner and compare them
to the nonlinear FETI-DP methods introduced in [4, 5, 6, 7] and to the traditional
Newton-Krylov-FETI-DP approach. To provide a fair comparison, we choose for
all methods the same initial values u(0)(x1,x2) = x1 ·x2 · (1−x1) · (1−x2), λ (0) = 0,
and the same tolerances εI and εO. Inner Newton iterations are stopped if 1

2 ||AE ||2 ≤
εI = 1e−12 or the decrease condition is not fulfilled and the global Newton iteration
is stopped if 1

2 ||A||
2 ≤ εO = 1e−12.

We refer to the nonlinear FETI-DP methods als NL-i, i = 1, . . . ,4, and to the
nonlinear FETI-DP methods using the new nonlinear preconditioner as NL-ane-i,
i = 1, . . . ,4. The traditional Newton-Krylov-FETI-DP method is denoted NK. Let
us briefly recall the different nonlinear variants from [6] by specifying the nonlinear
elimination sets. We choose E = /0 in NL-1, E = [I,∆ ,Π ] in NL-2, E = [I,∆ ] in NL-
3, and E = I in NL-4, where I denotes the set of variables inside subdomains, Π
denotes the set of primal variables, and ∆ denotes the set of all remaining interface
variables.

As a model problem, we choose a two dimensional problem based on the scaled
p-Laplace operator for p = 4

α∆pu := div(α|∇u|p−2∇u).

We consider

−α∆4u − β∆2u = 1 in Ω
u = 0 on ∂Ω,

with the computational domain Ω = (0,1)2 and the coefficients α = 1e5 and β = 1.
The computational domain is decomposed into square subdomains and dis-

cretized by piecewise linear finite elements. We choose a problem, where the non-
linearities have a nonlocal character. Here, columns of subdomains are intersected
by channels of width H/2 from the upper to the lower boundary of Ω , where H
is the width of a subdomain; see the left picture in Figure 3. To simulate a less
structured domain decomposition, we also consider subdomains with ragged edges;
see the right picture in Figure 3 for details. For all our tests we used a sequen-
tial MATLAB implementation and we exclusively consider subdomain vertices as
primal constraints. Due to our sequential implementation, we choose and evaluate
different metrics or indicators to obtain a good estimation of the parallel potential of
the different nonlinear FETI-DP preconditioner variants. As a metric for the global
communication, we count the number of Krylov iterations (denoted # Krylov It.).
For the local work, we count the number of factorizations of DK̃BB or DK̃II (de-
noted by “Local Fact.”), and we also count the factorizations of the FETI-DP coarse
problem (denoted by “Coarse Fact.”). Factorizations of the coarse problem are nec-
essary in the computation of the initial value for NL-1 and in the evaluation of the
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Fig. 3 Left: Channels with a width of H/3, where H is the width of a subdomain; α = 1e5. Right:
Domain decomposition with ragged edges, H/h = 16.

nonlinear preconditioner for NL-2, while the evaluation of the preconditioner for
NL-3 and NL-4 does not include factorizations of the coarse problem. Therefore,
we subdivide the section “Coarse Fact.” into factorizations of the coarse problem
in the first/inner loop (denoted by “in.”) and in the main loop (denoted by “out.”).
For all methods the number of outer coarse factorizations is equal to the number of
Newton steps.

For our model problem, the index set E does not contain the nonlinearities for the
NL-4 and NL-ane-4 method. As a result the performance of NL-4 is worse than the
performance of the traditional NK approach and the number of local factorizations
of NL-ane-4 is equal to the number of Newton steps plus one. This shows that the
elimination of the interior variables is inappropriate for this problem, but NL-ane-4
detects this and avoids spending time in the evaluation of the inappropriate nonlinear
preconditioner. As a consequence, NL-ane-4 is nearly equivalent to NL-1 without
the computation of the initial value or to NK and thus superior compared to NL-4.
The difference of one factorization results from the additional step in the inner loop
in the very first Newton step.

For the structured decomposition into square subdomains NL-2, NL-3, NL-ane-
2, and NL-ane-3 perform quite similar. The number of local solves for NL-ane-2 and
NL-ane-3 is half as large as for NL-2 and NL-3, but the number of Krylov iterations
is slightly higher.

For the less structured decomposition with ragged edges the chosen coarse space
(subdomain vertices) is insufficient for NL-2 and NL-3, so these methods do not
converge, but using the new approach leads to convergence and saves about 50% of
Newton steps and Krylov iterations compared to the traditional NK approach. The
new strategy thus increases the convergence radius for NL-2 and NL-3.

4 Conclusion

We have introduced a strategy to automatically decide on the computational effort
to be spent in the inner Newton iteration in nonlinear domain decomposition. The
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Table 1 Model problem “Nonlocal Nonlinearities”; comparison of standard nonlinear FETI-DP
methods and nonlinear FETI-DP methods using the new approach (“NL-ane-*”); channels with a
width of H/2; α = 1e5 inside channels and β = 1 elsewhere; see also Figure 3; domain Ω =(0,1)2;
decomposed into square subdomains; H/h = 16; εI = 1e−12; εO = 1e−12; τ = 0.8; computed on
Schwarz.

Channels 2D

H/h = 16; exact FETI-DP; computed on Schwarz, α = 1e5
Normal Edges Ragged Edges

N Problem |E| Nonlinear Local Coarse Krylov Local Coarse Krylov
Size Solver Factor. Factor. It. Factor. Factor. It.

in. out. in. out.
NK 13 - 13 173 13 - 13 2108

0 NL-1 no Init 13 - 13 188 13 - 13 2227
0 NL-ane-1 15 6 9 124 14 5 9 1211
0 NL-1 22 12 10 150 26 17 9 1170

4225 NL-ane-2 16 11 5 68 16 10 6 794
16 4225 4225 NL-2 30 24 6 86 div div div div

4216 NL-ane-3 23 0 7 95 25 0 9 1134
4216 NL-3 30 0 6 86 div div div div
3856 NL-ane-4 17 0 13 254 14 0 13 2227
3856 NL-4 47 0 13 284 43 0 13 2277

NK 15 - 15 1391 15 - 15 3064
0 NL-1 no Init 14 - 14 1471 14 - 14 3139
0 NL-ane-1 16 6 10 741 15 5 10 2149
0 NL-1 23 13 10 730 36 25 11 2387

66049 NL-ane-2 16 10 6 447 19 11 8 1664
256 66049 66049 NL-2 31 25 6 395 div div div div

65824 NL-ane-3 17 0 6 429 18 0 8 1683
65824 NL-3 35 0 6 379 div div div div
58624 NL-ane-4 19 0 14 1647 15 0 14 3139
58624 NL-4 54 0 14 1681 50 0 14 3156

strategy considers the reduction of the global energy resulting from performing lo-
cal Newton steps on the subdomains. The Newton iteration performed for the local
elimination is stopped (and the step is discarded) when the resulting decrease in the
global energy is not satisfactory. This can also be interpreted as an inexact nonlinear
elimination. We have shown, that the local work can be significantly reduced com-
pared to standard nonlinear FETI-DP methods while the number of Newton steps
and Krylov iterations remains nearly constant. We have also shown, that the depen-
dency on the coarse space is reduced for nonlinear FETI-DP methods and that the
robustness of the resulting methods is dramatically increased.
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KL 2094/4-1, KL 2094/4-2, RH 122/2-1, and RH 122/3-2.
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Fig. 4 Model problem “Nonlocal Nonlinearities”; comparison of nonlinear FETI-DP methods and
nonlinear FETI-DP methods using energy minimizing preconditioning; channels with a width
of H/3; p = 4 and α = 1e5 in the channels and β = 1 elsewhere; see also Figure 3; domain
Ω = (0,1)2; decomposed into square subdomains; H/h = 16; εI = 1e−12; εO = 1e−12; τ = 0.8;
computed on Schwarz. Top: Normal edges; Bottom: Ragged edges
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Adaptive BDDC and FETI-DP
methods with change of basis
formulation

Hyea Hyun Kim1, Eric T. Chung2, and Junxian Wang3

1 Introduction

In this paper, BDDC (Balancing Domain Decomposition by Constraints)
and FETI-DP (Dual-Primal Finite Element Tearing and Interconnecting) al-
gorithms with a change of basis for adaptive primal constraints are analyzed.
In our formulation, adaptive primal constraints are introduced from appro-
priate generalized eigenvalue problems. In the authors previous study Kim
et al. [2017a], for the FETI-DP algorithm the adaptive primal constraints are
enforced by using a projection and it was shown that the condition numbers
are controlled by the user-defined tolerance value, which is used to select the
adaptive primal constraints from generalized eigenvalue problems on each
equivalence classes, edges and faces. The analysis in Kim et al. [2017a] could
not be extended to the FETI-DP algorithm with a change of basis formula-
tion on the adaptive primal constraints. In the change of basis formulation,
each primal constraint is transformed into a single unknown and treated just
like unknowns at subdomain vertices as in the standard FETI-DP algorithm.
It is often observed that the change of basis formulation is numerically more
stable than the projection approach.

Here we will propose a more general form of the FETI-DP preconditioner
and extend the analysis to the change of basis formulation. For the proposed
preconditioner, we can obtain the identity ED+PD = I for the averaging and
jump operators , see (8) for their definitions, and thus show that the condition
numbers of the adaptive BDDC and FETI-DP algorithms with the change
of basis formulation are identical. Unlike in the standard FETI-DP precondi-
tioners, the blocks of subdomain matrices and scaling matrices corresponding
to the adaptive primal unknowns appear in the proposed preconditioner. We
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note that in the same mini-symposium an adaptive FETI-DP algorithm with
a change of basis formulation was presented in the talk by Axel Klawonn,
where different generalized eigenvalue problems are introduced and different
tools are used in the analysis of condition numbers.

We note that adaptive primal constraints are often required to obtain ro-
bustness of domain decomposition preconditioners with respect to coefficient
variations in the model problem. For related works, we refer to Galvis and
Efendiev [2010] and Dolean et al. [2012] for two-level additive Schwarz meth-
ods, and Spillane et al. [2013] and Spillane and Rixen [2013] for FETI/BDD
methods. In a pioneering work by Mandel et al. [2012], adaptive BDDC algo-
rithms are developed and tested for 3D problems, where the adaptive primal
constraints are selected from generalized eigenvalue problems on each face.
For 3D problems, more advanced FETI-DP/BDDC algorithms are devel-
oped and analyzed in more recent works, see Klawonn et al. [2016],Calvo and
Widlund [2016], and Kim et al. [2017b]. In Klawonn et al. [2016], Kim et al.
[2017b], and Kim et al. [2017a], the adaptive primal constraints are enforced
by using a projection in the FETI-DP algorithm.

2 BDDC and FETI-DP algorithms

For the presentation of BDDC and FETI-DP algorithms, we introduce a finite
element space X for a given domain Ω, where the model elliptic problem is
define as

−∇ · (ρ(x)∇u(x)) = f(x) (1)

with a zero boundary condition on u(x) and with ρ(x) being highly varying
and heterogeneous. The domain Ω is then partitioned into non-overlapping
subdomains {Ωi}. We assume that the subdomain boundaries do not cut the
triangles in the finite element space X . We use the notation Xi to denote
the restriction of X to Ωi. Each subdomain is then equipped with the finite
element space Xi.

We further introduceWi as the restriction ofXi to the subdomain interface
unknowns, W , and X as the product of local finite element spaces Wi and
Xi, respectively. We note that functions in W or X are decoupled across
the subdomain interfaces. We then select some primal unknowns among the
decoupled unknowns on the interfaces and enforce continuity on them and
denote the corresponding spaces ˜W and ˜X.

The preconditioners in BDDC and FETI-DP algorithms will be developed
based on the partially coupled space ˜W and appropriate scaling matrices. In
our adaptive methods, we will select primal unknowns on each nodal equiva-
lence classes of subdomain interfaces. In more detail, edges in 2D and faces in
3D are nodal equivalence classes shared by two subdomains, edges in 3D are
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nodal equivalence classes shared by more than two subdomains, and vertices
are end points of edges in both 2D and 3D.

In our approach, we first include the unknowns at subdomain vertices to
the set of primal unknowns. Adaptive primal constraints will be selected from
eigenvectors of generalized eigenvalue problems on faces and edges using a
given tolerance value. The associated adaptive primal unknowns are then
obtained by applying change of basis on the adaptively selected primal con-
straints and these explicit unknowns can then be assembled strongly just like
unknowns at subdomain vertices.

We introduce notations Ki and Si. The matrices Ki are obtained from
Galerkin approximation of

a(u, v) =

∫

Ωi

ρ(x)∇u · ∇v dx

by using finite element spaces Xi and Si are Schur complements of Ki, which
are obtained after eliminating unknowns interior to Ωi. Let ˜Ri : ˜W → Wi be
the restriction into ∂Ωi and let ˜S be a partially coupled matrix defined by

˜S =
N
∑

i=1

˜RT
i Si

˜Ri. (2)

We note that ˜S is then coupled at the unknowns on subdomain vertices and
the adaptive primal unknowns. Let ˜R be the restriction from ̂W to ˜W , where
the subspace ̂W of ˜W has unknowns continuous on the subdomain interface.
The discrete problem of (1) is then written as

˜RT
˜S ˜R = ˜RT g̃,

where g̃ is the vector related to the right hand side f(x).
In the BDDC algorithm the above matrix equation is solved iteratively by

using the following preconditioner,

M−1
BDDC = ˜RT

˜D ˜S−1
˜DT
˜R, (3)

where ˜D is a scaling matrix of the form

˜D =
N
∑

i=1

˜RT
i Di

˜Ri.

Here the matrices Di are defined for unknowns in Wi and they are introduced
to resolve heterogeneity in ρ(x) across the subdomain interface. In a more

detail, Di consists of blocks D
(i)
F , D

(i)
E , D

(i)
V , where F denotes corresponding

blocks to faces, E to edges, and V to vertices, respectively. We note that those
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blocks satisfy the partition of unity for a given F , E, and V , respectively. We
refer to Klawonn and Widlund [2006] for these definitions.

The FETI-DP algorithm is a dual form of the BDDC algorithm. After the
change of unknowns on the adaptively selected constraints, we obtain the
resulting FETI-DP algebraic system

B ˜S−1BTλ = d, (4)

where ˜S is the partially coupled matrix defined in (2), and B is the matrix
with entries 0, −1, and 1, which is used to enforce continuity at the remaining
decoupled interface unknowns, i.e., dual unknowns. We introduce the nota-
tion M for the set of Lagrange multipliers λ, of which dimension is identical
to the number of continuity constraints enforced on the remaining decoupled
interface unknowns. The above algebraic system is then solved by an iterative
method with the following preconditioner

M−1
FETI =

N
∑

i=1

B
(i)
D,∆Si(B

(i)
D,∆)T (5)

where (B
(i)
D,∆)T : M → Wi is defined by

(B
(i)
D,∆)Tλ|F = D

(j)
F,∆λij on each F ∈ F (i) (6)

and
(B

(i)
D,∆)

Tλ|E =
∑

l∈n(E,i)

D
(l)
E,∆λil on each E ∈ E(i). (7)

Here F (i) and E(i) denote the set of faces and edges of subdomain Ωi, re-
spectively, n(E, i) denotes the set of neighboring subdomain indices sharing
the edge E with Ωi, and λij denotes the part of Lagrange multipliers λ used
to enforce continuity on the decoupled unknowns across Ωi and Ωj . The

matrices D
(j)
F,∆ and D

(l)
E,∆ are given by blocks of D

(j)
F and D

(l)
E as follows,

D
(j)
F,∆ =

(

D
(j)
F,∆∆

D
(j)
F,Π∆

)

, D
(l)
E,∆ =

(

D
(l)
E,∆∆

D
(l)
E,Π∆

)

,

where the subscripts ∆ and Π denote blocks of matrix D
(j)
F and D

(l)
E cor-

responding to the decoupled unknowns and the adaptive primal unknowns,
respectively. For the unknowns at subdomain vertices, which belong to the

initial set of primal unknowns, the values of (B
(i)
D,∆)

Tλ are defined as zero.
Differently from the standard FETI-DP preconditioner, the proposed pre-
conditioner contains the scaling matrices involving the adaptive primal un-
knowns. With this new form of the FETI-DP preconditioner, we can show
that the adaptive FETI-DP algorithm with the change of basis formulation
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has the same spectra except the values zero and one and thus can obtain
the same condition number bound as that of the BDDC algorithm. When no
adaptive primal unknowns are chosen, the preconditioner is identical to that
considered in the standard FETI-DP algorithm.

3 Adaptively enriched coarse spaces

The adaptive constraints will be selected by considering generalized eigen-
value problems on each equivalence class. The idea is originated from the
upper bound estimate of BDDC and FETI-DP preconditioner. In the es-
timate of condition numbers of BDDC and FETI-DP preconditioners, the
average and jump operators are defined as

ED = ˜R ˜RT
˜D, PD = BT

DB, (8)

where B = (B∆ 0) and BT
D = (B

(1)
D,∆ · · · B

(N)
D,∆)T . We note that B : ˜W → M

and BT
D : M → W , see the definition of (B

(i)
D,∆)T in (6) and (7).

The adaptive constraints are then treated just like unknowns at subdo-
main vertices after change of basis formulation in both BDDC and FETI-DP
algorithms, i.e., the continuity on them can be strongly enforced. We note
that in our previous work one can not get ED + PD = I when the standard
FETI-DP preconditioner is considered for the change of basis formulation,
i.e., without the blocks from the adaptive primal unknowns in the definition
of the scaled jump operator BT

D.
We will now introduce generalized eigenvalue problems for each face and

each edge. For a face F , the following generalized eigenvalue problem is con-
sidered

AF vF = λ ˜AF vF , (9)

where

AF = (D
(j)
F )TS

(i)
F D

(j)
F + (D

(i)
F )TS

(j)
F D

(i)
F , ˜AF = ˜S

(i)
F : ˜S

(j)
F .

In the above S
(i)
F denote block matrix of Si to the unknowns interior to F and

˜S
(i)
F are Schur complements of Si obtained by eliminating unknowns except

those interior to F . The matrices then satisfy the following minimal energy
property,

vTF ˜S
(i)
F vF ≤ vTSiv, for any v|F = vF , (10)

where v|F denotes the restriction of v to the unknowns interior to F . The
notation A : B is a parallel sum defined as, see Anderson and Duffin [1969],

A : B = A(A+B)+B,
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where (A + B)+ denotes a pseudo inverse. The parallel sum satisfies the
following properties

A : B = B : A, A : B ≤ A, A : B ≤ B, (11)

and it was first used in forming generalized eigenvalues problems by Dohrmann
and Pechstein [2013], of which idea was originated from the energy estimate
of the average operator in the BDDC algorithm.

In (9), the eigenvalues are all positive and we select eigenvectors vF,l, l ∈
N(F ) with associated eigenvalues λl larger than the given λTOL. The follow-
ing constraints will then be enforced on the unknowns in F ,

(AF vF,l)
T (w

(i)
F − w

(j)
F ) = 0, l ∈ N(F ).

After a change of basis, the above constraints can be transformed into explicit
unknowns.

In 3D, we can have an edge, a nodal equivalence class shared by more than
two subdomains, and for an edge E we introduce the following generalized
eigenvalue problem,

AEvE = λ ˜AEvE ,

where

AE =
∑

m∈I(E)

∑

l∈I(E)\{m}

(D
(l)
E )TS

(m)
E D

(l)
E , ˜SE =

∏

m∈I(E)

˜S
(m)
E ,

and I(E) denotes the set of subdomain indices sharing E in common, and
∏

m∈I(E)
˜S
(m)
E is the parallel sum of matrices ˜S

(m)
E . We note that S

(m)
E and

˜S
(m)
E are defined similarly as S

(m)
F and ˜S

(m)
F . For a given λTOL, the eigenvec-

tors with their eigenvalues larger than λTOL will be selected and denoted by
vE,l, l ∈ N(E). The following constraints will then enforced on the unknowns
in E,

(AEvE,l)
T (w

(i)
E − w

(m)
E ) = 0, l ∈ N(E), m ∈ I(E) \ {i}.

Similarly to the face case, the above constraints can be transformed into
explicit unknowns after the change of basis.

By using the adaptively selected primal unknowns on each face F and edge
E as above, we can obtain the following estimate

〈˜S(I − ED)w̃, (I − ED)w̃〉 ≤ CλTOL〈˜Sw̃, w̃〉, (12)

where C is a constant depending on the maximum number of edges and faces
per subdomain, and the maximum number of subdomains sharing an edge
but independent of the coefficient ρ(x). We note that the above inequality is
the key estimate in the analysis of the BDDC algorithm.
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4 Condition number estimate and numerical results

Using the adaptively enriched primal unknowns described in Section 3 and the
estimate in (12), we can obtain the following estimate of condition numbers
for the given λTOL:

Theorem 1. The BDDC algorithm with the change of basis formulation for

the adaptively chosen set of primal unknowns with a given tolerance λTOL

has the following bound of condition numbers,

κ(M−1
BDDC

˜RT
˜S ˜R) ≤ CλTOL,

and the FETI-DP algorithm with the change of basis formulation for the same

set of adaptively chosen set of primal unknowns has the bound

κ(M−1
FETIB

˜S−1BT ) ≤ CλTOL,

where C is a constant depending only on NF (i), NE(i), NI(E), which are

the number of faces per subdomain, the number of edges per subdomain, and

the number of subdomains sharing an edge E, respectively. In fact, the two

algorithms share the same set of eigenvalues except zero and one.

The proof of the above theorem and some numerical examples can be found
in a complete version of this paper Kim et al. [2017c]. In Table 1, we present
some numerical experiments for a 3D model problem. In particular, we con-
sider a random coefficient with value varying between 10−3 to 103, and show
the number of iterations and the number of primal unknowns with various
choice of coarse partition Nd. We observe a very robust performance.

Table 1 Performance of adaptive BDDC and FETI-DP with λF

TOL
= 10, λE

TOL
= 103 for

highly varying and random ρ(x) in (10−3, 103) by increasing Nd and with a fixed H/h = 12:
λmin (minimum eigenvalues), λmax (maximum eigenvalues), Iter (number of iterations),
pnumF (total number of adaptive primal unknowns on faces), and pnumE (total number
of adaptive primal unknowns on edges). pF and pE are the number of adaptive primal
unknowns per face and per edge, respectively.

Nd method λmin λmax Iter pnumF pnumE pF pE

23 Bddc 1.00 5.29 18 21 18 1.75 3.00

Fdp 1.00 5.29 18 21 18 1.75 3.00

33 Bddc 1.01 6.97 26 71 115 1.31 3.19
Fdp 1.00 6.97 27 71 115 1.31 3.19

43 Bddc 1.01 9.45 29 205 320 1.42 2.96
Fdp 1.00 9.45 30 205 320 1.42 2.96
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Nonoverlapping three grid Additive Schwarz for
hp-DGFEM with discontinuous coefficients

Piotr Krzyżanowski

Abstract We discuss a nonoverlapping additive Schwarz method for an h-p DGFEM
discretization of an elliptic PDE with discontinuous coefficients, where the fine grid
is decomposed into subdomains of size H and the coarse grid consists of cells size
H such that h≤H ≤H . We prove the condition number is O(p2/q) ·O(H 2/Hh)
and is independent from the jumps of the coefficient if the discontinuities are aligned
with the coarse grid.

1 Introduction

Let us consider a second order elliptic equation

−div(ρ∇u) = f , (1)

with homogeneous Dirichlet boundary condition. The problem is discretized by
an h-p symmetric weighted interior penalty discontinuous Galerkin finite element
method. A nonoverlapping additive Schwarz method (see [3], [1]) is applied to pre-
condition the discrete equations. For ρ ≡ 1, Antonietti and Houston [1] conjectured
on the basis of numerical experiments that if the coarse space contains piecewise
polynomial functions up to degree p, the condition number is O(pH /h). This con-
jecture has recently been proved in [5] and independently by Antonietti, Houston
and Smears in [2], using slightly different techniques. In the former paper, a general
framework for the analysis of problems with discontinuous coefficients and varying
polynomial degrees across finite elements has been developed; however, a techni-
cal assumption that the basis functions are continuous inside subdomains was made
when the coefficient was allowed discontinous in Ω . On the other hand, [2] made
use of approximation ideas of [6], allowing for more flexibility in the choice of the
finite element spaces. In this note, we extend the analysis to the case when fully

University of Warsaw, Poland, e-mail: p.krzyzanowski@mimuw.edu.pl
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2 Piotr Krzyżanowski

discontinuous finite elements are employed, under additional assumption that the
coefficient is constant inside coarse grid cells and an H2–regularity assumption on
(1) holds.

For more flexibility and enhanced parallelism, we formulate our results address-
ing the case when the subdomains (where the local problems are solved in parallel)
are potentially smaller than the coarse grid cells [4]. By allowing small subdomains
of diameter H ≤H , local problems are cheaper to solve and the amount of con-
currency of the method is substantially increased, which can be an advantage e.g.
on multi-threaded processors. Moreover, small subdomains give more flexibility in
assigning them to processors for load balancing in coarse grain parallel processing.
In this way, an additional level of domain partitioning gives the user more parame-
ters to fine tune the actual parallel performance, and thus overall efficiency, of the
preconditioner for a given hardware architecture.

The paper is organized as follows. In Section 2, the differential problem and its
discontinuous Galerkin discretization are formulated. In Section 3, a nonoverlapping
two-level, three-grid additive ASM for solving the discrete problem is designed and
analyzed under assumption that the coarse mesh resolves the discontinuities of the
coefficient, the variation of the mesh size and of the polynomial degree are locally
bounded, and the original problem satisfies some regularity assumption. Section 4
presents some numerical experiments.

For nonnegative scalars x,y, we shall write x. y if there exists a positive constant
C, independent of: x, y, the fine, subdomain and coarse mesh parameters h,H,H ,
the orders of the finite element spaces p, q, and of jumps of the diffusion coefficient
ρ as well, such that x≤Cy. If both x . y and y . x, we shall write x' y.

The norm of a function f from the Sobolev space Hk(S) will be denoted by
|| f ||k,S, while the seminorm of f will be denoted by | f |k,S. For short, the L2-norm of
f will then be denoted by | f |0,S.

2 Differential problem and its h-p discontinuous Galerkin
discretization

Let Ω be a bounded open convex polyhedral domain in Rd , d ∈ {2,3}, with Lips-
chitz boundary ∂Ω . We consider the following problem for given f ∈ L2(Ω) and
ρ ∈ L∞(Ω):

Find U∗ ∈ H1
0 (Ω) such that

a(U∗,v) = ( f ,v)Ω , ∀v ∈ H1
0 (Ω), (2)

where
a(u,v) =

∫
Ω

ρ ∇u ·∇vdx, ( f ,v)Ω =
∫

Ω

f vdx.

We assume that there exist constants α0 and α1 such that 0 < α0 ≤ ρ ≤ α1 a.e.
in Ω so that (2) is well–posed. Without loss of generality we shall additionally
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suppose that α0 ≥ 1 and diam(Ω) = 1, which can always be guaranteed by simple
scaling. We also assume that ρ is piecewise constant, i.e. Ω can be partitioned into
nonoverlapping polyhedral subregions with the property that ρ restricted to any of
these subregions is some positive constant.

Let Th = {K1, . . . ,KNh} denote an affine nonconforming partition of Ω , where Ki
are either triangles in 2-D or tetrahedrons in 3-D. For K ∈Th we set hK = diam(K).
By E in

h we denote the set of all common (internal) faces (edges in 2-D) of elements
in Th, so that e ∈ E in

h iff e = ∂Ki∩∂K j is of positive measure. We will use symbol
Eh to denote the set of all faces (edges in 2-D) of fine mesh Th, that is those either
in E in

h or on the boundary ∂Ω . For e ∈ Eh we set he = diam(e). We assume that
Th is shape- and contact–regular, that is, it admits a matching submesh Tĥ which is
shape–regular and such that for any K ∈Th the ratios of hK to diameters of simplices
in Tĥ covering K are uniformly bounded by an absolute constant. In consequence,
if e = ∂Ki∩∂K j is of positive measure, then he ' hKi ' hK j . We shall refer to Th as
the “fine mesh”. Throughout the paper we will assume that the fine mesh is chosen
in such a way that ρ|K is already constant for all K ∈Th.

We define the finite element space V p
h in which problem (2) is approximated,

V p
h = {v ∈ L2(Ω) : v|K ∈ PpK for K ∈Th} (3)

where PpK denotes the set of polynomials of degree not greater than pK . We shall
assume that 1≤ pK and that polynomial degrees have bounded local variation, that
is, if e = ∂Ki∩∂K j ∈ E in

h , then pKi ' pK j .
Next, we discretize (2) by the symmetric weighted interior penalty discontinuous

Galerkin method, see for example [3], [1]:
Find u∗ ∈V p

h such that

A p
h (u∗, v) = ( f ,v)Ω , ∀v ∈V p

h , (4)

where
A p

h (u, v) = Ap
h(u, v)−F p

h (u, v)−F p
h (v, u)

and

Ap
h(u, v) = ∑

K∈Th

(ρ ∇u,∇v)K + ∑
e∈Eh

〈γ[u], [v]〉e, F p
h (u, v) = ∑

e∈Eh

〈{ρ∇u} , [v]〉e.

Here for K ∈Th and e∈Eh we use standard notation: (u,v)K =
∫

K uvdx and 〈u,v〉e =∫
e uvdσ . On e ∈ E in

h such that e = ∂Ki∩∂K j we set

{ρ∇u}= ρ(∇u|Ki
+∇u|Kj

), [u] = u|Ki
n|Ki

+u|K j
n|Kj

,

with

ρ =
ρ|Ki

ρ|K j

ρ|Ki
+ρ|Kj

, h = min{hKi ,hK j}, p = max{pKi , pK j}, γ =
ρ p2

h
δ ,
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where δ > 0 is a prescribed constant. The unit normal vector pointing outward Ki is
denoted by n|Ki

. On e which lies on the boundary of Ω and belongs to a face of Ki,
we set {ρ∇u}= ρ|Ki

∇u|Ki
, [u] = u|Ki

n|Ki
and γ = ρ|Ki

pKiδ/hKi .
For sufficiently large penalty constant δ the discrete problem (4) is well–defined,

therefore we can define a norm |||u|||
Ω

by the identity |||u|||2
Ω
= Ap

h(u, u).

3 Nonoverlapping two-level, three-grid additive Schwarz method

Let us introduce the subdomain grid TH as a partition of Ω into NH disjoint open
polygons (polyhedrons in 3-D) Ωi, i = 1, . . . ,NH , such that Ω̄ =

⋃
i=1,...,NH

Ω̄i and
that each Ωi is a union of certain elements from the fine mesh Th. We shall retain
the common notion of “subdomains” while referring to elements of TH . We set
Hi = diam(Ωi) and H = (H1, . . . ,HNH ). We assume that there exists a reference
simply-connected polygonal (polyhedral in 3-D) domain Ω̂ ⊂ Rd with Lipschitz
boundary, such that every Ωi is affinely homeomorphic to Ω̂ and the aspect ratios
of Ωi are bounded independently of h and H. Moreover, we assume that the number
of neighboring regions in TH is uniformly bounded by an absolute constant N .

Next, let TH be a shape-regular affine triangulation by triangles in 2-D or
tetrahedrons in 3-D, with diameter H . We denote the elements of TH by Dn,
n = 1, . . . ,NH . We shall call this partition the “coarse grid” and assume:

ρ|Dn
= ρn is a constant for each Dn ∈TH .

We clearly have NH ≤ NH ≤ Nh and TH ⊆ TH ⊆ Th (inclusions understood
in the sense of subsequent refinements of the coarsest partitioning), and maxh ≤
maxH ≤ H . We define the additive Schwarz method following [1] and [4], by
introducing the following decomposition of V p

h :

V p
h =V0 +

NH

∑
i=1

Vi, (5)

where the coarse space consists of functions which are polynomials inside each
element of the coarse grid:

V0 = {v ∈V p
h : v|Dn

∈ Pq for all n = 1, . . . ,NH } (6)

where 1≤ q≤min{pK : K ∈Th}. Next, for i = 1, . . . ,NH we define

Vi = {v ∈V p
h : v|Ω j

= 0 for all j 6= i}.

One can view V0 as a rough approximation to V p
h (using coarser grid and lower order

polynomials), cf. condition (9), while Vi can be thought of as V p
h restricted to Ωi, ex-

tended by zero elsewhere. Note that V p
h already is a direct sum of spaces V1, . . . ,NH
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and when TH = TH , this decomposition coincides with [1]. Using decomposition
(5) we define, for i = 1, . . . ,NH , subdomain solvers Ti : V p

h →Vi, by

Ap
h(Tiu, v) = A p

h (u, v) ∀v ∈Vi,

so that on each subdomain one has to solve only a relatively small system of linear
equations (a “local problem”) for ui = Tiu|Ωi . These problems are independent one
from another, so can be solved in parallel. The coarse solve operator is T0 : V p

h →V0
defined analogously as Ap

h(T0u, v0) =A p
h (u, v0) for all v0 ∈V0. The preconditioned

operator is

T = T0 +
NH

∑
i=1

Ti. (7)

Obviously, T is symmetric with respect to A p
h (·, ·). For Dn in TH let us define an

auxiliary seminorm

|||u|||2Dn,in = ∑
K∈Th(Dn)

ρ|∇u|20,K + ∑
e∈E in

h (Dn)

γ|[u]|20,e, (8)

where E in
h (Dn) = {e ∈ Eh : e⊂ D̄n \∂Dn}.

Lemma 1 (see [5]). Assume that V0 has the following approximation property:

∀u ∈V p
h ∃u(0) ∈V0 :

NH

∑
n=1

(
ρnq2

H 2 |u−u(0)|20,Dn + |||u−u(0)|||2Dn,in

)
. A p

h (u, u).

(9)

Then the operator T defined in (7) satisfies the inequalities

β
−1A p

h (u, u). A p
h (Tu, u). A p

h (u, u) ∀u ∈V p
h ,

where

β =
H 2

q
max

n=1,...,NH

{
p2

i
hiHi

}
(10)

with hi = min{hK : K ∈Th(Ωi)} and pi = max{pK : K ∈Th(Ωi)}.

Theorem 1. Let us assume that there holds the following H2–stability property: for
every g ∈ L2 the solution z ∈ H1

0 (Ω) of the problem

−div(ρ∇z) = ρg (11)

belongs to H2(Ω) and ∑
NH
n=1 ρn||z||22,Dn

. ∑
NH
n=1 ρn|g|20,Dn

with constant independent
of g. Then cond(T ) = O(β ) where β is as in (10).

Proof. We will show that the assumptions of Lemma 1 are satisfied. The proof will
extend the tools from [2] to the case of discontinuous coefficient; see also [6]. Let
us define the lifting operator R : L2(Eh)→V p

h by
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(ρR(φ),w) = ∑
e∈Eh

〈{ρw} ,φ〉e ∀w ∈V p
h

and the discrete gradient of u ∈V p
h as G(u) = ∇hu−R([u]). Note that

(ρR([u]),R([u]))= ∑
e∈Eh

〈{ρR([u])} , [u]〉e . ∑
e∈Eh

h1/2

p
|ρ1/2R([u])|0,e ·

p

h1/2 |ρ
1/2[u]|0,e,

so by trace inequality (ρR([u]),R([u])) . |ρ1/2R([u])|0,Ω ·∑e∈Eh
〈γ[u], [u]〉e, from

which we conclude stability estimate

|ρ1/2R([u])|20,Ω . ∑
e∈Eh

〈γ[u], [u]〉e ∀u ∈V p
h . (12)

Let U ∈ H1
0 (Ω) solve the problem

(ρ∇U,∇w)
Ω
= (ρG(u),∇w)

Ω
∀w ∈ H1

0 (Ω).

From the definition of U and mentioned above property of the lifting operator R it
directly follows that

|ρ1/2
∇U |0,Ω . |||u|||. (13)

In order to prove (9) we estimate separately

NH

∑
n=1
|||u−u(0)|||2Dn,in .

NH

∑
n=1
|||u−U |||2Dn,in +

NH

∑
n=1
|||U−u(0)|||2Dn,in = I1 + I2

and

NH

∑
n=1

ρn|u−u(0)|20,Dn .
NH

∑
n=1

ρn|u−U |20,Dn +
NH

∑
n=1

ρn|U−u(0)|20,Dn = I3 + I4.

Clearly, I1 . |||u|||2+ |||U |||2 = |||u|||2+ |ρ1/2∇U |20,Ω . |||u|||2 by (13). In order
to bound I3, we use a variant of Aubin–Nitsche trick [2], which is the reason for our
H2–stability assumption. Let us define z ∈ H1

0 (Ω) as in (11) with g = u−U . After
multiplying (11) by (u−U) and integrating by parts on each fine grid element K,
we sum over all K ∈ Th; using the definition of R we arrive after some calculations
at

I3 = |ρ1/2(u−U)|20,Ω = ∑
e∈Eh

〈{ρ∇(zh− z)} , [u]〉e +(ρ∇(z− zh),R([u]))Ω
= I5 + I6

for any zh ∈ V p
h . Applying Schwarz inequality first and then choosing zh as the

approximation to z in V p
h we have, by the approximation property of V p

h (cf. e.g. [2,
eq. (13)],
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I6 .|ρ1/2R([u])|0,Ω · |ρ1/2
∇(z− zh)|0,Ω

. |||u|||( ∑
K∈Th

ρ
h2

K

p2
K
||z||22,K)1/2 . |||u|||H

q
(

NH

∑
n=1

ρn||z||22,Dn)
1/2,

so from H2–stability assumption we conclude that I6 . |||u||| ·
H

q
|ρ1/2(u−U)|0,Ω .

In a similar way we obtain I5 . |||u||| ·
H

q
|ρ1/2(u−U)|0,Ω , whence I3 .

H

q
|||u|||.

Finally, we bound the terms I2 and I4 in a standard way, by choosing u(0) on each
Dn as the q–th order polynomial interpolant of U|Dn

. See [5, Corollary 2] for details.

4 Numerical experiments

The H2–stability requirement in Theorem 1 is quite limiting. As the following ex-
perimental results indicate, the preconditioner works well for checkerboard distri-
bution of the coefficient, so there is room to relax assumptions Theorem 1.

Let us choose Ω = (0,1)2. We divide Ω into NH = 2M × 2M squares Dn
(n = 1, . . . ,NH ) of equal size. Let ρ be constant on a 2×2 grid with checkerboard
distribution: ρ = 1 in “white” squares and ρ = ρR (specified later) in “red” squares.
For simplicity we choose TH = TH , refined into a uniform fine triangulation Th
based on a square 2m×2m grid, with each square split into two triangles of identical
shape. We discretize problem (2) on the fine mesh Th using (4) with equal polyno-
mial degree p across all elements in Th and with δ = 7. For the coarse problem, we
use polynomials of degree q.

We report the number of Preconditioned Conjugate Gradient iterations (with zero
as the initial guess) for operator T , required to reduce the initial norm of the precon-
ditioned residual by a factor of 108 and (in parentheses) the condition number of T
estimated from the PCG convergence history. We set the coefficients of the discrete
solution u∗ as random numbers from uniform distribution and construct f such that
(4) holds.

q → 1 2 3 4 5
ρR ↓
100 90 (166) 72 (96) 64 (70) 57 (56) 54 (47)
108 89 (155) 69 (94) 63 (71) 57 (55) 53 (48)

Table 1 Dependence of the number of iterations and the condition number (in parentheses) on the
contrast ratio ρR and the coarse space polynomial degree q. Fixed p = 6, M = 2, m = 4.

From Table 1 it is clear the converegence rate is independent from the jump of
the coefficient and the improvement of the condition number due to increase of q
is diminishing roughly like O(1/q). Table 2 confirms that the condition number
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p → 2 3 4 5 6
m ↓
3 26 (11) 37 (22) 47 (37) 58 (57) 67 (78)
4 36 (20) 50 (42) 62 (72) 75 (112) 83 (149)
5 48 (38) 65 (79) 81 (140) 98 (219) 113 (303)

Table 2 Dependence of the number of iterations and the condition number (in parentheses) on the
fine mesh size h = 2−m and polynomial degree p. Fixed q = 1, M = 2 and ρR = 104.

M → 2 3 4 5
m ↓
3 47 (37) 38 (20)
4 62 (72) 49 (39) 38 (20)
5 81 (140) 65 (75) 50 (39) 38 (20)

Table 3 Dependence of the number of iterations and the condition number (in parentheses) on
H = H = 2−M and h = 2−m. Fixed p = 4, q = 1, ρR = 104.

dependence on p and h behaves approximately like O(p2/h). For varying h and
H = H, an O(H /h) dependence of the condition number is verified in Table 3.
See [5] for more experimental results.

Acknowledgement

The author wishes to thank two anonymous referees whose comments and remarks
helped to improve the paper substantially. This research has been partially supported
by the Polish National Science Centre grant 2016/21/B/ST1/00350.

References

1. Paola F. Antonietti and Paul Houston. A class of domain decomposition preconditioners for
hp-discontinuous Galerkin finite element methods. J. Sci. Comput., 46(1):124–149, 2011.

2. Paola F. Antonietti, Paul Houston, and Iain Smears. A note on optimal spectral bounds for
nonoverlapping domain decomposition preconditioners for hp-version Discontinuous Galerkin
method. Int. J. Numer. Anal. Model., 13(4):513–524, 2016.

3. Maksymilian Dryja. On discontinuous Galerkin methods for elliptic problems with discontin-
uous coefficients. Comput. Methods Appl. Math., 3(1):76–85 (electronic), 2003.
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Adaptive deluxe BDDC Mixed and
Hybrid Primal Discretizations

Alexandre Madureira1 and Marcus Sarkis2

1 Summary

Major progress has been made recently to make FETI-DP and BDDC pre-
conditioners robust with respect to any variation of coefficients inside and/or
across the subdomains. A reason for this success is the adaptive selection of
primal constraints technique based on local generalized eigenvalue problems.
Here we introduce a mathematical framework to transfer this technique to
the field of discretizations. We design discretizations where the number of
degrees of freedom is the number of primal constraints on the coarse trian-
gulation and associated basis functions are built on the fine mesh and with a
priori energy error estimates independent of the contrast of the coefficients.

2 Hybrid Primal Formulation

Consider the problem of finding the weak solution u : Ω → R of

−div ρ∇u = ρg = f in Ω,

u = 0 on ∂Ω,
(1)

where Ω ⊂ Rd for d = 2 or 3 is an open bounded connected domain with poly-
hedral boundary ∂Ω, the coefficient ρ satisfies 0 < ρmin ≤ ρ(x) ≤ ρmax and
g is a given forcing data. Define the ρ-weighted L2(Ω)-norm by ‖g‖L2

ρ(Ω) =

‖ρ1/2g‖L2(Ω) and the energy norm by ‖v‖H1
ρ(Ω) = ‖ρ1/2 ∇ v‖L2(Ω). We obtain

the following stability result:

1Laboratório Nacional de Computação Cient́ıfica, Brazil; supported by CNPq/Brazil
2Department of Mathematical Sciences, Worcester Polytechnic Institute, MA 01609; this
work was supported by the National Science Foundation Grant DMS-1522663

1



2 Madureira and Sarkis

‖u‖H1
ρ(Ω) ≤ CP ‖g‖L2

ρ(Ω),

where CP is the weighted Poincaré constant of ‖v‖L2
ρ(Ω) ≤ CP |v|H1

ρ(Ω) for all

v ∈ H1
ρ(Ω) vanishing on ∂Ω.

We start by recasting the continuous problem in a weak formulation that
depends on a polyhedral and regular mesh TH , which can be based on different
geometries. Without loss of generality, we adopt above and in the remainder of
the text, the terminology of three-dimensional domains, denoting for instance
the boundaries of the elements by faces. For a given element τ ∈ TH let ∂τ
denote its boundary and nτ the unit size normal vector that points outward
τ . We denote by n the outward normal vector on ∂Ω. Consider now the
following spaces:

H1(TH) = {v ∈ L2(Ω) : v|τ ∈ H1(τ), τ ∈ TH},

Λ(TH) =

{ ∏
τ∈TH

τ · nτ |∂τ : τ ∈ H(div; Ω)

}
(
∏
τ∈TH

H−1/2(∂τ).
(2)

For w, v ∈ H1(TH) and µ ∈ Λ(TH) define

(w, v)TH =
∑
τ∈TH

∫
τ

wv dx (µ, v)∂TH =
∑
τ∈TH

(µ, v)∂τ , (3)

where (·, ·)∂τ is the dual product involving H−1/2(∂τ) and H1/2(∂τ). Then

(µ, v)∂τ =

∫
τ

divσv dx+

∫
τ

σ ·∇ v dx

for all σ ∈ H(div; τ) such that σ · nτ = µ. We also define the norms

‖σ‖2Hρ(div;Ω) = ‖ρ−1/2σ‖20,Ω + ‖ρ−1/2 divσ‖20,Ω ,

‖µ‖
H
−1/2
ρ (TH)

= inf
σ∈H(div;Ω)

σ ·nτ=µ on ∂τ, τ∈TH

‖σ‖Hρ(div;Ω),

|v|2H1
ρ(TH) =

∑
τ∈TH

‖ρ1/2 ∇ v‖20,τ .

(4)

We use analogous definitions on subsets of TH , in particular when the subset
consists of a single element τ (and in this case we write τ instead of {τ}). We
note that since 0 < ρmin ≤ ρ(x) ≤ ρmax, the space Hρ(div; Ω) and H1

ρ(TH)
are equal to the spaces H(div; Ω) and H1(TH), respectively.

In the primal hybrid formulation [11], u ∈ H1(TH) and λ ∈ Λ(TH) are
such that

(ρ∇u,∇ v)TH − (λ, v)∂TH = (ρg, v)TH for all v ∈ H1(TH),

(µ, u)∂TH = 0 for all µ ∈ Λ(TH).
(5)
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Following Theorem 1 of [11], it is possible to show that the solution (u, λ)
of (5) is such that u ∈ H1(Ω) and vanishing on ∂Ω satisfies (1) in the weak
sense and λ = ρ∇u · nτ for all elements τ .

In the spirit of [11, 3] we consider the decomposition

H1(TH) = P0(TH)⊕ H̃1(TH),

where P0(TH) is the space of piecewise constants, and H̃1(TH) is its L2
ρ(τ)

orthogonal complement, i.e., the space of functions with zero ρ-weighted av-
erage within each element τ ∈ TH

P0(TH) = {v ∈ H1(TH) : v|τ is constant, τ ∈ TH},

H̃1(TH) = {ṽ ∈ H1(TH) :

∫
τ

ρṽ dx = 0, τ ∈ TH}.
(6)

We then write u = u0 + ũ, where u0 ∈ P0(TH) and ũ ∈ H̃1(TH), and find
from (5) that

(ρ∇ ũ,∇ ṽ)TH−(λ, ṽ)∂TH = (ρg, ṽ)TH for all ṽ ∈ H̃1(TH),

(λ, v0)∂TH = −(ρg, v0)TH for all v0 ∈ P0(TH),

(µ, u0 + ũ)∂TH = 0 for all µ ∈ Λ(TH).

(7)

Let T : Λ(TH) → H̃1(TH) and T̃ : L2(Ω) → H̃1(TH) be such that, given

τ ∈ TH , µ ∈ Λ(TH) and g ∈ L2
ρ(Ω), for all ṽ ∈ H̃1(TH) we have∫

τ

ρ∇(Tµ) ·∇ ṽ dx = (µ, ṽ)∂τ ,

∫
τ

ρ∇(T̃ g) ·∇ ṽ dx = (ρg, ṽ)τ . (8)

Note from the first equation of (7) that ũ = Tλ+ T̃ g, and substituting in the
other two equations of (7), we have that u0 ∈ P0(TH) and λ ∈ Λ(TH) solve

(µ, γTλ)∂TH + (µ, u0)∂TH = −(µ, γT̃ g)∂TH for all µ ∈ Λ(TH),

(λ, v0)∂TH = −(ρg, v0)TH for all v0 ∈ P0(TH).
(9)

From now on we drop the trace operator γ.
We use the unknowns u0 and λ to reconstruct the u as follows:

u = u0 + ũ = u0 + Tλ+ T̃ g. (10)

Unlike the HMM [3] and DEM [1], the methods we describe below approx-
imate Λ(TH) by multiscale basis functions with larger support and with the
lowest global energy property which decay exponentially, achieving optimal
energy approximation without requiring regularity of the problem.
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3 Primal Hybrid Finite Element Methods

Let Fh be a partition of the faces of elements in TH , refining them in the
sense that every (coarse) face of the elements in TH can be written as a union
of faces of Fh. Let Λh ⊂ Λ(TH) be the space of piecewise constants on Fh,
i.e.,

Λh = {µh ∈ Λ(TH) : µh|Fh is constant on each face Fh ∈ Fh}.

For simplicity, we do not discretize H1(τ) and H(div; τ) for τ ∈ TH .
We remark that the methods develop here extend easily when we discretize
H(div; τ) by simplices or cubical elements with lowest order Raviart–Thomas
spaces or discretize H1(τ) fine enough to resolve the heterogeneities of ρ(x)
and to satisfy inf-sup conditions with respect to the space Λh.

We then pose the problem of finding u0
h ∈ P0(TH) and λh ∈ Λh such that

(µh, Tλh)∂TH + (µh, u
0
h)∂TH = −(µh, T̃ g)∂TH for all µh ∈ Λh,

(λh, v
0)∂TH = −(ρg, v0

h)TH for all v0
h ∈ P0(TH).

(11)

We note that T restricted to τ , denoted by T τ : Λτh → H̃1(τ) solves

(ρ∇(T τµτh),∇ v)τ = (µτh, v)∂τ for all v ∈ H̃1(τ),

and note that ρ∇(T τµτh) · nτ = µh on ∂τ . Note also that (µh, Tµh)∂TH = 0
implies Tµh = 0 and µh = 0. As (11) is finite dimensional, it is well-posed
since it is injective. We define our approximation as in (10), by

uh = u0
h + Tλh + T̃ g. (12)

Simple substitutions yield uh, λh solve (5) if Λ(TH) is replaced by Λh, i.e.,

(ρ∇uh,∇ v)TH − (λh, v)∂TH = (g, v)TH for all v ∈ H1(TH),

(µh, uh)∂TH = 0 for all µh ∈ Λh.

We also assume that Λh is chosen fine enough so that

|u− uh|2H1
ρ(TH) =

(
λ− λh, T (λ− λh)

)
TH
≤ H̃2‖g‖2L2

ρ(Ω),

where H̃ represents a “target precision” the method should achieve. For in-
stance, one could choose H̃ = H or H̃ = hs for some 0 < s ≤ 1. It must be
mentioned that λh is never computed, only an approximation of order H̃.

Above, and in what follows, c denotes an arbitrary constant that does not
depend on H, H̃, h, ρ. For details and proofs, see [6]. See also [7] for a related
multiscale conforming method.
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4 Adaptive BDDC Spectral Decomposition I

Let τ ∈ TH , F a face of ∂τ , and let F cτ = ∂τ\F . Define

Λτh = {µh|∂τ : µh ∈ Λh}, ΛFh = {µh|F : µh ∈ Λτh}, Λ
F cτ
h = {µh|F cτ : µh ∈ Λτh}.

Denote µτh = {µFh , µ
F cτ
h } with µτh ∈ Λτh, µFh ∈ ΛFh and µ

F cτ
h ∈ Λ

F cτ
h , and define

T τFF : ΛFh → (ΛFh )′, T τF cF : ΛFh → (Λ
F cτ
h )′

T τFF c : Λ
F cτ
h → (ΛFh )′, T τF cF c : Λ

F cτ
h → (Λ

F cτ
h )′,

and note that (µh, T
τµh)∂τ = (µFh , T

τ
FFµ

F
h )F +

(µFh , T
τ
FF cµ

F cτ
h )F + (µ

F cτ
h , T τF cFµ

F
h )F cτ + (µ

F cτ
h , T τF cF cµ

F cτ
h )F cτ .

It follows from the properties of T τ that T τFF and T τF cF c are symmetric and
positive definite matrices, and follows by Schur complement arguments that

(µFh , T
τ
FFµ

F
h )F = ({µFh , 0}, T τ{µFh , 0})∂τ
≥ min
ν
Fcτ
h ∈Λ

Fcτ
h

({µFh , ν
F cτ
h }, T

τ{µFh , ν
F cτ
h })∂τ = (µFh , T̂

τ
FFµ

F
h )F , (13)

T̂ τFF = T τFF − T τFF c(T τF cF c)−1T τF cF

and the minimum is attained at ν
F cτ
h = −(T τF cF c)

−1T τF cFµ
F
h .

To take into account high-contrast coefficients, we consider the following
generalized eigenvalue problem: Find (αFi , µ

F
i,h) ∈ (R, ΛFh ) such that:

1. If the face F is shared by elements τ and τ ′ we solve

(νFh , (T
τ
FF + T τ

′

FF )µFh,i)F = αFi (νF , (T̂
τ
FF + T̂ τ

′

FF )µFh,i)F , ∀νFh ∈ ΛFh .

2. If the face F is on the boundary ∂Ω we solve

(νFh , T
τ
FFµ

F
h,i)F = αFi (νFh , T̂

τ
FFµ

F
h,i)F , ∀νFh ∈ ΛFh .

The use of such generalized eigenvalue problems is known in the domain
decomposition community as “adaptive selection of primal constraints”. It is
used to make preconditioners robust with respect to coefficients; see [9, 12]
for RT0 and BDM1 where only face eigenvalue problems for two- as well as for
three-dimensional problems. Here, we apply this technique to design robust
discretizations; see [4, 7] on related work for classical FEM discretizations.

Now we decompose ΛFh := ΛF,4h ⊕ ΛF,Πh where

ΛF,4h := span{µFh,i : αFi < α∗}, ΛF,Πh := span{µFh,i : αFi ≥ α∗}.
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From (13) we know that αFi ≥ 1. The parameter α∗ is defined by the user and
it controls how fast is the exponential decay of the multiscale basis functions.
We point out that the dimension of the space ΛF,Πh is related to the number
of connected subregions on τ̄∪τ̄ ′ with large coefficients surrounded by regions
with small coefficients. Finally, let Λh = ΛΠh ⊕ Λ

4
h , where

ΛΠh := {µh ∈ Λh : µh|F ∈ ΛF,Πh for all F ∈ ∂TH},

Λ4h := {µh ∈ Λh : µh|F ∈ ΛF,4h for all F ∈ ∂TH}.
(14)

5 NLSD-Nonlocalized Spectral Decomposition Method I

Define the operator P : H1(Ω)→ Λ4h such that for w ∈ H1(TH),

(µ4h , TPw)∂TH = (µ4h , w)∂TH for all µ4h ∈ Λ
4
h . (15)

Let us decompose λh = λΠh + λ4h . We first eliminate λ4h from the first
equation of (11) to obtain

λ4h = −P (u0
h + TλΠh + T̃ g), (16)

hence
uh = (I − TP )u0

h + T (I − PT )λΠh + (I − TP )T̃ g). (17)

Then using algebraic manipulations with (11) and (15) we find u0
h ∈ P0(TH)

and λΠh ∈ ΛΠh satisfy:

(µ̂Πh , T λ̂
Π
h )∂TH + (µ̂Πh , û

0
h)∂TH = −(µ̂Πh ,

̂̃Tg)∂TH for all µΠh ∈ ΛΠh
(λ̂Πh , v̂

0
h)∂TH − (Puh0 , v

h
0 )∂TH = −(ρĝ, v̂0

h)TH for all v0
h ∈ P0(TH),

(18)

where the hat functions are non-local multiscale functions defined by

λ̂Πh = (I − PT )λΠh , µ̂Πh = (I − PT )µΠh , û0
h = (I − TP )u0

h,

v̂0
h = (I − TP )v0

h,
̂̃Tg = (I − TP )T̃ g and ĝ = (I − PT̃ )g.

We note that the idea of performing global static condensation goes back
to the Multiscale Variational Finite Element Method [5]. Recent variations
of this method called Localized Orthogonal Decomposition Methods were
introduced and analyzed in [10] and references therein. Some theoretical pro-
gresses for high-contrast were made in [5] for a class of coefficients and by
using overlapping spectral decomposition introduced in [2]. Here in this pa-
per no condition on the coefficient is imposed and the theoretical results are
based on non-overlapping decomposition techniques.
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5.1 NLSD Method II

In the splitting (17), the non-local term TPu0
h adds theoretical difficulties

and more complexity on the implementation. We now introduce the Adap-
tive BDDC Spectral Decomposition II such that Pu0

h = 0. Indeed, first de-

compose Λh = ΛRTh ⊕ Λ̃fh, where ΛRTh (Λ̃fh) is the space of constant (average

zero) functions on each face F of TH . Further decompose Λ̃fh = Λ̃f,Πh ⊕ Λ̃f,4h
by solving the same generalized eigenvalue problem before however on Λ̃f,Fh
rather than on ΛFh . Denote ΛΠh = ΛRTh ⊕ Λ̃f,Πh and Λ4h = Λ̃f,4h . Repeat the

same algebraic steps as in Section 5 and use that (µ4h , v
0
h)∂TH = 0. This

method is analyzed in [6].

6 LSD-Localized Spectral Decomposition Method II

We next show that the exponential decay of the multiscale basis functions
is independently of the coefficient contrast. Hence, instead of building global
multiscale basis functions we actually build local basis functions. Lemma 1
implies exponential decay of functions, such as PTµΠh and Pv0

h when µΠh and
v0
h has local support, and Lemma 2 shows T (P−P j)v decreases exponentially.

For K ∈ TH , define T0(K) = ∅, T1(K) = {K}, and for j = 1, 2, . . . let

Tj+1(K) = {τ ∈ TH : τ ∩ τ j 6= ∅ for some τj ∈ Tj(K)}.

Lemma 1. Let v ∈ H1(TH) such that supp v ⊂ K, and µ4h = Pv. Then

|Tµ4h |
2
H1
ρ(TH\Tj+1(K)) ≤ e

− [(j+1)/2]

1+d2α∗ |Tµ4h |
2
H1
ρ(TH).

We now localize Pv since it decays exponentially when v has local support.
For each fixed K, j, let Λ4,K,jh ⊂ Λ4h be the set of functions of Λ4h which
vanish on faces of elements in TH\Tj(K). We introduce the operator PK,j :

H1(TH)→ Λ4,K,jh such that, for v ∈ H1(TH),

(µ4h , TP
K,jv)∂TH = (µ4h , v)∂TH for all µ4h ∈ Λ

4,K,j
h .

For v ∈ H1(TH) let vK be equal to v on K and zero otherwise. We define

then P jv ∈ Λ4h by

P jv =
∑
K∈TH

PK,jvK . (19)

Lemma 2. Let v ∈ H1(TH) and P defined by (15) and P j by (19). Then

|T (P − P j)v|2H1
ρ(TH) ≤ cj

2dd4α2
∗e
− [(j−3)/2]

1+d2α∗ |v|2H1
ρ(TH).
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We define the LSD methods by (18), (16) and (17) with Pj instead of P .

Denote the solution by ujh. The follow lemma shows the localization error.

Theorem 1. For the LSD II method, if j = c
(

4d2α∗ log(CP /H̃)
)

then

|uh − ujh|H1
ρ(TH) ≤ cH̃‖g‖L2

ρ(Ω).
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Additive Schwarz with vertex based
adaptive coarse space for multiscale
problems in 3D

Leszek Marcinkowski∗1 and Talal Rahman2

1 Introduction

The choice of coarse spaces play an important role in the design of fast and
robust Schwarz methods for problems of multiscale nature. Standard meth-
ods with standard coarse spaces have often difficulties to solve such problems,
and even fail to converge due to computing in the finite precision arithmetic.
The purpose of this paper is to propose a robust coarse space, adaptively
enriched, for solving second order elliptic problems in three dimensions with
highly varying coefficients, using the standard finite element for the discretiza-
tion and the overlapping additive Schwarz method as the preconditioner. The
coefficient may have discontinuities both inside and across subdomains. The
convergence of the proposed method, as presented in the paper, is indepen-
dent of the distribution of the coefficient, as well as the jumps in the coef-
ficients, when the coarse space is chosen large enough. For similar works on
domain decomposition methods addressing such problems, we refer to Galvis
and Efendiev (2010), Spillane et al (2014) and the references therein.

Additive Schwarz methods for solving elliptic problems discretized by the
finite element, which was proposed over thirty years ago, have been studied
extensively over the past decades, see Smith et al (1996), Toselli and Wid-
lund (2005) for an overview. It is known in general that if the coefficients are
discontinuous across subdomains but are varying moderately with in each
subdomain, then the standard coarse spaces are enough to generate addi-
tive Schwarz methods which are robust with respect to those jumps, cf. e.g.
Smith et al (1996); Toselli and Widlund (2005). This is however not true in
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the case when the coefficients may be highly varying and discontinuous almost
everywhere, the fact which has in recent years drawn several researchers’ at-
traction, cf. e.g. Chartier et al (2003); Mandel and Soused́ık (2007); Klawonn
et al (2015, 2016b,a); Galvis and Efendiev (2010); Efendiev et al (2012a,b);
Nataf et al (2010, 2011); Spillane et al (2014); Dolean et al (2012); Kim and
Chung (2015); Kim et al (2017); Calvo and Widlund (2016).

In the present work, we extend some of the ideas presented in those pa-
pers, and propose to construct a coarse space based on the vertices of the
subdomains and a two fold enrichment of the coarse space, which is done
through solving two specially designed lower dimensional eigenvalue prob-
lems, one on each face common to two neighboring subdomains and one on
each interior edge of the subdomains, and chosing the first few eigenfunctions
corresponding to the bad eigenmodes. The analysis show that the condition
number bound of the resulting system depends only on the threshold used to
choose the bad eigenvalues.

The remainder of the paper is organized as follows: in Section 2 we in-
troduce our differential problem, and its finite element discretization. In Sec-
tion 3 a classical overlapping Additive Schwarz method is presented. Section 4
is devoted to the construction of our adaptive coarse space and Section 5 gives
the theoretical bound for the condition number of the resulting system.

2 Discrete Problem

We consider the following elliptic boundary value problem: Find u∗ ∈ H1
0 (Ω)∫

Ω

α(x)∇u∗∇v dx =

∫
Ω

fv dx, ∀v ∈ H1
0 (Ω), (1)

where α(x) ≥ α0 > 0 is the coefficient, Ω is a polyhedral domain in R3

and f ∈ L2(Ω). Let Th be the quasi-uniform triangulation of Ω consisting of
closed tetrahedra such that Ω̄ =

⋃
K∈Th K. Let hK denote the diameter of

K, and h = maxK∈Th hK the mesh parameter for the triangulation.
We will further assume that α is piecewise constant on Th without any

loss of generality. We assume that there exists a coarse nonoverlapping par-
titioning of Ω into open connected Lipschitz polytopes Ωi, called structures,
such that Ω =

⋃N
i=1Ωi and they are aligned with the fine triangulation,

in other words a fine triangle of Th can be contained in only one of the
coarse substructures. For the simplicity of presentation, we further assume
that these substructures form a coarse triangulation of the domain which is
shape regular in the sense of Brenner and Sung (1999).

Let Fij denote the open face common to subdomains Ωi and Ωj , and let
E denote an open edge of a substructure, not in ∂Ω. We denote with Ωh,
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∂Ωh, Ωih, ∂Ωih, Fij,h, and Eh, the sets of vertices of the elements of Th,
corresponding to Ω, ∂Ω, Ωi, ∂Ωi, Fij , and E , respectively

Let Sh be the standard linear conforming finite element space defined on
the triangulation Th,

Sh = Sh(Ω) := {u ∈ C(Ω) ∩H1
0 (Ω) : v|K ∈ P1, K ∈ Th}.

The finite element approximation u∗h of (1) is then defined as the solution to
the following problem: Find u∗h ∈ Sh such that

a(u∗h, v) = (f, v) , ∀v ∈ Sh. (2)

Note that α can be scaled without influencing the solution, hence we can
easily assume that α(x) ≥ 1. As ∇u∗h is piecewise constant over the fine ele-
ments, we can further assume that α is piecewise constants over the elements
of Th, since

∫
K
α∇u∇v dx = (∇u)|K(∇v)|K

∫
K
α(x) dx.

Since each subdomain inherits a local triangulation Th(Ωk) from Th(Ω),
two local subspaces can be defined as the following,

Sh(Ωi) := {u|Ωi
: u ∈ Sh} and Sh,0(Ωi) := Sh(Ωi) ∩H1

0 (Ωi),

along with a local projection operator Pi : Sh → Sh,0(Ωi) as the following,
find Piu ∈ Sh,0(Ωi) such that

ai(Piu, v) = ai(u, v), ∀v ∈ Sh,0(Ωi),

where ai(u, v) := a|Ωi
(u, v) =

∫
Ωi
α(x)∇u∇v dx.

The discrete harmonic part of u ∈ Sh(Ωi) is defined as Hiu := u−Piu, or
equivalently as Hiu ∈ Sh(Ωi) which satisfies the following,{

ai(Hiu, v) = 0, ∀v ∈ Sh,0(Ωi),
Hiu(s) = u(s), ∀s ∈ ∂Ωih.

(3)

We say that a function u ∈ Sh is discrete harmonic if it is discrete harmonic
in each subdomain, i.e. u|Ωi

= Hiu|Ωi
∀i.

3 Additive Schwarz Method

In this section, we present the overlapping additive Schwarz method for the
discrete problem (2). We refer to Smith et al (1996); Toselli and Widlund
(2005) for a more general discussion of the method.



4 Leszek Marcinkowski and Talal Rahman

Decomposition of Sh

The space Sh is decomposed into the local subspaces {Vi}i, and the global
coarse space V0, as follows.

Vi = {u ∈ Sh : v(x) = 0 ∀x ∈ Ωh \Ωi}, i = 1, . . . , N,

where u ∈ Vi can take nonzero values at the nodes that are in Ωi and on
∂Ωi only, giving {Vi}i as subspaces with minimal overlap. The global coarse
space V0 is defined in Section 4. For i = 0, . . . , N , the projection like operators
Ti : Sh → Vi are defined as

a(Tiu, v) = a(u, v), ∀v ∈ Vi. (4)

Now, introducing the additive Schwarz operator as T := T0 +
∑N
i=1 Ti, the

original problem (2) can be replaced with the following equivalent problem:
Find u∗h such that

Tu∗h = g, (5)

where g =
∑N
i=0 gi and gi = Tiu. Note that gi may be computed without

knowing the solution u∗h of (2): a(gi, v) = (f, v) for all v ∈ Vi.

4 Adaptive vertex coarse space

We introduce our adaptive vertex based coarse space in this section. Each
edge E inherits a 1D triangulation Th(E) from Th. For each edge Eh, let Sh(E)
be the space of traces of functions of Sh on the edge, that is the space of
continuous piecewise linear functions on Th(E), let Sh,0(E) = Sh(E) ∩H1

0 (E)
be its subspace with compact support, and let the edge bilinear form aE(u, v) :
Sh,0(E)× Sh,0(E)→ R be defined as

aE(u, v) =
∑

e∈Th(E)

∫
e

αeu
′v′ ds, (6)

where αe = maxe⊂∂K αK is the maximum value of the coefficient over the
tetrahedra sharing the fine edge e ∈ Th(E). Here u′, v′ are the weak deriva-
tives of u, v ∈ Sh,0(E). The definition of the form aE(u, v), in particular the
definition of α, is introduced in a way which enables us to estimate this form
from above by the sum of energy norms over all subdomains which share this
edge.
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4.1 Vertex based interpolation operator

We introduce the vertex interpolation operator IV : Sh(Ω) → Sh(Ω) as
follows. For u ∈ Sh(Ω)

• IV u(x) = u(x) where x is a crosspoint (a subdomain vertex inside Ω),
• IV u on each edge E satisfies, cf. (6):

aE(IV u, v) = 0, ∀v ∈ Sh,0(E). (7)

• IV u(x) = 0 at all x ∈ Fij,h for each face Fij ,
• IV u is discrete harmonic in the sense as described in Section 2.

Note that IV u is uniquely determined by the values of u at the crosspoints,
as (7) uniquely determines IV u at the edge interior nodes, IV u is equal to
zero at all face interior nodes, and then extended as discrete harmonic to
the subdomain interior nodes, cf. (3). The auxiliary coarse space V̂0 is then
defined as the image of this interpolation operator IV , that is V̂0 := Im(IV ) =
IV Sh.The coarse space V0 is the algebraic sum of V̂0 and a sequence of small
subspaces built with functions that are extensions of certain eigenfunctions
of the two particular classes of eigenvalue problems presented below.

4.2 Eigenvalue problems

We start by introducing the two classes of local eigenvalue problems, one on
the subdomain edges or the edge interfaces, and one on the subdomain faces
or the face interfaces.

Eigenvalue problem on edge interface

Find the eigen pairs (λEj , ψ
E
j ) ∈ R+ × Sh,0(E)

aE(ψ
E
j , v) = λEj bE(ψ

E
j , v), ∀v ∈ Sh,0(E), (8)

where aE(u, v) is as defined in (6), and

bE(u, v) = h−4
∫
GE

αû v̂ dx, (9)

and GE is a 3D layer around and along the edge E , defined as the sum of
all fine tetrahedra of Th those touching E by a fine edge or a vertex, and
û, v̂ ∈ Sh are the discrete zero extensions of u, v ∈ Sh,0(E). The scaling in the
form bE(u, v), and in the form bkl(u, v) in (11) below, comes from an inverse
inequality and the lines of the proof of Theorem 1, which will be provided in a
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full version of this paper published elsewhere. The functions ψEj are extended
inside as follows, taking zero values at the nodal points of all remaining edges
and faces, and then extending further inside as discrete harmonic in the sense
as described in Section 2. The extension is denoted by the same symbol.
Writing the eigenvalues in the increasing order, i.e. 0 < λE1 ≤ λE2 ≤ . . . λEME
for ME = dim(Sh,0(E)), we define the local edge spectral component of the
coarse space as follows. Let VE = Span(ψEj )nE

j=1,where nE ≤ME is the number

of eigenfunctions ψEj , whose eigenvalues λEj are less then a given threshold
prescribed for each subdomain by the user.

Eigenvalue problem on face interface

Each face Fkl inherits a 2D triangulation consisting of triangles Th(Fkl), and
a local face finite element space Sh(Fkl) being the space of traces of Sh onto
Fkl, and Sh,0(Fkl) = Sh(Fkl) ∩ H1

0 (Fkl). We introduce FI,ij as the sum of
closed triangles of Th(Fkl) such that all their nodes are not in ∂Fkl.

The face eigenvalue problem is then to find the eigen pairs (λklj , ψ
kl
j ) ∈

R+ × Sh,0(Fkl) such that

akl(ψ
kl
j , v) = λFkl

j bkl(ψ
kl
j , v), ∀v ∈ Sh,0(Fkl), (10)

where

akl(u, v) =
∑

τ⊂FI,kl

∫
τ

ατ∇u(x)∇v(x), bkl(u, v) = h−3
∫
GFkl

αû v̂ dx, (11)

and ατ = maxτ⊂∂K αK is the maximum value of the coefficient over the
tetrahedra sharing the fine face τ ∈ Th(FI,kl), GFkl

is a 3D layer of tetrahedra
around and along the face Fkl, defined as sum of all fine tetrahedra of Th
those touching Fkl by a fine face, a fine edge or a vertex, and û, v̂ ∈ Sh are the
discrete zero extensions of u, v ∈ Sh,0(Fkl). The functions ψklj are extended
inside as follows, taking zero values at the nodal points of all remaining faces
and edges, and then extending further inside as discrete harmonic in the same
sense as in Section 2. The extension is denoted by the same symbol.

Again, by writing the eigenvalues in the increasing order as 0 ≤ λkl1 ≤
λkl2 ≤ . . . λklMkl

for Mkl = dim(Sh,0(Fkl)), we can define the local face spectral

component of the coarse space as follows. Let Vkl = Span(ψklj )nkl
j=1,where

nkl ≤Mkl is the number of eigenfunctions ψklj whose eigenvalues λklj are less
than a given threshold provided by an user.

Finally, The coarse space V0, after the enrichment takes the following form:

V0 = V̂0 +
∑
Fkl⊂Γ

Vkl +
∑
E⊂Γ

VE . (12)
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Note that V̂0 = IV Sh, as defined in Section 4.1.

Remark 1. The bilinear forms bE(u, v), cf. (9), and bkl(u, v), cf. (11), can be
defined in other ways. For instance, we can consider larger layers GE or GFkl

,
or even consider nonzero extensions of u ∈ Sh,0(E) and u ∈ Sh,0(Fkl), but
with minimal energy. We can also take the bilinear forms to be equal to the
restrictions of the scaled original energy form to their respective layers or to
the whole substructures, that is following the ideas of Klawonn et al (2015,
2016b,a). In all cases, we will have similar estimates as in Theorem 1 in the
next section.

5 Condition number

Following the abstract Schwarz framework, cf. Smith et al (1996); Toselli
and Widlund (2005), and the classical theory of eigenvalue problems, we
can show the following theoretical bound on the condition number for the
preconditioned system of our method.

Theorem 1. For all u ∈ Sh, the following holds,

c

(
1 + max

E

1

λnE+1
+ max
Fkl

1

λnkl+1

)
a(u, u) ≤ a(Tu, u) ≤ C a(u, u),

where C, c are positive constants independent of the coefficient α, the mesh
parameter h and the sudomain size H.
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Abstract In this paper we present a framework for Fluid-Structure Interaction sim-
ulations. Taking inspiration from the Immersed Boundary technique introduced by
Peskin [1] we employ the finite element method for discretizing the equations of the
solid structure and the finite difference method for discretizing the fluid flow. The
two discretizations are coupled by using a volume based L2–projection approach
to transfer elastic forces and velocities between the fluid and the solid domain. We
present results for a Fluid–Structure Intercation benchmark which describes self-
induced oscillating deformations of an elastic beam in a flow channel.
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1 Introduction

During the last decades, Fluid–Structure Interaction (FSI) [1, 2] has received con-
siderable attention due to various applications where a fluid and a solid interact with
each other (such as in aeronautics, turbomachinery, and biomedical applications).

Several approaches have been developed in order to reproduce the interaction be-
tween a fluid and a surrounding solid structure, which can be classified in boundary-
fitted and embedded boundary methods. In the boundary-fitted methods, the fluid
problem is resolved in a moving spatial domain over which the incompressible
Navier-Stokes equations are formulated in an Arbitrary Lagrange Eulerian (ALE)
framework [3] while the solid structure is usually described in a Lagrangian fash-
ion. Although this approach is known to allow for accurate results at the interface
between solid and fluid, for scenarios that involve large displacements and/or rota-
tions, the fluid grid may become severely distorted, thus affecting both the numerical
stability of the problem and the accuracy of the solution.

In order to circumvent those difficulties, embedded boundary approaches such as
the Immersed Boundary Method (IBM), have been introduced to model the fluid-
structure interaction on a stationary fluid grid analyzed in a Eulerian fashion. The
main aspect of this technique is the representation of the immersed solid material as
a force density in the Navier-Stokes equations.

In the IBM, the volume of the solid is commonly described by systems of fibres
that resist extension, compression, or bending [1, 2, 4]. Some alternative approaches
have been proposed on the basis of the finite element method for the spatial approx-
imation of the Lagrangian quantities (force densities, displacement field, etc.). In
all these approaches the reaction force exerted by the solid on the fluid is computed
explicitly by using the fluid velocity field to get the corresponding displacement of
the solid structure [5, 6, 7].

We describe an alternative framework for FSI simulations, where we employ the
finite difference method for simulating the fluid flow and couple it with a finite el-
ement method for the structural problem. The main novelties of this work are (I)
the description of the solid body motion obtained by solving implicitly the elastody-
namic equations and (II) the treatment of the Lagrangian-Eulerian interaction which
is achieved by means of the L2– projection. Such approach allows for the transfer
of data between non-matching structured (Cartesian) and unstructured meshes arbi-
trarily distributed among different processors.

All the modules of the FSI computational frameworks are integrated into the
multi-physics simulation framework MOOSE (mooseframework.org). The
code is optimised for modern hybrid high-performance computing platforms such
as the Cray XC50 system at the Swiss National Supercomputing Centre CSCS.

2 Strong Formulation of the FSI Problem

In this section we provide a brief description of the methodology adopted in our
framework to solve the FSI problem. Since the proposed approach follows the main

mooseframework.org
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principle of the IBM, we employ the standard Eulerian formulation for the Navier-
Stokes equations for incompressible flows, whereas the elastic response of the em-
bedded structure is described in a Lagrangian fashion.

Let Ω ⊂Rd (with d = 1,2,3) be a bounded Lipschitz domain denoting the phys-
ical region occupied by the coupled fluid-structure system. We label x ∈ Ω as the
spatial point, and x̂∈ Ω̂s as the material (or reference) point, with Ω̂s ⊂Rd denoting
the material (reference) configuration of the solid domain (Fig. 1).

We assume that the map χ̂χχ : Ω̂s×I→Rd is a one-to-one correspondence between
the material x̂ and the actual x positions occupied by the elastic structure during the
time interval I = [0 T], s. t. (x̂, t)→ x= χ̂χχ(x̂, t), ∀t ∈ I. Additionally, we denote with
Γfsi the physical interface between the fluid and the solid mesh.

The strong formulation of the complete FSI problem reads as follows:

ρ̂s0
∂ 2ûs

∂ t2 − ∇̂x̂ · P̂ =d on Ω̂s (a)

ρ f
∂v f

∂ t
+ρ f

(
v f ·∇

)
v f +∇p f −µ∆v f = ffsi on Ω (b)

∇ ·v f =0 on Ω (c)

v f =
∂us

∂ t
on Γfsi (d) (1)

Here Eq. 1(a) is the equation of the elastodynamics where ρ̂s0 is the mass density
per unit undeformed volume of the elastic structure, ûs = ûs(x̂, t) is the related dis-
placement field, P̂= P̂(x̂, t) is the first Piola-Kirchhoff stress tensor, d is a prescribed
external body force, and ∇̂x̂ · is the divergence operator computed in the reference
configuration. For an hyperelastic material, the first Piola-Kirchhoff stress tensor P̂
is related to the deformation through a constitutive equation derived from a given

scalar valued energy function Ψ , i. e. P̂ = F̂ ∂ψ(Ê)
∂ Ê

, where Ê := 1/2(F̂T F̂− I) is the

Lagrangian-Green strain tensor and F̂ is the deformation gradient tensor defined as
F̂ = ∇x̂x.

Eq.s 1(b-c) represent the standard Navier-Stokes equations where ρ f is the fluid
density, v f is the velocity field of the fluid, p f is the pressure, ∇x is the gradient
operator, ∆x is the Laplacian operator computed in the current configuration and ffsi

Fig. 1 Lagrangian (left) and Eulerian (right) coordinate systems adopted in the Immersed Bound-
ary method.
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is the force density generated by the embedded solid structure as we will describe
in Section 3.1.
Remark In the equation of the elastodynamics, i. e. Eq. 1(a), the evaluation of the
inertial term must take care of the fluid in which it is embedded. This can be done by
subtracting the density of the fluid phase from the solid one (i.e. ρ̂s0−ρ f ) [14]. It is
worth to pointing out that, since in our case the fluid velocity field is used to recover
the displacement of the FSI interface, this difference is restricted only to Γfsi.

3 Discretization of the FSI problem

In this section, we provide some details about the discretization in time and in space
of the solid and the fluid sub-problem.

3.1 Solid Problem
For the time discretization of the solid problem, we adopt the classical Newmark

scheme. This scheme is based on a Taylor expansion of the displacements and the
velocities:

ûs,n+1 = ûs,n +∆ t vs,n + ∆ t2

2
((1−2β )as,n +2βas,n+1)

v̂s,n+1 = v̂s,n +∆ t ((1−α)ûs,n +α âs,n+1)

where ∆ t is the time step size, as := ∂ 2ûs
∂ t2 and vs := ∂ ûs

∂ t are the the acceleration
and the velocity of the solid, respectively, and the parameters α and 2β are chosen
such that α = 2β = 1/2.

For the spatial discretization of the structure problem, we assume that the solid
domain Ω̂s can be approximated by a discrete domain Ω̂ h

s and the associated mesh
T̂ h

s = {Ês ⊆ Ω̂ h
s |
⋃

Ês = Ω̂ h
s }, where its elements Ês form a partition. The Galerkin

formulation of the elastodynamics equation reads:
For every t ∈ (0; T ] find ûh

s (·, t) ∈ V̂h
s := [V̂ h

s (T̂
h

s )]
d ⊂ [H1

0 (Ω̂s)]
d so that:

(ρ̂s0âh
s ,δuh

s )+a(uh
s ,δuh

s )− (dh
s ,δuh

s ) = 0 (2)

By defining (Fh,δuh
s ) = a(uh

s ,δuh
s )− (dh

s ,δuh
s ) and using the Green’s formula

we get:
(ρ̂s0âh

s ,δuh
s )+(Fh,δuh

s ) = (fh
fsi,δuh

s )L2(Γ h
fsi)

(3)

where fh
fsi represents the reaction force exerted by the solid structure on the fluid.

3.2 Fluid Problem
The time integration of the fluid problem is carried out by a 3rd order low-storage

Runge-Kutta scheme for both the advective and the diffusion terms [8].
For the discretization of Eq. 1(b), the usage of high-order (sixth) explicit-finite

differences leads to a linear system of equations of the form:
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H G
D 0

][
v f

p f

]
=

[
z
0

]
Here the matrices D and G are the spatial discretization of the divergence and the
gradient operators, z is the discrete representation of the right hand side, whereas H
is the Helmholtz operator which coincides with the identity matrix (except for the
boundary conditions) due to the usage of a purely explicit time integration scheme.
By applying D to the equation Hv f +Gp f = 0, one may derive the following equa-
tion for the pressure:

DH−1Gp f = DH−1z (4)

In order to guarantee the gradient of the pressure to be unique, the Schur comple-
ment DH−1G must be h-elliptic (i.e. must have only one zero eigenvalue). To this
aim Arakawa-C grids are adopted which combine several types of nodal points lo-
cated in different geometrical positions.

4 L2 - projection
For coupling the two sub-problems we adopt a volume L2–projection which al-
lows for the transfer of discrete fields between non conforming meshes arbitrarily
distributed among several processors. Such an approach ensures convergence, effi-
ciency, flexibility and accuracy without requiring a priori information on the relation
between the different meshes. To this aim, we attach Lagrangian basis functions to
the finite difference discretization [9], define the corresponding finite element space
as Vh

f = Vh
f (T

h
f ) ⊂ [H1

0 (Ω)]d and introduce the vector of Lagrange multipliers λλλ
h
fsi

with the related virtual variations, δλλλ h
fsi ∈Mh

fsi(T̂
h

s ∩T h
f ) ⊂ [H1(Ω̂s ∩Ω)]d , where

T h
f represents the fluid grid.

In the following, the projection operator P : V h
f →V h

s is defined by focusing on the
scalar case, which means that for each component of the velocity vh

f ,i ∈V h
f , we may

find wh
s,i = P(vh

f ,i) ∈ V̂ h
s , such that the following weak-equality condition holds:∫

T̂ h
s ∩T h

f

(vh
f ,i−P(vh

f ,i))δλ
h
f si dV =

∫
T̂ h

s ∩T h
f

(vh
f ,i−wh

s,i)δλ
h
fsi dV = 0 ∀ δλ

h
fsi ∈Mh

fsi

(5)
By writing vh

f , wh
s and δλ h

fsi in term of basis functions (here the index i is omit-

ted for a simpler notation), i.e. vh
f = ∑l∈J f

vl
f Nl

f , wh
s = ∑ j∈Js w j

sN j
s and δλ h

fsi =

∑k∈Jfsi
δλ k

fsiN
k
fsi (where Js, J f and Jfsi are index sets), we get the so called mortar

integrals: Bk,l =
∫

Ih
Nl

f Nk
fsi dV and Sk, j =

∫
Ih

N j
s Nk

fsi dV . Equation 5 can be then writ-
ten in the following algebraic form:

ws = S−1Bv f = Tv f (6)

The transpose of T is used to transfer the reaction force from the solid to the fluid
grid.
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In order to reduce the computational cost required to compute the inverse of the
matrix S, we adopt dual basis functions for the function space Mh

fsi. In this case this
function space is spanned by a set of functions which are biorthogonal to the basis
functions of V̂h

s with respect to the L2-inner product:

(Nk
fsi,N

j
s )L2(Ih) = δ

k, j(N j
s ,1)L2(Ih) ∀k, j (7)

The usage of the dual basis functions corresponds to replacing the standard L2–
projection with a Pseudo–L2–projection, which allows for a more efficient evalua-
tion of the transfer operator T since the matrix S becomes diagonal. The assembly of
the transfer operator is done in several steps [10]: (a) we compute the overlapping
region by means of a tree search algorithm, (b) generate the quadrature points for
integrating in the intersecting region, (c) compute the local element-wise contribu-
tions for the operators B and S by means of numerical quadrature, and (d) assemble
the two mortar matrices.

5 Overview of the FSI algorithm

In our framework a segregated approach is adopted to solve the fully coupled FSI
problem. More specifically, we use a fixed point (Picard) iteration scheme for solv-
ing the arising coupled non-linear discrete system.

For a given time step n and given a starting solution at the Picard iteration l, the
following steps are performed within iteration l +1:

Step 1: Velocity values are transferred from the fluid grid to the solid mesh.
Step 2: The elastodynamic equation (Eq. 1(a)) is solved with the Dirichlet bound-
ary conditions (Eq. 1(d)).
Step 3: The reaction force ffsi is computed and transferred from the solid mesh
to the fluid grid.
Step 4: The Navier-Stokes problem (Eq. 1(b)-(c)) is solved by using the force ffsi
as source term.
Step 5: Suitable residual norms are computed between the FSI interaction force
terms evaluated at iterations l and l +1, i. e. ‖fl+1

fsi − fl
fsi‖∞/‖f0

fsi‖ for the relative
convergence criterion and ‖fl+1

fsi − fl
fsi‖∞ for the absolute convergence criterion

[6], and compared with given threshold values. This ensures the satisfaction of
the coupling between the two sub-problems, thus leading to either a new Picard
iteration or a new time step n + 1 otherwise.

We employ the numerical solver IMPACT (Incompressible (Turbulent) flows on
Massively PArallel CompuTers) for solving the non-dimensional Navier-Stokes
equations [8]. The solid problem and the assembly of the transfer operator are im-
plemented in the finite-element framework MOOSE (www.mooseframework.
org), whereas the library MOONoLiTH (https://bitbucket.org/zulianp/
par_moonolith) is used for detecting the overlapping region between the fluid
and the solid grids and computing the corresponding intesections.

www.mooseframework.org
www.mooseframework.org
https://bitbucket.org/zulianp/par_moonolith
https://bitbucket.org/zulianp/par_moonolith
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6 Numerical Results

In this section we present results related to the Turek-Hron FSI benchmark which
considers the incompressible flow of a Newtonian fluid around an elastic solid struc-
ture composed of a disk and a rectangular trailing beam.

The dimensions of the fluid channel are (Fig. 2 (a)): length L f = 3.0m and height
H f = 0.41m. The disk center is positioned at C = (0.2m,0.2m) (measured from the
left bottom corner of the channel) and the radius is r = 0.05m. The elastic structure
bar has length Ls = 0.35m and height Hs = 0.02m; the right bottom corner is po-
sitioned at (0.6m,0.19m), and the left end is fully attached to the circle. The fluid
properties are ρ f = 1000kg/m3 and µ = 1Pa · s which lead to a Reynolds number
of 200. The density of the solid structure is the same as the fluid phase, and a Saint-
Venant Kirchhoff model is adopted as constitutive law, for which the first Piola-
Kirchhoff stress tensor is defined as: P̂ = F̂(λ tr(Ê)I+2µÊ) with µ = 2.0MPa and
λ = 4.7MPa. Periodic boundary conditions are imposed along the inlet and the out-
let of the fluid channel together with no-slip boundary conditions on the top and the
bottom. Moreover at the inlet a Poiseuille flow with a centerline velocity of 1.5m/s
is enforced by a fringe region appended downstream.

In Fig. 2 (b) we show the displacements in x and y direction of a control point P
located at the end of the elastic beam (A≡ (0.6m, 0.2m), Fig. 2 (a)). The amplitude
of the last period of oscillation is in the range of 0.03m for the vertical displacement
and of 0.0025m for the horizontal displacement; the frequency of the y-displacement
is about 6s−1, and the frequency for the x-displacement is about 11s−1. All values
are in good agreement with the original benchmark results [11]. In Fig. 2 (c) we
also show the forces exerted by the lift and drag forces acting on the cylinder and
the beam structure together. Again the values agree well with the results obtained
by other numerical methods applied to the same problem [12]. Finally, the fluid

Fig. 2 (a) Geometry of the Turek-Hron benchmark. (b) Amplitude displacement in x and y direc-
tion of a control point A located at the end of the elastic beam. (c) Lift and drag forces. (d) Fluid
vorticity.
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vorticity is depicted in Fig. 2 (d) ranging from −30s−1 to 30s−1, in agreement with
numerical values reported in Griffith [13] .

7 Conclusion

In this article we present a novel FSI framework based on the IMB. The description
of the solid motion, obtained by solving implicitly the elastodynamic equations, en-
sures to yield extra stability and robustness. Moreover, the use of the fluid solver
IMPACT and of the software MOONoLith for the L2−projection allows for a com-
pletely parallel framework suitable for the simulation of complex and large simula-
tions such the blood flow in human arteries and through heart valves.
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Combining space-time multigrid techniques with
multilevel Monte Carlo methods for SDEs

Martin Neumüller and Andreas Thalhammer

Abstract In this work we combine multilevel Monte Carlo methods for time-
dependent stochastic differential equations with a space-time multigrid method. The
idea is to use the space-time hierarchy from the multilevel Monte Carlo method also
for the solution process of the arising linear systems. This symbiosis leads to a ro-
bust and parallel method with respect to space, time and probability. We show the
performance of this approach by several numerical experiments which demonstrate
the advantages of this approach.

1 Introduction

Stochastic differential equations (SDEs) have become an invaluable tool for mod-
elling time-dependent problems that are perturbed by random influences. Since the
importance of such models increases constantly, there is a high demand on improv-
ing the efficiency of numerical algorithms for SDEs, especially, if one is interested
in the approximation of E[ϕ(X(T ))], where X(T ) denotes the (mild) solution of
an SDE evaluated at time T and E denotes the expectation, where ϕ is a mapping
determining the statistical quantity of interest.

In this work we focus on approximating E[ϕ(X(T ))] for the solution process
of linear SDEs driven by additive noise. For this we combine space-time multigrid
methods for approximating solutions of time-dependent deterministic differential
equations, see [4] and the references therein, and multilevel Monte Carlo (MLMC)
methods, see e.g. [5, 6]. Both methods as such are well-known to be parallelizable,
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however, the combination of both methods is a completely new approach that en-
ables the full parallelization of the problem in space, time and probability.

The outline of this article is as follows: In the remainder of this section, we
introduce two model problems (the Ornstein-Uhlenbeck process and the stochas-
tic heat equation) together with discretization techniques for these model problems
with respect to space and time. Afterwards, we consider the multilevel Monte Carlo
(MLMC) method for approximating the expectation in Section 2 and we discuss
parallelizable space-time multigrid methods based on the inherited space-time hi-
erarchy of the MLMC estimator in Section 3. Finally, we conclude by presenting
numerical experiments in Section 4.

1.1 Model problems

Let T > 0 and let (Ω ,{Ft}t∈[0,T ],F ,P) be a complete filtered probability space. At
first, we consider a one-dimensional model problem given by the stochastic ordinary
differential equation (SODE)

du(t)+λu(t)dt = σ dβ (t) for t ∈ (0,T ], (1)
u(0) = u0,

where λ ∈ R+
0 ,σ ,u0 ∈ R and β = (β (t), t ∈ [0,T ]) is a standard Brownian motion.

The solution of this SODE is a Ornstein-Uhlenbeck process defined by

u(t) = u0e−λ t +σ

∫ t

0
e−λ (t−s) dβ (s), t ∈ [0,T ]. (2)

As second model problem we consider the stochastic heat equation on a bounded
and convex domain D⊂Rd ,d = 1,2,3, with homogeneous Dirichlet boundary con-
ditions. We rewrite the corresponding stochastic partial differential equation (SPDE)
as a stochastic evolution equation on the Hilbert space H = L2(D)

dU(t) = ∆U(t)dt + dW (t) for t ∈ (0,T ], (3)

U(0) =U0 ∈ H2(D)∩H1
0 (D).

Subsequently, we denote by (e j, j ∈ N) the set of eigenfunctions of the Laplace op-
erator−∆ , which forms an orthonormal basis of H. Furthermore, let W = (W (t), t ∈
[0,T ]) be an H-valued Q-Wiener process with a linear, positive definite, symmetric,
trace class covariance operator Q. Then W can be represented as (see e.g. [3, 7])

W (t) =
∞

∑
j=1

√
µ je jβ j(t), (4)

where (µ j, j ∈ N) denotes the set of eigenvalues of Q satisfying Qe j = µ je j and
(β j, j ∈ N) is a sequence of independent standard Brownian motions.
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Then, by [3], there exists a unique, square-integrable mild solution to SPDE (3)

U(t) = S(t)U0 +
∫ t

0
S(t− s)dW (s) for t ∈ [0,T ], (5)

where S(t), t ∈ [0,T ], denotes the semigroup generated by the Laplace operator.

1.2 Discretization of model problems

In this section, we present fully discrete schemes for approximating the solution
processes from Eq. (2) and Eq. (5). For this we fix an equidistant partition ΘK of the
time interval [0,T ] given by ΘK = {0 = t0 < t1 < · · ·< tK = T}, where for 0≤ j≤K
we choose t j = j∆ t with time step size ∆ t = T/K.

For approximating the solution of the Ornstein-Uhlenbeck process (2), we con-
sider the backward Euler–Maruyama scheme given by the recursion

(1+λ∆ t)u j = u j−1 +σ∆β
j, for 1≤ j ≤ K, (6)

where u0 = u0 and ∆β j = β (t j)−β (t j−1). Rewriting the recursion (6) in a matrix-
vector representation yields

(1+λ∆ t)
−1 (1+λ∆ t)

. . . . . .
−1 (1+λ∆ t)




u1
u2
...

uK

=


σ∆β 1(ω)+u0

σ∆β 2(ω)
...

σ∆β K(ω)

 . (7)

In this article, we abbreviate this linear system by Lτ u = f(ω), where we use the
ω-dependency in f(ω) to indicate that the right hand side is a random vector.

For the stochastic heat equation we want to obtain a fully discrete approxima-
tion U j

h of the mild solution U(t j), t j ∈ ΘK , where U j
h attains values in a finite-

dimensional subspace Vh ⊂H1
0 (D). Besides an appropriate time integration method,

we apply a discretization scheme in space. For this we consider a standard Galerkin
finite element (FE) discretization based on a regular family (Th,h ∈ (0,1]) of tri-
angulations of D with maximal mesh size h. Then Vh denotes the space of globally
continuous and on Th piecewise linear functions. Furthermore, we denote by Nh the
dimension of Vh. By using the nodal basis functions (φi,1 ≤ i ≤ Nh) ⊂ H1

0 (D), the
fully discrete approximation scheme based on Galerkin finite elements in space and
on the backward Euler–Maruyama scheme in time is given by (see e.g. [2])

(Mh +∆ tKh)U j = MhU j−1 +∆W j for 1≤ j ≤ K, (8)

where ∆W j denotes the vector representation of the FE approximation of the Q-
Wiener increments ∆W j(x) =W (t j,x)−W (t j−1,x),x ∈ D, and for j = 0, . . . ,K,
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U j
h =

Nh

∑
i=1

U j[i]φi,

where U j[i] denotes the ith component of the vector U j ∈ RNh . Here, we denote by
Mh the standard mass matrix and Kh the standard stiffness matrix defined by

Mh[i, j] :=
∫

D
φ j(x)φi(x)dx, Kh[i, j] :=

∫
D

∇φ j(x) ·∇φi(x)dx, for i, j = 1, . . . ,Nh.

Finally, by rewriting the numerical scheme (8) in terms of a matrix-vector formula-
tion we obtain the large linear system

Mh +∆ tKh
−Mh Mh +∆ tKh

. . . . . .
−Mh Mh +∆ tKh




U1
U2
...

UK

=


∆W1(ω)+MhU0

∆W2(ω)
...

∆WK(ω)


(9)

that is subsequently abbreviated by Lh,τ U = F(ω).

2 Multilevel Monte Carlo methods

The goal is to approximate E[ϕ(u(T ))] or E[ϕ(U(T ))] for a sufficiently smooth
mapping ϕ : H → B, where B is a separable Hilbert space, by using suitable esti-
mators. For Y ∈ L2(Ω ;B) a common way to approximate E[Y ] is to use a standard
Monte Carlo (MC) estimator defined by

EM[Y ] :=
1
M

M

∑
i=1

Y (i),

where (Y (i), i = 1, . . . ,M) are independent realizations of Y . Here, L2(Ω ;B) denotes
the space of strongly measurable random variables Y that satisfy

‖Y‖2
L2(Ω ;B) := E[‖Y‖2

B]< ∞.

Due to the rather slow convergence of the MC estimator of order M−1/2 in the
L2(Ω ;B)-sense, the efficient multilevel Monte Carlo (MLMC) estimator has been
proposed in [5]. For its definition we consider a sequence (Y`, ` ∈ N0) of approxi-
mations of Y ∈ L2(Ω ;B) based on different refinement levels ` ∈ N0. The MLMC
estimator is then given by

EL[YL] :=
L

∑
`=0

EM`
[Y`−Y`−1],
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where Y−1 = 0. The L2(Ω ;B)-error of the MLMC estimator satisfies (see [6])

‖E[Y ]−EL[YL]‖L2(Ω ;B) ≤ ‖E[Y −YL]‖B +

( L

∑
`=0

M−1
` Var[Y`−Y`−1]

)1/2

(10)

where Var[Y ] = E[‖Y −E[Y ]‖2
B] for Y ∈ L2(Ω ;B).

In the following two subsections, we discuss how to choose the number of sam-
ples (M`, ` ∈ N0) and the refinement parameter h and ∆ t in order to guarantee the
convergence of the MLMC estimator.

2.1 Ornstein-Uhlenbeck process

Let u be given in Eq. (2) and for ` ∈ N0 let uK`
be the numerical approximation

of u(T ) based on the backward Euler–Maruyama scheme (6) with respect to the
partition ΘK`

with time step size ∆ t`. Furthermore, let ϕ ∈C2
b(R,R), i.e., ϕ : R→R

is twice continuously differentiable with bounded first and second derivatives. Due
to the additive noise structure of SDE (1) we obtain by results from [8] that

|E[ϕ(u(T ))−ϕ(uKL)]| ≤C∆ tL, Var[ϕ(uK`
)−ϕ(uK`−1)]

1/2 ≤C∆ t`.

Thus, by similar arguments as in [6], if we choose for any ε,CM > 0,

M0 = dCM∆ t−2
L e, M` = dCM∆ t2

` ∆ t−2
L `1+εe for `= 1, . . . ,L, (11)

then ‖E[ϕ(u(T ))]−EL[ϕ(uKL)]‖L2(Ω ;R) = O(∆ tL).

2.2 Stochastic heat equation

Let U be given in Eq. (5) and for ` ∈N0 let UK`
h`

be an approximation of U(T ) based
on the FE backward Euler–Maruyama scheme (8) with respect to the partition ΘK`

and the FE space Vh` . Furthermore, let ϕ ∈C 2
b (H,B), i.e., ϕ : H→B is twice Fréchet

differentiable with bounded first and second Fréchet derivatives. Then by using the
results from [1], we get by choosing ∆ t` = h2

` for any γ ∈ [0,1)

‖E[ϕ(U(T ))−ϕ(UKL
hL

)]‖B ≤Ch2γ

L , Var[ϕ(UK`
h`
)−ϕ(UK`−1

h`−1
)]≤Ch2γ

` .

Thus, by [6], if we choose ∆ t` = h2
` and for any

M0 = dCMh−2γ

L e, M` = dCMh2γ

` h−2γ

L `1+εe for `= 1, . . . ,L. (12)

then ‖E[ϕ(U(T ))]−EL[ϕ(UKL
hL

)]‖L2(Ω ;B) = O(hγ

L).
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3 Space-time multigrid methods

The idea is to use the space-time hierarchy from the MLMC methods discussed in
Sections 2.1 and 2.2 also for a space-time multigrid approach. In detail we use the
space-time multigrid method presented in [4] to solve the linear system (7) and (9)
at once. The advantage is that we can also add parallelization in time direction and
also with respect to the space dimension. So using the space-time hierarchy coming
from the MLMC method for the linear solver we obtain an algorithm which can be
applied in parallel with respect to space, time and probability. For the space-time
multigrid method we use a (inexact) damped block Jacobi smoother, see also [4],
i.e. for the problem (7) we use

u(n+1) = u(n)+αD−1
τ

[
f(ω)−Lτ u(n)

]
for n = 0,1, . . . ,

with the diagonal matrix Dτ := diag(1+λ∆ t). Whereas, for the problem (9) we use
the smoothing iteration

U(n+1) = U(n)+αD−1
h,τ

[
F(ω)−Lh,τ U(n)

]
for n = 0,1, . . . ,

with the block diagonal matrix Dh,τ := diag(Mh +∆ tKh). To speed up the applica-
tion of the smoothing procedure we replace the exact inverse of Dh,τ by applying
one iteration of a multigrid V-cycle with respect to the matrix Mh+∆ tKh. Moreover
we always set the damping parameter to α = 1

2 , see [4] for more details. Choos-
ing ∆ t ≈ h2 leads – in combination with the space-time hierarchy coming from the
MLMC method – to a robust solver which is independent of the number of time
steps K the time step size ∆ t and the randomness ω .

4 Numerical experiments

4.1 Ornstein-Uhlenbeck process

We consider the SODE (1) with λ = 1,σ = 1 and u0 = 1. By choosing T = 1 and
ϕ(x) = x for all x ∈ R we are interested in approximating E[u(T )] = e−T .

For the numerical approximation we consider the backward Euler–Maruyama
scheme from Eq. (6) in the matrix-vector representation Lτ u = f(ω), which is
solved by the time multigrid method described in Section 3. For the approxima-
tion of the expectation we consider a multilevel Monte Carlo estimator based on the
sample size selection from Eq. (11) with ε = 1

2 and CM = 10.
In Table 1, ‖E[u(T )]− EL[uKL ]‖L2(Ω ;R) is approximated by a standard Monte

Carlo estimator given by
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MS-err =

(
1
M

M

∑
i=1

∣∣∣e−T −EL[uKL ]
(i)
∣∣∣2)1/2

,

where (EL[uKL ]
(i),1≤ i≤M) are independent realizations of the MLMC estimator

EL[uKL ]. For this we choose M = 100 in the numerical experiments from Table 1
and we observe the right convergence rates as predicted by the theory.

Table 1 Numerical test for SODE (1) (Ornstein-Uhlenbeck process).

L time steps realizations level 0 realizations level L MS-err EOC
0 1 10 10 2.61915E-01 -
1 2 40 20 1.39399E-01 0.91
2 4 160 50 6.73215E-02 1.05
3 8 640 80 3.92162E-02 0.78
4 16 2560 110 2.02307E-02 0.95
5 32 10240 140 1.00032E-02 1.02
6 64 40960 180 4.80065E-03 1.06
7 128 163840 220 2.31171E-03 1.05
8 256 655360 270 1.13875E-03 1.02
9 512 2621440 310 5.29684E-04 1.10
10 1024 10485760 360 2.62618E-04 1.01

4.2 Stochastic heat equation

For the stochastic heat equation (3) we consider the one-dimensional case D= (0,1)
with initial value U0(x) = sin(πx). By choosing T = 0.2 and ϕ(v) = v for all v ∈
L2(D), we are interested in approximating E[U(T,x)] = exp(−π2T )sin(πx),x ∈D.

The eigenvalues of the Q-Wiener process are µ j = j−(2r+1+ε) with r = 2 and any
ε > 0, see e.g. [7] for details. For approximating paths of the Q-Wiener process we
truncate the series representation (4) after the first Jh = Nh summands, see e.g. [2].

For the numerical approximation in space and time, we consider the FE Euler–
Maruyama scheme from Eq. (8) on an equidistant mesh with grid width h` = 2−`−1

in the matrix-vector formulation Lh,τ U= F(ω), which is again solved by the space-
time multigrid method described in Section 3. For the approximation of the expec-
tation we consider the MLMC method based on the sample size selection (12) with
ε = 0.5 and CM = 10.

In numerical experiments ‖E[U(T )]− EL[UKL
hL

]‖L2(Ω ;B) is approximated by a
standard Monte Carlo estimator, i.e., we consider

MS-err =

(
1
M

M

∑
i=1

∥∥∥E[U(T )]−EL[UKL
hL

](i)
∥∥∥2

L2(D)

)1/2

,

where (EL[UKL
hL

](i),1≤ i≤M) are independent realizations of the estimator EL[UKL
hL

]
and
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‖E[U(T )]−EL[UKL
hL

](i)‖2
L2(D) =

∫ 1

0

(
exp(−π

2T )sin(πx)−EL[UKL
hL

(x)](i)
)2

dx.

In Table 2 we use M = 100 independent realizations of the MLMC estimator and
we observe the optimal convergence rates as predicted by the theory. Moreover we
give in Table 3 the averaged solving times for one signle MLMC run for different
levels and different distributions of 512 cores. Here we observe that the best possible
setting is given by a balanced distribution of cores between parallelization in time
and parallelization of the Monte Carlo estimators. For example for level L = 7 the
best possible setting is given by 8 cores for time parallelization and 64 cores for the
Monte Carlo parallelization.

Table 2 Numerical test for SPDE (1) (stochastic heat equation) – convergence.

L time steps # elements realizations level 0 realizations level L MS-err EOC
0 1 2 10 10 7.83487E-02 -
1 4 4 40 20 3.39860E-02 1.20
2 16 8 160 30 1.29145E-02 1.40
3 64 16 640 60 5.99035E-03 1.11
4 256 32 2560 90 2.71909E-03 1.14
5 1024 64 10240 120 1.39772E-03 0.96
6 4096 128 40960 150 6.89668E-04 1.02
7 16384 256 163840 190 3.41996E-04 1.01

Table 3 Numerical test for SPDE (1) (stochastic heat equation) – computation time for one MLMC
run with respect to different distributions of 512 cores (in sec).

cores time / cores Monte Carlo
L 1 / 512 2 / 256 4 / 128 8 / 64 16 / 32 32 / 16 64 / 8 128 / 4
3 0.04 0.02 0.02 0.02 0.03 0.06 0.1 0.14
4 0.27 0.17 0.12 0.13 0.16 0.26 0.47 0.93
5 2.64 1.51 0.95 1.01 1.17 1.64 2.47 4.41
6 24.12 13.92 13.64 11.47 10.76 12.53 15.88 23.5
7 282.46 157.97 153.41 125.56 127.84 133.6 146.81 178.76
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On Block Triangular Preconditioners for the
Interior Point Solution of PDE-Constrained
Optimization Problems

John W. Pearson and Jacek Gondzio

Abstract We consider the numerical solution of saddle point systems of equa-
tions resulting from the discretization of PDE-constrained optimization problems,
with additional bound constraints on the state and control variables, using an inte-
rior point method. In particular, we derive a Bramble–Pasciak Conjugate Gradient
method and a tailored block triangular preconditioner which may be applied within
it. Crucial to the usage of the preconditioner are carefully chosen approximations
of the (1,1)-block and Schur complement of the saddle point system. To apply the
inverse of the Schur complement approximation, which is computationally the most
expensive part of the preconditioner, one may then utilize methods such as multigrid
or domain decomposition to handle individual sub-blocks of the matrix system.

1 Introduction

A key application of domain decomposition methods, alongside a range of other
numerical techniques, is within preconditioned iterative methods for linear systems
of equations. In this paper, we examine such systems arising from optimization
problems constrained by PDEs—in particular we wish to consider the application
of interior point methods to formulations with additional bound constraints. The
crucial computational element of such solvers is the development of a fast and robust
method for the Newton systems that arise at each interior point iteration. We refer
to [1, 3, 8, 13], and the references therein, for previous research on such iterative
methods, as well as to [5] for the development of a multigrid scheme.

The key component of the authors’ previous work [13] was the consideration of
saddle point solvers for these linear systems. It was found that iterative methods
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accelerated by block triangular preconditioners are highly effective for the solution
of such systems, often more so than those incorporating analogous block diagonal
matrices; however, in general it is difficult to robustly predict the convergence rate
of the iterative scheme when using block triangular preconditioners. In this work,
we present a new Bramble–Pasciak Conjugate Gradient method which allows one
to employ an efficient block triangular approximation, for which the preconditioned
system is self-adjoint and positive definite in some non-standard inner product. This
also enables one to predict the convergence of the algorithm based on the eigenval-
ues of the preconditioned system. Such guarantees are not available if one uses more
standard Krylov subspace methods for non-symmetric systems, for instance GMRES
or BICG. This also provides a framework for domain decomposition techniques,
multigrid methods, or other tailored schemes to tackle the individual portions of the
block matrix systems at hand. The main contribution of this paper is therefore the
presentation of a new solver with the shared advantages of both its faster compu-
tational performance, due to the favourable properties of block triangular precondi-
tioners, and the theoretical guarantees of convergence which it provides.

This paper is structured as follows. In Section 2 we describe the PDE-constrained
optimization problem of which we wish to consider the numerical solution. In Sec-
tion 3 we outline the Bramble–Pasciak Conjugate Gradient method, as well as the
block triangular preconditioner that we apply within it. In Section 4 we ascertain the
effectiveness of our methodology when applied to a number of practical problems.

2 PDE-Constrained Optimization Problem

The problem of which we consider the numerical solution in this paper is given as
follows:

min
y,u

1
2
‖y− ŷ‖2

L2(Ω)+
β

2
‖u‖2

L2(Ω)

s.t. Dy = u, in Ω ,

y = f , on ∂Ω ,

ya ≤ y≤ yb, a.e. in Ω ,

ua ≤ u≤ ub, a.e. in Ω .

This problem is solved on a domain Ω ⊂ Rd , d ∈ {2,3}, with boundary ∂Ω . Here,
y, ŷ and u represent the state, desired state and control variables, with D some given
PDE operator. Further, β is a (positive) regularization parameter, with f , ya, yb, ua,
ub given functions. The key to this problem is that we wish to find functions y and u
which solve the minimization problem constrained by a system of PDEs, while also
placing upper and lower bounds on the values that these functions may take.

As illustrated in [13], we may solve this problem using a discretize-then-optimize
strategy, where a Lagrangian is built on the discrete level and optimality conditions
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are subsequently derived from it. The Lagrangian of which we wish to find the
stationary point(s), when a finite element method is applied to tackle the barrier
optimization problem, is given as follows:

L
(
y,u,λλλ

)
=

1
2

yT My−yT
d y+

β

2
uT Mu+λλλ

T (Ky−Mu− f)

−µ ∑
j

log
(
y j− ya, j

)
−µ ∑

j
log
(
yb, j− y j

)
−µ ∑

j
log
(
u j−ua, j

)
−µ ∑

j
log
(
ub, j−u j

)
,

where y and u are the discrete state and control variables, and y j, ya, j, yb, j, u j, ua, j,
ub, j denote the values of y, ya, yb, u, ua, ub at the j-th finite element node. The
vector λλλ is the discrete adjoint variable, enforcing the PDE constraint (which in
discretized form is given by Ky−Mu = f). The matrix M is the well known finite
element mass matrix, with entries defined by [M]i j =

∫
Ω

φiφ j dΩ , where φi denote
the finite element basis functions used. The matrix K relates to the weak form of the
PDE operator D . The vectors yd and f correspond to the functions ŷ and f on the
discrete level, and contain entries of the form

∫
Ω

ŷφi dΩ and
∫

Ω
f φi dΩ respectively.

The (positive) barrier parameter µ precedes a sum of logarithmic terms which help
to enforce the bound constraints on the state and control variables.

The essence of our interior point method is that at each step we wish to find the
stationary point of the Lagrangian L , with y j and u j updated to take account of the
previous iterate, and with µ reduced at each iteration by a factor which is chosen
in advance. The algorithm applied is stated in [13]—it is then shown that the main
computational bottleneck is the solution of the Newton systemM+Dy 0 KT

0 βM+Du −M
K −M 0

 δδδy
δδδu
δδδλλλ

 (1)

=

 µ(Y −Ya)
−1e−µ(Yb−Y )−1e+yd−My∗−KT λλλ

∗

µ(U−Ua)
−1e−µ(Ub−U)−1e−βMu∗+Mλλλ

∗

f−Ky∗+Mu∗


at each interior point step. The (diagonal) matrices Dy and Du are given by

Dy = (Y −Ya)
−1Zy,a +(Yb−Y )−1Zy,b,

Du = (U−Ua)
−1Zu,a +(Ub−U)−1Zu,b.

Here, Y , U , Ya, Yb, Ua, Ub are diagonal matrices containing the entries of y, u (at the
previous Newton step), ya, yb, ua, ub; further, Zy,a, Zy,b, Zu,a, Zu,b denote diagonal
matrices with entries defined by Lagrange multipliers associated with bounds ya,
yb, ua, ub, respectively. At each iteration, an interior point algorithm attempts to
approximately satisfy the following centrality condition:
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(Zy,a) j j =
µ

y j− ya, j
,

(
Zy,b
)

j j =
µ

yb, j− y j
,

(Zu,a) j j =
µ

u j−ua, j
,
(
Zu,b
)

j j =
µ

ub, j−u j
.

The vector e contains a one at each entry, and the vectors y∗, u∗, λλλ
∗ contain the

previous iterates for y, u, λλλ . We wish to solve the matrix system (1) for δδδy, δδδu, δδδλλλ ,
the Newton updates of y, u, λλλ , at each interior point iteration.

3 Bramble–Pasciak Conjugate Gradients and Preconditioning

We now wish to approach the main computational challenge within the interior point
algorithm, namely the fast and efficient solution of the matrix system (1). This is
an example of a saddle point system, which is defined in general as a system of
equations of the form [

A BT

B 0

]
︸ ︷︷ ︸

A

[
x(1)

x(2)

]
︸ ︷︷ ︸

x

=

[
b(1)

b(2)

]
︸ ︷︷ ︸

b

.

There has been a great deal of research on the subject of the numerical solution
of such systems, and we refer to [2] for a comprehensive survey. However, in the
setting of interior point methods, we face the additional challenge that the (1,1)-
block A is severely ill-conditioned, due to the presence of diagonal scaling matrices
(defined as Dy and Du in Section 2 for our problem).

In [13], a block diagonal preconditioner was presented, involving approximations
Â and Ŝ for the (1,1)-block and the (negative) Schur complement S := BA−1BT ,
respectively. These approximations were carefully chosen such that the precondi-
tioned system P−1A had clustered eigenvalues, and also such that Â−1 and Ŝ−1

could be applied cheaply. In this work, we wish to apply a suitable block triangular
preconditioner

P =

[
Â 0
B −Ŝ

]
within a non-standard Conjugate Gradient method. By doing so, we are able to ex-
ploit the often superior convergence properties of block triangular preconditioners,
alongside the theoretical guarantees of convergence that Conjugate Gradient type
methods provide. In particular, we may predict a certain rate of convergence of the
iterative method by examining the eigenvalues of the preconditioned system.

The idea of the Bramble–Pasciak Conjugate Gradient method [4] is that we apply
this method using an inner product within which the preconditioned system is self-
adjoint and positive definite. A suitable inner product is given by 〈·, ·〉H , with
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H =

[
A− Â 0

0 Ŝ

]
.

The structure of the algorithm is presented below, and we refer to [4, 17, 18] for
further details.

Algorithm: Bramble–Pasciak Method for A x = b with Preconditioner P

Initial vectors

Given x0, set r0 = P−1(b−A x0), p0 = r0

Conjugate Gradient loop
for k = 0,1, ...

αk =
〈rk,rk〉H

〈P−1A pk,pk〉H
xk+1 = xk +αkpk

rk+1 = rk−αkP
−1A pk

βk =
〈rk+1,rk+1〉H
〈rk,rk〉H

pk+1 = rk+1 +βkpk

end

The key components within the algorithm involve computing terms of the form
P−1v and H P−1v, where we write v =

[
vT

1 , vT
2
]T . The first of these tasks may

be accomplished by applying Â−1 and Ŝ−1 efficiently, whenever the inverse of the
preconditioner is required. For the application of H P−1v, which is needed to com-
pute terms of the form 〈P−1A pk,pk〉H and 〈rk,rk〉H within the Bramble–Pasciak
algorithm, we observe that

H P−1v =

[
A− Â 0

0 Ŝ

][
Â−1v1

Ŝ−1BÂ−1v1− Ŝ−1v2

]
=

[
AÂ−1v1−v1

BÂ−1v1−v2

]
.

Therefore, we are only required to apply Â−1 once in order to compute this term.
We therefore require efficient approximations for the (1,1)-block and Schur com-

plement of the matrix system (1) under consideration. For this matrix,

A =

[
M+Dy 0

0 βM+Du

]
, B =

[
K −M

]
,

S = BA−1BT = K(M+Dy)
−1KT +M(βM+Du)

−1M.

To approximate the (1,1)-block, we apply a Chebyshev semi-iteration method [6, 7]
to the diagonally dominant matrices M +Dy and βM +Du. As it is necessary to
ensure that A− Â is positive definite, in turn to guarantee that the inner product
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matrix H is positive definite, we pre-multiply this approximation by a constant
0� γ < 1, which is chosen a priori such that this property holds (see [17]).

In order to approximate the Schur complement, we employ a ‘matching strategy’,
which was derived in [14, 15, 16], and was demonstrated to be highly effective in
the context of interior point methods in [13]. We write

Ŝ =
(
K + M̂

)
(M+Dy)

−1(K + M̂
)T

,

where M̂ = M
[
diag(βM +Du)

]−1/2[diag(M +Dy)
]1/2, with the aim of capturing

both terms of the exact Schur complement S within our approximation. The inverses
of K+M̂ and its transpose may be efficiently approximated using multigrid, domain
decomposition, or other methods.

Making use of our approximations of A and S, we may then compile our precon-
ditioner

P =

 γ(M+Dy)Cheb 0 0
0 γ(βM+Du)Cheb 0
K −M −Ŝ

 ,
which may be readily inverted, giving rise to a computationally efficient algo-
rithm within the inner product 〈·, ·〉H . Eigenvalue estimates for Â−1A and Ŝ−1S
are discussed in detail in [13]; applying these estimates within the Bramble–Pasciak
method leads to robust estimates of convergence rates for the iterative solver, us-
ing previous research on this method for PDE-constrained optimization problems
without additional bound constraints [17].

4 Numerical Experiments

To test the practical effectiveness of our method we implement an interior point
scheme, within which we apply the Bramble–Pasciak Conjugate Gradient method
with the preconditioner stated in Section 3. For each problem, we discretize the
state, control and adjoint variables using Q1 finite elements. The Bramble–Pasciak
method is run to a tolerance of 10−8 at each interior point step, with the outer (in-
terior point) solver run to a tolerance of 10−6. We measure the average number of
Bramble–Pasciak iterations required per outer iteration, until convergence of the
interior point method is achieved. The (1,1)-block of the matrix system (1) is ap-
proximated using 20 steps of Chebyshev semi-iteration, with parameter γ = 0.95
chosen to ensure positive definiteness of H ; the matrices K + M̂ and its transpose,
within the Schur complement approximation, are approximately inverted using the
Aggregation-based Algebraic Multigrid (AGMG) software [9, 10, 11, 12]. All tests
are carried out using MATLAB R2017b, on a quad-core 3.2 GHz processor.

For our first test problem, we consider the Poisson operator D = −∇2, take
ŷ = sin(πx1) sin(πx2), where x = [x1,x2]

T ∈Ω = [0,1]2, and set y = 0 on the bound-
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Table 1 Results for the Poisson control example with state constraints, for a range of values of
h and β . Presented are the average number of Bramble–Pasciak Conjugate Gradient iterations
required, per interior point step.

β = 1 β = 10−1 β = 10−2 β = 10−3 β = 10−4 β = 10−5

0≤ y≤ 0.002 0≤ y≤ 0.02 0≤ y≤ 0.15 0≤ y≤ 0.5 0≤ y≤ 0.8 0≤ y≤ 0.9

h

2−2 8.5 8.4 7.7 7.4 7.9 8.1
2−3 12.4 12.6 11.3 13.1 14.0 18.3
2−4 14.6 14.5 14.2 16.2 18.1 19.9
2−5 15.8 15.9 16.2 18.3 20.3 22.7
2−6 16.6 17.1 17.4 20.7 30.0 25.9
2−7 17.3 17.8 18.5 30.2 26.2 27.8

Table 2 Results for the convection–diffusion control example with control constraints, for a range
of values of h and β . Presented are the average number of Bramble–Pasciak Conjugate Gradient
iterations required, per interior point step.

β = 1 β = 10−1 β = 10−2 β = 10−3 β = 10−4 β = 10−5

0≤ u≤ 0.1 0≤ u≤ 0.5 0≤ u≤ 2 0≤ u≤ 5 0≤ u≤ 6 0≤ u≤ 6

h

2−2 8.3 9.8 11.8 14.3 15.4 16.0
2−3 8.4 10.9 14.8 16.9 20.6 24.4
2−4 8.2 10.4 13.6 26.6 33.8 35.2
2−5 8.1 10.1 12.4 16.9 29.9 33.5
2−6 8.1 9.9 12.2 15.3 25.9 24.6
2−7 8.3 9.9 12.1 15.3 18.3 18.9

ary ∂Ω of Ω . We prescribe bound constraints on the state variable y, based on the
physical properties of the problem. We solve the matrix systems for a range of step-
sizes h and values of β , and present the results obtained in Table 1. We observe
very low iteration numbers, considering the complexity of the problem and the ac-
curacy to which we solve the matrix systems, with only moderate increases as h
is decreased (i.e. as the dimensions of the matrix systems are increased). We also
observe a benign increase in Bramble–Pasciak iterations as β is decreased.

Our second test problem involves a convection–diffusion operator D =−0.01∇2+[
− 1√

2
, 1√

2

]T ·∇, a desired state ŷ = e−64((x1−0.5)2+(x2−0.5)2), and the boundary
condition y = ŷ. On this occasion we provide bound constraints for the control vari-
able u, as stated in Table 2. Once again, strong robustness of the Bramble–Pasciak
method is observed when either h or β is altered, illustrating that our strategy may
be applied to more varied differential operators and types of bound constraints.

We thus establish that the new Bramble–Pasciak Conjugate Gradient algorithm
presented for this class of problems provides both enjoyable theoretical properties,
and the fast, robust numerical solution of a range of practical examples. It may be
concluded that this is therefore a suitable and effective technique for the interior
point solution of a number of PDE-constrained optimization problems.
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Abstract. In recent publications, the author and his coworkers have proposed a multigrid
method for solving linear systems arizing from the discretization of partial differential equa-
tions in isogeometric analysis and have proven that the convergence rates are robust in both
the grid size and the polynomial degree. So far the method has only been discussed for the
Poisson problem. In the present paper, we discuss the extension the of these results to the
Stokes equations.

Keywords: Isogeometric analysis · Multigrid methods · Stokes problem

1 Introduction

Isogeometric analysis (IgA) was introduced in [12], aiming to improve the connection
between computer aided design (CAD) and finite element (FEM) simulation. In
IgA, as in CAD software, B-splines and non-uniform rational B-splines (NURBS)
are used for representing both the geometrical objects of interest and the solution
of the partial differential equation (PDE) to be solved.

In IgA, mostly B-splines or NURBS of maximum smoothness are used, i.e., having
a spline degree of p, the functions are p− 1 times continuously differentiable. Using
such a function space, one obtains on the one hand the approximation power of high
order functions, while on the other hand, unlike in standard high-order FEM, one
does not suffer from a growth of the number of degrees of freedom.

From the computational point of view, the treatment of the linear systems arizing
from the discretization with high spline degrees is still challenging as the condition
number both of mass and stiffness matrices grows exponentially with the spline
degree. In the early IgA literature, finite element solvers have often been transferred
to IgA with only minimal adaptations. Numerical experiments indicate that such
approaches result in methods that work well for small spline degrees, but their
performance deteriorates as the degree is increased, often dramatically. In [11,10],
the author and his coworkers have proposed multigrid methods which are provable
robust in the polynomial degree and the grid size. Numerical experiments indicated
that the proposed approach of subspace corrected mass smoothers seems to pay
off (compared to multigrid methods with a standard Gauss-Seidel smoother) for
polynomial degrees of four or five.

In the present paper, we discuss the extension of the subspace corrected mass
smoothers beyond the case of the Poisson problem to the Stokes flow problem.
Unlike for the Poisson problem, for the Stokes problem already the setup of a stable
isogeometric discretization is non standard. As there have already been results in the

1
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literature, we refer to [1], which serves as a basis of the present paper. Alternative
approaches can be found in [8,3,6] and others. After introducing discretizations, we
discuss the setup of the preconditioner.

For the Poisson problem, the multigrid solver has been applied directly and as
a preconditioner for the conjugate gradient method. For the case of a non-trivial
geometry transformation, in [10] a conjugate gradient method, preconditioned with
the multigrid method for the parameter domain, has been used. It has been shown
that in this case the resulting method is robust both with respect to the grid size
and the polynomial degree, but not in the geometry transformation.

There are a few approaches how to carry this over to the Stokes equations. The first
possibility is to apply the multigrid method directly to the problem of interest (all-
at-once multigrid method), cf. [16] for a particularly popular method in standard
FEM or [13] for a survey. As the results for the Poisson problem have indicated
that a direct application of the multigrid method in the presence of a non-trivial
geometry transformation is not optimal, we do not concentrate on that case.

We therefore consider a Krylov space method with an appropriate preconditioner,
living on the parameter domain. In principle, this could be the Stokes problem on
the physical domain, but such a choice (an indefinite preconditioner for an indefinite
problem) typically requires the use of a GMRES method, the convergence of which
is less well understood than that of the minimal residual algorithm, cf. [9]. So, we
consider elliptic preconditioners, particularly block-diagonal preconditioners. As the
Stokes equations are well-posed in H1 (velocity) and L2 (pressure), we just setup
preconditioners for those spaces (operator preconditioning). Since the subspace cor-
rected mass smoothers suffer significantly from the geometry transformation, we
propose a variant (by incorporating an approximation to the geometry transforma-
tion) which led to a significant speedup in several experiments.

As alternative Stokes solvers in IgA, we want to mention overlapping Schwarz ap-
proaches, cf. [2], and BDDC approaches, cf. [15], which also yield robustness in the
spline degree for certain configurations (like generous overlap or the choice of C0

regularity across the subdomain interfaces).

This paper is organized as follows. We will introduce the particular model problem in
section 2 and discuss three kinds of discretizations for the mixed system in section 3.
As a next step, in section 4, we propose a preconditioner. Finally, in section 5, we
give the results of the numerical examples and draw some conclusions.

2 Model problem

Let Ω ⊆ R2 be a simply connected domain with Lipschitz boundary ∂Ω and assume
a force field f given on Ω and boundary data given on ∂Ω. The Stokes flow model
problem reads as follows. Find the velocity field u and the pressure p such that

−∆u+∇p = f and ∇ · u = 0 (1)

hold on Ω and Dirichlet boundary conditions hold on ∂Ω. After homogenization,
we obtain a mixed variational form, which reads as follows. Find u ∈ V := H1

0 (Ω)
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and p ∈ Q := L2(Ω) such that

(∇u,∇v)︸ ︷︷ ︸
a(u, v)

+ (∇ · v, p)︸ ︷︷ ︸
b(v, p)

= (f, v) ∀v ∈ V, (∇ · u, q)︸ ︷︷ ︸
b(u, q)

= 0 ∀q ∈ Q.

Here, and in what follows L2(Ω), H1(Ω) and H1
0 (Ω) are the standard Lebesgue and

Sobolev spaces, and (·, ·) is the standard norm on L2(Ω).

Existence and uniqueness of the solution and its dependence of the data follows from
Brezzi’s theorem [4], which requires besides boundedness and H1-coercivity of a the
inf-sup stability

inf
q∈L2(Ω)

sup
v∈H1(Ω)

(∇ · v, q)
‖v‖H1(Ω)‖q‖L2(Ω)

≥ C,

which is known to be satisfied for the Stokes problem, cf. [5].

3 Discretization

The discretization is done using a standard Galerkin approach, i.e., we replace the
spaces V and Q by finite-dimensional subspaces Vh and Qh. As for the continuous
problem, existence and uniqueness of the solution can be shown by Brezzi’s theorem.
Boundedness and H1-coercivity of a follow directly from the continuous problem,
but the inf-sup stability for the discrete problem does not. Therefore, we have to
guarantee that the discrete inf-sup condition

inf
qh∈Qh

sup
vh∈Vh

(∇ · vh, qh)
‖vh‖H1(Ω)‖qh‖L2(Ω)

≥ C

is satisfied, which is actually a condition on the discretization. In the subsection 3.2,
we will discuss discretizations satisfying this condition.

Assuming a particular discretization and a basis for the chosen space, one ends up
with a linear system to be solved: For a given f

h
, find xh such that

Ah xh = f
h
, where Ah =

(
Kh D

T
h

Dh 0

)
and xh =

(
uh
p
h

)
(2)

andKh is a standard stiffness matrix and Dh is a matrix representing the divergence.

3.1 Discretization in isogeometric analysis

Let Sqp,h be the space of all q times continuously differentiable functions on (0, 1),
which are piecewise polynomials of degree p on a (uniform) grid of size h = 1/n. As
a basis for Sqp,h we choose the classical basis of B-splines, see, e.g., [7].

For the computational domains Ω ⊂ R2, we first define the spline spaces for the
parameter domain Ω̂ = (0, 1)2. On the parameter domain, we introduce the space
of tensor-product splines, Sq1,q2p1,p2,h

:= Sq1p1,h ⊗ S
q2
p2,h

, where A ⊗ B denotes the linear
span of all functions (x, y) 7→ u(x)v(y), where u ∈ A and v ∈ B. Note that the
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restriction to two dimensions and to a uniform grid is only for ease of notation.
The extension to three and more dimensions or to non-uniform grids is completely
straight-forward. Assuming that physical domain Ω is the image of a B-spline or
NURBS mapping

G : Ω̂ = (0, 1)2 → Ω,

we define the spline spaces on the physical domain typically using a classical pull-
back principle. More complicated domains are represented patch-wise, where for
each patch a separate geometry transformation G exists. For simplicity, we do not
discuss that in the present paper.

3.2 Stable discretizations for the Stokes problem

As mentioned above, we are required to set up the discretization such that the
discrete inf-sup condition holds. We discuss this first for the parameter domain.
Here, we follow the outline of the paper [1], where three spline space configurations
have been proposed, which are variants of known stable spaces from standard finite
elements: Taylor-Hood like splines X̂(TH)

h , Nédélec like splines X̂(NE)
h and Raviart-

Thomas like splines X̂(RT)
h . All of them utilize the same grid for both the velocity

and the pressure, which makes the implementation significantly easier compared to
approaches that are based on setting up two different grids (like IgA-variants of the
macro elements as proposed in [3]). All of these discretizations follow the spirit of
IgA, allowing to freely choose the underlying polynomial degree p. For all of them,
the smoothness is on the order of the polynomial degree, which preserves the feature
that the number of degrees of freedom is basically not increased when the polynomial
degree is increased. For the case of two dimensions, the spaces are given by

X̂
(TH)
h := V̂

(TH)
h × Q̂h, V̂

(TH)
h := Sp−1,p−1p+1,p+1 × S

p−1,p−1
p+1,p+1 ,

X̂
(NE)
h := V̂

(NE)
h × Q̂h, V̂

(NE)
h := Sp,p−1p+1,p+1 × S

p−1,p
p+1,p+1,

X̂
(RT)
h := V̂

(RT)
h × Q̂h, V̂

(RT)
h := Sp,p−1p+1,p × S

p−1,p
p,p+1 , Q̂h := Sp−1,p−1p,p ,

where A×B := {(a, b) : a ∈ A, b ∈ B}. Observe that these spline spaces are nested,
i.e., we have V̂ (RT)

h ⊂ V̂
(NE)
h ⊂ V̂

(TH)
h and (for n >> p) a ratio of 9 : 5 : 3 for the

number of degrees of freedom. The extension of these definitions to three dimensions
is straight-forward, cf. [1].

For all of these settings, the discrete inf-sup condition has been shown in [1]. For
the Raviart-Thomas like splines, the discrete inf-sup condition has not been proven
if Dirichlet boundary conditions are present. As the method still seems to work well
in practice, we include also the Raviart-Thomas discretization in our experiments.

The next step is to introduce the discretization on the physical domain. As outlined
in the beginning of this section, the discretization, once introduced on the parameter
domain, is typically defined on the physical domain just by direct composition:

V
(X,D)
h := {vh | vh ◦G ∈ V̂ (X)

h }, X ∈ {TH,NE,RT}.

For the Stokes problem, as an alternative, the divergence preserving Piola transform
has been proposed:

V
(X,P)
h :=

{
vh

∣∣∣∣ 1

det JG
JG vh ◦G ∈ V̂ (X)

h

}
, X ∈ {TH,NE,RT},
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where JG is the Jacobi matrix of G. The pressure distribution, which is a scalar
quantity, is always mapped directly, i.e., in all cases we choose the direct composition

Qh := {qh | qh ◦G ∈ Q̂h}.

In [1], the inf-sup stability has been shown if the Piola transform is used and for the
Taylor-Hood like splines also if the direct composition is used. Again, we report also
on the numerical results for the cases that are not covered by the convergence theory
(direct composition for the Nédélec like and the Raviart-Thomas like splines).

4 Robust multigrid solvers

As outlined in the introduction, the multigrid preconditioner aims to represent the
theoretical block-diagonal preconditioner Qh := diag(Kh, β

−1Mh) where Kh is the
stiffness matrix, Mh is the mass matrix and β > 0 is an scaling parameter, ac-
cordingly chosen. As mentioned above and as discussed in detail in [10], we use as
preconditioner for the problem on the physical domain the corresponding precon-
ditioner, say Q̂h, on the parameter domain. There, the matrices Mh and Kh are
replaced by M̂h and K̂h, their counterparts on the parameter domain. Note that the
stiffness matrix acts on the velocity variable, a vector-valued quantity, and that this
matrix is block-diagonal on the parameter domain and, iff the direct composition is
used, on the physical domain. In all cases, Kh and K̂h are spectrally equivalent.

Instead of an exact inverse of the matrix Q̂h, we only need to realize an approxima-
tion to the application of K̂−1h and M̂−1

h to any given vector. The approximation of
K̂−1h is realized using one multigrid V-cycle with one pre- and one post-smoothing
step of the subspace corrected mass smoother, as proposed in [10]. There, the algo-
rithm was analyzed only for the case of splines of maximum smoothness, however it
can be applied for any spline space and robustness in the polynomial degree can be
guaranteed by a slight extension of the presented theory as long as the smoothness
is on the order of the polynomial degree. As in the previous publications [11,10], the
grid hierarchy is set up for a fixed polynomial degree and a fixed smoothness by just
uniformly refining the grid. Using this approach, one obtains nested spaces, so the
setup of the coarse-grid correction is trivial.

One of the key observations which was leading to the results in [11,10] was that the
spectral equivalence of the mass matrix and its diagonal deteriorates if p is increased.
This has also to be taken into account when constructing the preconditioner for the
pressure variable. Analogously to the smoother, we realize the application of M̂−1

h

exactly, based on the tensor-product structure of the mass matrix.

The preconditioner is symmetric and positive definite and can therefore be applied
in the framework of a MINRES iteration.

5 Numerical results

The numerical experiments have been performed using the C++ library G+SMO,
see [14], both for the unit square, i.e., for a problem without geometry transfor-
mation, and for a quarter annulus {(x, y) ∈ R2

+ : 1 < x2 + y2 < 4}. For both
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problems, the problem has been constructed (with inhomogeneous right-hand-side
and inhomogeneous Dirichlet boundary conditions) such that the exact solution is

uh(x, y) =

(
cos(5x+ 5y) + sin(5x− 5y)

−1− cos(5x+ 5y) + sin(5x− 5y)

)
,

and ph(x, y) = −(1 + x)(1 + y) + c, where c is chosen such that
∫
Ω
ph dx = 0.

In Table 1, we report on the number of MINRES steps required for reducing the
initial error (measured in the `2-norm of the solution vector) by a factor of 10−6;
cases where the memory was not enough are indicated with OoM. We report on
all discretization schemes proposed. The need of the discussion of p-robust methods
is easily observed when looking at the results for a standard preconditioner: We
display the results if one multigrid V-cycle with Gauss-Seidel smoother is used for
the velocity and one symmetric Gauss-Seidel sweep is used for the pressure (GS-
MG). There, the number of iterations increases drastically if p is increased. As
the approach is perfectly robust in the grid size h = 2`, we omit the numbers for
finer grids. Compared to that approach, the preconditioner proposed in Section 4
(SCMS-MG) led to results which are robust both in the grid size and the polynomial
degree and which works well for all discretizations. Although the iteration numbers
are smaller than for the GS-MG preconditioner, one has to consider that the costs
of the SCMS-MG preconditioner are significantly higher than those of the GS-MG
preconditioner, so the proposed method only pays off if higher polynomial degrees
(starting from 4 or 5) are considered. We have chosen β = 0.05 and as damping
parameter σ of the underlying smoother, cf. [10], either σ−1 = 0.04 ĥ2 (for Taylor-
Hood and Nédélec) or 0.16 ĥ2 (for Raviart-Thomas), where ĥ is the grid size on the
parameter domain. While some of the numbers might be improved by fine-tuning
the parameters, the given tables for reasonable uniform choices show what one can
expect for each of the methods.

In Table 2 we see how well the computed solution approximates the exact solution
in the L2-norm. Here, we have used the abovementioned solver, where the stopping
criterion has been chosen to reach either a relative error of 10−10 or 100 iterations.
We present the error between the computed solution and the known exact solution
(for the pressure after projecting into the space of functions with vanishing mean).
We observe that, for the same choice of the polynomial order p and the same grid
size, the Taylor-Hood discretization yields the smallest errors, at the cost of the
largest number of degrees of freedom. For the Raviart-Thomas discretization (where
the inf-sup condition cannot be shown for the chosen Dirichlet boundary conditions),
we observe that the error for the velocity converges, while the error of the pressure
stagnates at around 10−2. Observe moreover that for p = 5, the approximation on
the coarsest grid was fine enough such that the approximation error could not be
improved by refinement.

For the case of the quarter annulus, we distinguish between the results obtained by
the direct composition (Table 3) and for the Piola transform (Table 4). Again, we
obtain first that GS-MG is robust in h, but that the convergence deteriorates if the
polynomial degree grows. As it leads to better results, we have set up the GS-MG on
the physical domain. For the proposed SCMS-MG preconditioner, observe that the
results behave similar to those for the unit square, however the iteration counts are
much larger, particularly if the Piola transform is used. For the direct composition,



S. Takacs, Multigrid for IgA-Stokes 7

Taylor-Hood Nédélec Raviart-Thomas
`� p 2 3 5 8 2 3 5 8 2 3 5 8

MINRES, preconditioned with SCMS-MG

5 55 54 49 46 80 74 68 55 44 36 35 29
6 54 58 53 51 76 76 70 63 44 37 36 32
7 54 54 54 53 76 76 71 65 45 37 33 29
8 50 51 55 OoM 71 71 67 65 41 37 33 29

MINRES, preconditioned with standard GS-MG

5 64 167 >1k >1k 84 213 >1k >1k 124 219 >1k >1k

Table 1: Iteration counts for the unit square

Taylor-Hood Nédélec Raviart-Thomas
p ` dof v p dof v p dof v p

2 4 2372 2e-5 1e-5 1637 2e-5 4e-5 869 3e-4 3e-2
5 9348 1e-6 6e-7 6341 1e-6 4e-5 3269 3e-5 2e-2
6 37124 7e-8 4e-6 24965 7e-7 9e-5 12677 7e-6 2e-2
7 147972 2e-8 7e-7 99077 8e-7 1e-4 49925 3e-6 2e-2

5 4 2891 2e-9 4e-8 2066 6e-8 2e-6 1202 9e-7 6e-3
5 10347 2e-9 1e-7 7154 8e-8 5e-6 3890 1e-6 3e-3
6 39083 3e-9 2e-7 26546 9e-7 2e-4 13876 6e-7 3e-3
7 151951 7e-9 4e-7 102194 2e-6 3e-4 52274 6e-7 4e-3

Table 2: Problem size and L2-errors for the unit square

Taylor-Hood Nédélec Raviart-Thomas
`� p 2 3 5 8 2 3 5 8 2 3 5 8

MINRES, preconditioned with SCMS-MG

5 195 190 185 172 257 246 244 206 244 139 128 116
6 208 217 213 199 295 296 280 241 192 170 142 129
7 220 222 232 219 329 330 314 281 213 195 158 140
8 231 239 244 OoM 333 342 333 306 223 200 168 149

MINRES, preconditioned with SCMS-MG-geo

5 72 69 68 72 69 69 65 63 73 62 53 56
6 77 75 73 79 76 74 64 70 71 69 59 63
7 72 71 70 84 79 70 68 74 75 74 64 69
8 74 73 72 OoM 73 73 71 78 71 70 68 74

MINRES, preconditioned with standard GS-MG

5 70 173 >1k >1k 110 225 >1k >1k 182 220 >1k >1k

Table 3: Iteration counts for the quarter annulus (direct composition)

Taylor-Hood Nédélec Raviart-Thomas
`� p 2 3 5 8 2 3 5 8 2 3 5 8

MINRES, preconditioned with SCMS-MG

5 331 331 338 317 288 313 332 305 480 309 295 300
6 407 400 402 371 361 387 405 374 368 344 323 299
7 452 455 455 450 413 450 476 476 418 395 367 341
8 487 485 500 OoM 458 494 556 568 441 438 411 361

MINRES, preconditioned with standard GS-MG

5 70 165 >1k >1k 69 164 >1k >1k 206 199 >1k >1k

Table 4: Iteration counts for the quarter annulus (Piola transform)
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it is possible to improve the convergence significantly by replacing the mass and
stiffness matrix on the parameter domain by a simple tensor-rank-one approximation
of those matrices on the physical domain (SCMS-MG-geo). Note that the tensor-
rank-one approximation does not lead to any additional computational costs after
the assembling phase. The extension of such a rank-one geometry approximation to
the Piola transform is not yet known. For the original SCMS-MG preconditioner,
we have chosen β and σ as for the first model problem. Just for the Raviart-Thomas
smoother for the case with Piola transformation, we have chosen β = 0.0025. For
the rank-one corrected version, we have chosen β = 0.01; the damping has been
chosen based on approximations of constants of the inverse inequality.

As in the case of standard finite elements, there are several possibilities to discretize
the mixed formulation of the Stokes equations. Our experiments indicate that it
might pay off to use the (in terms of degrees of freedom) more expensive variant of
Taylor Hood discretizations than the other variants, particularly because it is known
that that discretization also works for direct composition. The p-robust smoothers
which we have proposed for the Poisson problem can be carried over also to the
Stokes flow problem, however it seems that a further study is necessary concerning
its application in the framework of non-trivial geometry transformations.
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A Smoother Based on Nonoverlapping Domain
Decomposition Methods for H(div) Problems: A
Numerical Study

Susanne C. Brenner and Duk-Soon Oh

Abstract The purpose of this paper is to introduce a V-cycle multigrid method for
vector field problems discretized by the lowest order Raviart-Thomas hexahedral el-
ement. Our method is connected with a smoother based on a nonoverlapping domain
decomposition method. We present numerical experiments to show the effectiveness
of our method.

1 Introduction

Let Ω be a bounded domain in R3 and H0(div;Ω) be the space of square integrable
vector fields on Ω that have square integrable divergence in Ω and vanishing normal
components on ∂Ω (cf. [7]). In this paper we consider a multigrid method for the
following problem: Find uuu ∈ H0(div;Ω) such that

a(uuu,vvv) = ( fff ,vvv) ∀vvv ∈ H0(div;Ω), (1)

where
a(www,vvv) = α(divwww,divvvv)+β (www,vvv), (2)

and (·, ·) is the inner product on L2(Ω) (or [L2(Ω)]3). We assume that fff ∈ [L2(Ω)]3

and α and β are positive. Unlike the scalar elliptic equation case, multigrid methods
for the problem (1) with simple smoothers do not work. We need a special treatment
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sity, Baton Rouge, LA 70803, USA
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for the smoother. In [2–4, 9], an overlapping domain decomposition preconditioner
was employed in the construction of the smoother.

Our goal is to develop multigrid methods in the same spirit but using nonoverlap-
ping domain decomposition preconditioners instead, which reduce the dimensions
of the subproblems that have to be solved. We note that other multigrid methods for
H(div) were investigated in [8, 10].

Applications of fast solvers for H(div) problems are discussed for example in
[2, 11–13, 16]. In particular the multigrid method in this paper can be applied to a
mixed method for second order partial differential equations based on a first-order
system least-squares formulation [2, 6], which is equivalent to our model problem.
It can also be used as an effective preconditioner for H(div) problems with vari-
able coefficients. The model problem also arise in Reissner-Mindlin plates [1] and
Brinkman equations [15].

In [5], there are similar ingredients and convergence analysis for the convex do-
main and the constant coefficient case. In this paper, we mainly focus on the numer-
ical study that is not covered by the theory in [5].

The rest of this paper is organized as follows. We present the standard discretiza-
tion of (1) by the lowest order Raviart-Thomas hexahedral element in Section 2.
We next introduce the V -cycle multigrid method in Section 3. Finally, numerical
experiments are presented in Section 4.

2 The Discrete Problem

Let Th be a hexahedral triangulation of Ω . The lowest order Raviart-Thomas H(div)
conforming finite element space [14] is denoted by Vh. A vector field vvv belongs to
Vh if and only if it belongs to H0(div;Ω) and takes the forma1

a2
a3

+

b1x1
b2x2
b3x3


on each hexahedral element, where the ai’s and bi’s are constants. On each hexahe-
dral element T the vector field vvv is determined by the six degrees of freedom defined
by the average of the normal component on each face. The discrete problem for (1)
is to find uuuh ∈Vh such that

a(uuuh,vvv) =
∫

Ω

fff · vvvdx ∀vvv ∈Vh. (3)

In the multigrid approach we solve (3) on a sequence of triangulations T0,T1, . . .,
where T0 is an initial triangulation of Ω by hexahedral elements and Tk (k ≥ 1)
is obtained from Tk−1 by uniform subdivision. We will denote the lowest order
Raviart-Thomas finite element space associated with Tk by Vk. The k-th level dis-
crete problem is to find uuuk ∈Vk such that
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a(uuuk,vvv) = ( fff ,vvv) ∀vvv ∈Vk.

Let Ak : Vk −→V ′k be defined by

〈Akwww,vvv〉= a(www,vvv) ∀vvv,www ∈Vk, (4)

where 〈·, ·,〉 is the canonical bilinear form on V ′k ×Vk. We can then rewrite the k-th
level discrete problem as

Akuuuk = fk, (5)

where fk ∈V ′k is defined by

〈 fk,vvv〉= ( fff ,vvv) ∀vvv ∈Vk.

Multigrid methods are optimal order iterative methods for equations of the form

Akzzz = g (6)

that includes (5) as a special case.

3 A V -Cycle Multigrid Method

Since the finite element spaces are nested, we can take the coarse-to-fine oper-
ator Ik

k−1 : Vk−1 −→ Vk to be the natural injection. The fine-to-coarse operator
Ik−1
k : V ′k −→V ′k−1 is then defined by

〈Ik−1
k `,vvv〉= 〈`, Ik

k−1vvv〉 ∀` ∈V ′k , vvv ∈Vk−1. (7)

We will use a smoother of the form

znew = zold +M−1
k (g−Akzold) (8)

for the equation (6), where M−1
k : V ′k −→ Vk is a nonoverlapping domain decompo-

sition preconditioner defined below.

3.1 A Nonoverlapping Domain Decomposition Preconditioner

To conform with standard terminology in domain decomposition, in this subsection
we will denote Tk−1 by TH and Tk by Th. (Thus each element in TH is partitioned
into eight elements in Th). The spaces Vk−1 and Vk are denoted by VH and Vh respec-
tively. The preconditioner M−1

k in (8) is denoted by M−1
h here. It is constructed by

substructuring.
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For each element T ∈ TH , we define the twelve dimensional subspace V T
h of Vh

by
V T

h = {vvv ∈Vh : vvv = 0 on Ω \T}. (9)

The natural injection from V T
h into Vh is denoted by JT and the operator AT : V T

h −→
(V T

h )′ is defined by

〈AT www,vvv〉= a(www,vvv) ∀vvv,www ∈V T
h . (10)

Let FH be the set of the interior faces of the triangulation TH . Given any F ∈FH
that is the common face of two elements T+

F and T−F in TH , we define the four
dimensional subspace V F

h of Vh by

V F
h = {vvv ∈Vh : vvv = 000 on Ω \ (T−F ∪T+

F ) and a(vvv,www) = 0 ∀www ∈ (V T−F
h +V

T+
F

h )}.
(11)

The natural injection from V F
h into Vh is denoted by JF and the operator AF : V F

h −→
(V F

h )′ is defined by

〈AF www,vvv〉= a(www,vvv) ∀vvv,www ∈V F
h . (12)

if www ∈Vh has the same degrees of freedom as vvv on ∂T+
F ∪∂T−F .

The subspaces associated with the elements and interior faces of TH form a direct
sum decomposition of Vh:

Vh = ∑
T∈TH

V T
h + ∑

F∈FH

V F
h , (13)

and the preconditioner M−1
h is given by

M−1
h = ηF( ∑

T∈TH

JT A−1
T Jt

T + ∑
F∈FH

JF A−1
F Jt

F), (14)

where ηF is a damping factor and Jt
T : V ′h −→ (V T

h )′ (resp. Jt
F : V ′h −→ (V F

h )′) is the
transpose of JT (resp. JF ) with respect to the canonical bilinear forms.

3.2 The kth Level V -Cycle Multigrid Algorithm

The output MG(k,g,zzz0,m) of the kth level (symmetric) multigrid V -cycle algorithm
for (6), with initial guess zzz0 ∈Vk and m smoothing steps, is defined by the following
recursive steps:

For k = 0, the output is obtained from a direct method:

MG(0,g,zzz0,m) = A−1
0 g.

For k ≥ 1, we set
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zzzl = zzzl−1 +M−1
k (g−Akzzzl−1) for 1≤ l ≤ m,

g = Ik−1
k (g−Akzzzm) ,

zzzm+1 = zzzm + Ik
k−1MG(k−1,g,0,m) ,

zzzl = zzzl−1 +M−1
k (g−Akzzzl−1) for m+2≤ l ≤ 2m+1.

The output of MG(k,g,zzz0,m) is zzz2m+1.

Remark 1. Given ` ∈ V ′k , the cost of computing M−1
k ` is O(nk), where nk is the

dimension of Vk. Therefore the overall cost for computing MG(k,g,zzz0,m) is also
O(nk).

If the domain Ω is convex, we have the following convergence theorem:

Theorem 1. If zzz ∈Vk and g ∈V ′k satisfy Akzzz = g, then we have

‖zzz−MG(k,g,zzz0,m)‖a ≤
C

C+2m
‖zzz− zzz0‖a ∀k ≥ 1,

where ‖ · ‖2
a = a(·, ·).

Due to space restriction, a detailed analysis will not be reported here. Further details
are provided in [5].

4 Numerical Results

4.1 Jump Coefficient

Fig. 1: Checkerboard distribution of the coefficients
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In the first experiment we consider (1) on the unit cube Ω = (0,1)3. We apply
multigrid algorithms with smoothers introduced in Section 3.1. The damping factor
ηF is taken to be 1/11. The initial triangulation T0 consists of eight identical cubes
and we use the coefficients α and β that have jumps across the interface between
the sub-cubes with a checkerboard pattern as in Fig. 1. We estimate the contrac-
tion numbers of the kth level V -cycle multigrid method for k = 1, . . . ,5 and for m
smoothing steps, where m = 1, . . . ,6. We report the contraction numbers obtained
by computing the largest eigenvalue of the error propagation operators. The results
are presented in Table 1. The uniform convergence of the V -cycle multigrid meth-
ods for m ≥ 1 is clearly observed and the method is not sensitive to the jumps of
coefficients.

Table 1: Contraction numbers of the V -cycle multigrid method for the unit cube. αb and βb for the
black subregions and αw and βw for the white subregions as indicated in a checkerboard pattern as

in Fig. 1
m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

αb = 0.01,βb = 100,αw = 1,βw = 1
k = 1 8.3e-1 6.8e-1 4.7e-1 2.2e-1 5.1e-2 4.7e-3
k = 2 9.0e-1 8.2e-1 7.1e-1 5.1e-1 3.2e-1 2.7e-1
k = 3 9.3e-1 8.8e-1 7.9e-1 6.4e-1 5.2e-1 4.7e-1
k = 4 9.3e-1 9.0e-1 8.4e-1 7.2e-1 6.4e-1 6.0e-1
k = 5 9.3e-1 9.0e-1 8.6e-1 7.8e-1 6.9e-1 6.9e-1

αb = 0.1,βb = 10,αw = 1,βw = 1
k = 1 8.7e-1 7.7e-1 6.0e-1 3.8e-1 2.1e-1 8.1e-2
k = 2 9.1e-1 8.4e-1 7.1e-1 5.4e-1 3.6e-1 2.8e-1
k = 3 9.2e-1 8.7e-1 7.8e-1 6.4e-1 5.2e-1 4.7e-1
k = 4 9.3e-1 9.0e-1 8.4e-1 7.4e-1 6.5e-1 6.0e-1
k = 5 9.4e-1 9.1e-1 8.7e-1 8.0e-1 7.2e-1 6.9e-1

αb = 1,βb = 1,αw = 1,βw = 1
k = 1 9.1e-1 8.3e-1 7.1e-1 5.0e-1 3.1e-1 2.3e-1
k = 2 9.2e-1 8.7e-1 7.9e-1 6.3e-1 5.0e-1 4.3e-1
k = 3 9.3e-1 9.0e-1 8.4e-1 7.4e-1 6.3e-1 5.8e-1
k = 4 9.4e-1 9.1e-1 8.7e-1 8.0e-1 7.1e-1 6.7e-1
k = 5 9.4e-1 9.2e-1 8.8e-1 8.2e-1 7.5e-1 7.2e-1

αb = 10,βb = 0.1,αw = 1,βw = 1
k = 1 9.0e-1 8.4e-1 7.0e-1 4.9e-1 3.3e-1 2.8e-1
k = 2 9.2e-1 8.9e-1 7.9e-1 6.4e-1 5.2e-1 4.7e-1
k = 3 9.4e-1 9.1e-1 8.4e-1 7.4e-1 6.4e-1 6.0e-1
k = 4 9.4e-1 9.1e-1 8.6e-1 8.0e-1 7.3e-1 6.8e-1
k = 5 9.4e-1 9.2e-1 8.9e-1 8.2e-1 7.6e-1 7.4e-1

αb = 100,βb = 0.01,αw = 1,βw = 1
k = 1 9.1e-1 8.4e-1 7.1e-1 5.1e-1 3.3e-1 2.9e-1
k = 2 9.3e-1 8.9e-1 7.9e-1 6.5e-1 5.2e-1 4.8e-1
k = 3 9.3e-1 9.1e-1 8.5e-1 7.4e-1 6.4e-1 6.0e-1
k = 4 9.4e-1 9.2e-1 8.8e-1 8.0e-1 7.1e-1 6.9e-1
k = 5 9.4e-1 9.3e-1 9.0e-1 8.4e-1 7.7e-1 7.5e-1
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4.2 Nonconvex Domain

Fig. 2: Nonconvex domain

In the second numerical experiment we report the results for our model problem
(1) on the nonconvex domain Ω = (0,1)3 \ ([1/2,1]3). We use the constant coef-
ficients α = 1 and β = 1 and other general settings are quite similar to those of
Section 4.1. The results are presented in Table 2. It is observed that the method
provides a uniform convergence of the V cycle multigrid. However, the contraction
numbers are generally larger that those of the convex domain.

Table 2: Contraction numbers of the V -cycle multigrid method for the non-convex domain as in
Fig. 2 with α = 1,β = 1

m = 1 m = 2 m = 3 m = 4 m = 5 m = 6
k = 1 9.3e-1 9.0e-1 8.2e-1 6.9e-1 5.5e-1 4.6e-1
k = 2 9.5e-1 9.2e-1 8.5e-1 7.7e-1 6.8e-1 6.3e-1
k = 3 9.6e-1 9.2e-1 8.8e-1 8.2e-1 7.7e-1 7.3e-1
k = 4 9.6e-1 9.3e-1 8.9e-1 8.5e-1 8.0e-1 7.8e-1
k = 5 9.6e-1 9.3e-1 9.0e-1 8.7e-1 8.4e-1 8.2e-1
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Optimized Schwarz Method for Poisson’s
Equation in Rectangular Domains

José C. Garay, Frédéric Magoulès and Daniel B. Szyld

Abstract An analysis of the convergence properties of Optimized Schwarz methods
applied as solvers for Poisson’s Equation in a bounded rectangular domain with
Dirichlet (physical) boundary conditions and Robin transmission conditions on the
artificial boundaries is presented. To our knowledge this is the first time that this is
done for multiple subdomains forming a 2D array in a bounded domain.

1 Introduction

Classical Schwarz methods are Domain Decomposition (DD) methods in which
the transmission conditions between subdomains are Dirichlet boundary conditions.
Optimized Schwarz methods are DD methods in which the transmission conditions
are chosen in such a way as to improve the convergence rate with respect to the
classical method [2, 3, 5]. These transmission conditions are optimized approxima-
tions of the optimal transmission conditions, which are obtained by approximating
the global Poincaré-Steklov operator by local differential operators. There is more
than one family of transmission conditions that can be used for a given PDE , each
of these families consisting of a particular approximation of the optimal transmis-
sion conditions. For example, for the problem involving Poisson’s equation, we have
OO0 and OO2 family of transmission conditions. The OO0 family of transmission
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CentraleSupélec, Châtenay-Malabry, France, e-mail: frederic.magoules@centralesupelec.fr .

Daniel B. Szyld
Temple University, Philadelphia, USA, e-mail: szyld@temple.edu.
Supported in part by the the U.S. National Science Foundation under grant DMS-1418882 and the
U.S. Deparment of Energy under grant DE-SC0016578.

1
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conditions is obtained by using the zero-th order approximation of the Poincaré-
Steklov operator, i.e., it is approximated by a constant α , which leads to have Robin
boundary conditions on the artificial boundaries. The OO2 family of boundary con-
ditions involves the use of a differential operator that is a linear combination of the
normal derivative and tangential second derivatives.

Optimized Schwarz methods (OSM) are fast methods in terms of iteration count
when they are used as outer solvers. In [1] it is shown that OSM (as outer solvers) are
faster than GMRES preconditioned with a classical Schwarz preconditioner. Also,
in parallel computations, OSM requires much less communications between pro-
cesses in comparison to Krylov methods. Given that communication dominates the
execution time of solvers in current supercomputer architectures and will also do so
in the upcoming exascale supercomputers, OSM has the potential to be a very good
method for solving problems arising from the discretization of PDEs.

In this paper we analyze the convergence properties of OSM applied as solvers
for Poisson’s Equation in a bounded rectangular domain with Dirichlet (physical)
boundary conditions and Robin transmission conditions. To our knowledge, this is
the first time an analysis of convergence of Optimized Schwarz applied to a problem
defined in a bounded domain and with arbitrary number of subdomains forming a
2D array (i.e., containing cross points) is presented.

2 Equations of OSM for Poisson’s in rectangular domain for the
OO0 case

We want to solve Poisson’s equation in a rectangular domain subject to nonhomo-
geneous Dirichlet boundary conditions, i.e,{

−∆u = f in Ω ,
u = g on ∂Ω .

(1)

where Ω = [0,L1]× [0,L2].
We divide the physical domain into p× q overlapping rectangular subdomains.

To simplify the presentation, we consider square subdomains where each side is of
length H and the same overlap on each side, but the analysis presented here is also
valid for arbitrary rectangles and arbitrary ovelaps. Each of these subdomains is
represented by a pair of indexes, (s,r), with s∈ {1, ..., p} and r ∈ {1, ...,q}. Let h be
the length of the side of each subdomain as if it were a partition with no overlap. Let
us now displace (outward) each of the boundaries of the nonoverlapping subdomains
by a γ amount. We have then overlapping square subdomains with side H = h+2γ

and can use γ as a parameter to quantify the amount of overlap between subdomains.
The Optimized Schwarz iteration process associated with problem (1) and with OO0
transmission conditions is defined, for an interior subdomain (i.e., for 1 < s < p,
1 < r < q ), by
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∆u(s,r)n+1 = f in Ω (s,r)

− ∂u(s,r)n+1
∂x +αu(s,r)n+1 =− ∂u(s−1,r)

n
∂x +αu(s−1,r)

n for x = (s−1)h− γ

∂u(s,r)n+1
∂x +αu(s,r)n+1 = ∂u(s+1,r)

n
∂x +αu(s+1,r)

n for x = sh+ γ

− ∂u(s,r)n+1
∂y +αu(s,r)n+1 =− ∂u(s,r−1)

n
∂y +αu(s,r−1)

n for y = (r−1)h− γ

∂u(s,r)n+1
∂y +αu(s,r)n+1 = ∂u(s,r+1)

n
∂y +αu(s,r+1)

n for x = rh+ γ.

(2)

where ∂

∂x and ∂

∂y are, in this instance, normal derivatives and u(s,r)n+1 is the solution of

the local problem (2) at the (n+ 1) iteration in Ω (s,r). The parameter α is the one
which we want to tune to optimize the convergence rate of the method. Note that
α = 0 would reduce the problem to pure Neuman boundary conditions and therefore
this case is not allowed. The subdomains touching the boundary have one or two
boundaries that are actually physical (not artificial) boundaries. The equations for
the subdomains touching the boundary are similar to (2) with the exception that one
or two of the boundary conditions are Dirichlet, namely, the ones associated to the
physical boundaries.

3 Recasting equations as an equivalent fixed point iteration

By linearity, we can see that the local error (of interior subdomains) of the iteration
process is described by (2) with f = 0. Similar equations can be obtained for subdo-
mains touching the boundary. Using separation of variables, Sturm-Liouville theory
and superposition principle, we can write the local errors in the form of a series [4].
Then, using the non-homogeneous boundary conditions in each local problem, we
obtain a relationship between the error series coefficients at iteration (n+1) and the
ones at iteration n.

Fourier Analysis of solution of PDEs defining the local error

We analyze the local error of an interior subdomain, but the same analysis holds
for subdomains touching the boundary. Let η

(s,r)
n be the local error in Ω (s,r) at the

iteration n. By superposition principle, we can write η
(s,r)
n = η

(s,r)
n,1 +η

(s,r)
n,2 +η

(s,r)
n,3 +

η
(s,r)
n,4 , where η

(s,r)
n,i , i = 1, ...,4, is the solution of (2) with f = 0, and with one non-

homogeneous boundary condition and the rest homogeneous. Then, each part of the
local error η

(s,r)
n can be written as:

η
(s,r)
n,1 (x`,y`) =

∞

∑
m=1

A(s,r)
n,m,1φm(x`)ψm(H− y`) (3)

η
(s,r)
n,2 (x`,y`) =

∞

∑
m=1

A(s,r)
n,m,2φm(y`)ψm(x`) (4)
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η
(s,r)
n,3 (x`,y`) =

∞

∑
m=1

A(s,r)
n,m,3φm(x`)ψm(y`) (5)

η
(s,r)
n,4 (x`,y`) =

∞

∑
m=1

A(s,r)
n,m,4φm(y`)ψm(H− x`), (6)

where φm(x`) = ᾱ

zm
sin
( zmx`

H

)
+cos

( zmx`
H

)
and ψm(x`) = ᾱ

zm
sinh

( zmx`
H

)
+cosh

( zmx`
H

)
with zm satisfying the transcendental equation

tan(z) =
2zᾱ

ᾱ2− z2 ,

ᾱ = αH, and x` and y` are local coordinates related to the global coordinates x and
y by

x` = x− (s−1)h+ γ

y` = y− (r−1)h+ γ. (7)

Note that {φm}m∈N is a complete orthogonal set in [0,H]. Therefore, equations (3)
and (5) can be seen as Generalized Fourier series in x` and equations (4) and (6) as
Generalized Fourier series in y`. Then, we have that

A(s,r)
n,m,1 =

∫ H
0 η

(s,r)
n,1 (x`,yl)

[
ᾱ

zm
sin
( zmx`

H

)
+ cos

( zmx`
H

)]
dx`[

−ᾱ

zm
sinh

(
zm(y`−H)

H

)
+ cosh

(
zm(y`−H)

H

)]∫ H
0

[
ᾱ

zm
sin
( zmx`

H

)
+ cos

( zmx`
H

)]2
dx`

(8)
Let β : N×R→{−1}∪ [0,1] such that

β (m, ᾱ) =

{
−1, if zm < 1
1
2 , if zm ≥ 1

·

Then, with y` = 0 and using integration by parts in (8) we can write

A(s,r)
n,m,1 =

B(s,r)
n,m,1

z1+β (m,ᾱ)
m

[
ᾱ

zm
sinh

( zm
H

)
+ cosh

( zm
H

)] ,
where B(s,r)

n,m,1 is uniformly bounded for all m ∈ N. The same relationship holds be-

tween A(s,r)
n,m,i and uniformly bounded quantities B(s,r)

n,m,i for i∈ {2,3,4}. Plugging these
equalities in (3)-(6) and applying the nonhomogeneous boundary conditions, we ob-
tain the expression of the coefficients at iteration (n+1) in terms of those at iteration
n. For example, with a normalized overlap γ̄ = γ/H, we have for a specific index k,
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B(s,r)
n+1,k,1 =

(
zk +

ᾱ2

zk

)
sinh(2γ̄zk)+2ᾱ cosh(2γ̄zk)(

zk +
ᾱ2

zk

)
sinh(zk)+2ᾱ cosh(zk)

B(s,r−1)
n,k,1

+
∞

∑
m=1

4z4+β (k,ᾱ)
k

[
ᾱ

zk
tanh(zk)+1

](
zm + ᾱ2

zm

)
sin((1−2γ̄)zm)[(

zk +
ᾱ2

zk

)
tanh(zk)+2ᾱ

]
z1+β (m,ᾱ)

m
(
zmz3

k + zkz3
m
)

{
tanh(zm)

[
ᾱ(z2

k + z2
m)sin(zk)− zk(ᾱ

2− z2
m)cos(zk)

]
+ zm(ᾱ

2 + z2
k)sin(zk)

}[
ᾱ

zm
tanh(zm)+1

][
(z2

k − ᾱ)2 sin(2zk)+2zk(ᾱ2 + z2
k + ᾱ)−2ᾱzk cos(2zk)

] B(s,r−1)
n,m,2


+

(
−zk +

ᾱ2

zk

)
sinh((1−2γ̄)zk)(

zk +
ᾱ2

zk

)
sinh(zk)+2ᾱ cosh(zk)

B(s,r−1)
n,k,3

+
∞

∑
m=1

4z4+β (k,ᾱ)
k

[
ᾱ

zk
tanh(zk)+1

](
zm + ᾱ2

zm

)
sin((1−2γ̄)zm)[(

zk +
ᾱ2

zk

)
tanh(zk)+2ᾱ

]
z1+β (m,ᾱ)

m
(
zmz3

k + zkz3
m
) (9)

{
tanh(zm)zk(ᾱ

2 + z2
m)− zm

[
−2ᾱzk +

(ᾱ2−z2
k )sin(zk)+2ᾱzk cos(zk)

cosh(zm)

]}
[

ᾱ

zm
tanh(zm)+1

][
(z2

k − ᾱ)2 sin(2zk)+2zk(ᾱ2 + z2
k + ᾱ)−2ᾱzk cos(2zk)

]B(s,r−1)
n,m,4

 .

Let Bn be the infinite vector containing all the error series coefficients at iteration n,
i.e., Bn = (bn1 ,bn2 , . . .) with bn j ∈

{
B(s,r)

n,k,i : s ∈ {1, . . . , p}, r ∈ {1, . . . ,q}, k ∈ N,
i ∈ {1, . . . ,4}}. Then the relation between coefficients can be written as Bn+1 = T̂ Bn,
where T̂ :R∞→R∞ is an infinite matrix. Note that T̂ = (T̂ 1,1, . . . , T̂ p,q), where T̂ (s,r)

is a local operator such that B(s,r)
n+1 = T̂ (s,r)Bn with B(s,r)

n+1 being a vector containing all
the error coefficients of the local problem (s,r) at iteration (n+1).

Our main result is the following.

Theorem 1. For any positive value of the normalized overlap γ̄ there exist a com-
putable range of values of the normalized boundary parameter ᾱ for which the OSM
iteration given by (2) converges.

For its proof it suffices to show that each of the series in (3)-(6) converge uniformly
and that the error series coefficients tend to zero as the number of iteration goes to
infinity.

4 Approximation of the infinite operator T̂ by a matrix of finite
dimensions

Note that the following statements hold

1. In the r.h.s. of (9), the terms containing the coefficients B(s,r−1)
n,k,i , i = 1,3, decrease

with k.
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2. For a given n ∈ N0, B(s,r−1)
n,m,i is uniformly bounded in m ∈ N and i = 1, ...,4.

Moreover, B(s,r−1)
n,m,i ≤M/zm for all m ∈ N and some M > 0.

3. For any number δ > 0 there exists a number kδ , such that for k > kδ , the sum of
the absolute values of the terms in the r.h.s. of (9) is less than δ .

4. For any number δ > 0 there exists a number mδ , such that for every k ∈ N the
sum of the absolute values of the terms in the r.h.s. of (9) corresponding to for
m > mδ is less than δ .

Let (Bn)|k≤k
δ

denote the vector resulting after discarding all the entries of Bn corre-
sponding to k > kδ . Then, based on the above three facts, we can write

(Bn+1)|k≤k
δ

=
(
T̂ (Bn)

)
|k≤k

δ

= T̂δ

(
(Bn)|k≤k

δ

)
+ξn+1,kδ

((Bn)|k>k
δ

), (10)

where T̂δ is a finite matrix obtained by discarding the rows and columns of T̂ related
to the coefficients pertaining to k > kδ , and ξn+1,kδ

((Bn)|k>k
δ

) is the error obtained

by approximating (Bn+1)|k≤k
δ

by T̂δ

(
(Bn)|k≤k

δ

)
.

We will discuss in the next section situations in which ρ(T̂δ )< 1, i.e., the spectral
radius of T̂δ is less than one. In the rest of this section we show that in addition the
error ξn+1,kδ

((Bn)|k>k
δ

) tends to zero as n→∞, and consequently Bn→ 0 as n→∞.
A necessary condition for convergence of Optimized Schwarz is that Bn→ 0 as

n→ ∞. Note that each entry of ξn+1,kδ
((Bn)|k>k

δ

) is the truncation error that results

after truncating the series in the formulas of the coefficients B(s,r)
n+1,k,i, by keeping

only the terms corresponding to k ≤ kδ . Thus, as it can be seen in (9), each entry of
ξn+1,kδ

((Bn)|k>k
δ

) is just a linear combination of the entries of (Bn)|k>k
δ

. Note also
that the entries of (Bn)|k>k

δ

are linear combinations of the entries of Bn−1. Hence,
based on the four facts from above, we can choose a large enough kδ so that the
entries of (Bn+1)|k>k

δ

and ξn+1,kδ
((Bn)|k>k

δ

) are as small as desired.
Using equation (10) recursively, we obtain the following equation

(Bn+1)|k≤k
δ

= T̂ n+1
δ

((B0)|k≤k
δ

)+
n+1

∑
j=1

T̂ n+1− j
δ

(ξ j,kδ
((B j−1)|k>k

δ

)). (11)

Using (11), the four facts from above, and assuming that the spectral radius of T̂δ

is less than one and that remains practically constant for large values of kδ , it can
be shown that given a 0 < ε < 1 there exists a nε such that ||Bn||∞ ≤ ε||B0||∞ for all
n ≥ nε . Repeating this argument, we can then show that limn→∞ Bn = 0. Hence in
order to prove that Bn→ 0 as n→ ∞, it suffices to show that ρ(T̂δ ) < 1 and that it
remains practically constant for large values of kδ . We show this in the next section.

It can be shown that the series describing the local errors converge uniformly in
Ω (s,r). This implies that if each term of the error series goes to zero as n goes to in-
finity, so will do the series. Thus, given that Bn→ 0 as n→∞, i.e., the coefficients of
the error series go to zero as n goes to infinity, the error of the iterative process con-
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verges to zero as n goes to infinity, which means that Optimized Schwarz converges
for the given Poisson’s problem for any initial error.

5 Spectral Radius of T̂δ

The spectral radius of T̂δ describes the convergence rate of the Optimized Schwarz
method. Thus, we define the optimal normalized boundary parameter ᾱ =αH as the
one which minimizes the spectral radius of T̂δ and thus gives the optimal asymptotic
convergence rate.

The values of the entries of the matrix T̂δ depend on the normalized overlap γ̄ ,
ᾱ and the truncation parameter kδ . The structure of the matrix depends on kδ , p, q
and the way we order the entries of Bn, i.e., the way we order each coefficient B(s,r)

n,k,i
based on its values of s, r, k and i. For the ordering we have chosen, we computed
the spectral radius of the resulting matrix T̂δ , for γ̄ ∈ {0,0.001,0.01,0.04,0.08},
a set of values of ᾱ in the range [0.1,500], kδ ∈ {3,5,10,20,50,100}, and p,q ∈
{4,5,10,20,30}. In these computations we have observed the following.

1. There exist values of ᾱ for which the spectral radius of T̂δ is less than one.
2. For a given γ̄ and the range of ᾱ considered in the experiments, ρ(T̂δ ) has a local

minimum, and it approaches a constant less than one for large values of ᾱ .
3. Given γ̄ , ᾱ , p and q, the value of ρ(T̂δ ) remains practically constant for large

enough kδ (see Figure 2).
4. For a given γ̄ , the optimal spectral radius of T̂δ remains practically constant as p

and q increase.

In Figure 1, the results for the cases γ̄ = 0.001 and γ̄ = 0.01, with p,q = 10,
kδ = 20, ᾱ ∈ [1,100], are shown.

Fig. 1 (a) Spectral Radius of T̂δ vs. ᾱ for γ̄ = 0.001, p,q = 10, kδ = 20 and ᾱ ∈ [0.1,100]. (b)
Spectral radius of T̂δ vs. ᾱ for p,q = 10, kδ = 20, γ̄ = 0.01 and ᾱ ∈ [0.1,100]
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Fig. 2 Spectral radius of T̂δ vs. kδ for p,q = 10, γ̄ = 0.01 and ᾱ = 3.9697

6 Further comments and conclusion

In the case of elliptic problems with varying coefficients, the same procedure can
be applied to obtain an operator T̂ such that Bn+1 = T̂ Bn as long as the coefficients
are separable as products of one-variable functions. In this case, as well as in the
constant coefficients case, the entries of the operator T̂ depend on values and first
derivatives of φm and ψm with m ∈ N at specific points. Note that in the constant
coefficient case an explicit formula can be obtained for φm and ψm. In the varying
coefficients case, an explicit formula for φm and ψm may not always be available.
However, we can still compute values of φm and ψm and their first derivatives at
specific points using numerical methods and then use these values to compute ρ(T̂δ ).

In conclusion, we analyzed the convergence of the Optimized Schwarz method
applied to Poisson’s equation in a bounded rectangular domain subject to nonhomo-
geneous Dirichlet boundary conditions and transmission conditions of the family
OO0. The spectral radius of T̂δ can be less than one for any positive amount of over-
lap. One can obtain the optimal boundary parameter that minimizes this spectral
radius. We outlined a proof showing that this bound on the spectral radius, together
with other results, can guarantee convergence of OSM for the problem studied.
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Abstract. The proposed algorithm called the Hybrid Total Finite Ele-
ment Tearing and Interconnecting method (HTFETI) is a variant of the
TFETI domain decomposition method suitable for large-scale problems
with hundreds of thousands of subdomains. The floating subdomains are
gathered into several groups belonging to individual clusters. We use
the new idea consisting in gluing the cluster subdomains using kernel
matrices defined by the rigid body motions. This technique reduces the
size of the coarse problem. While the size of the coarse problem depends
linearly on the number of subdomains in the classical TFETI method,
it depends linearly on the number of clusters in the HTFETI method.
The zero weighted averages across the interfaces of neighbouring subdo-
mains (an alternative to the constraints enforcing the continuity across
the corners used, e.g., in the FETI-DP method) improve conditioning of
the resulting system of linear equations.

1 Introduction

The history of the FETI (Finite Element Tearing and Interconnecting) method
[6] is longer than twenty years and over the years, numerous variants have been
developed (FETI-DP method [2, 5], T(otal)FETI method [4] etc). The important
impulse for development of new FETI variants was given by the implementa-
tion on more sophisticated computer architectures, where parallel processors are
grouped into clusters. From the point of view of minimal communications, it is
reasonable to copy the computer architecture into the FETI method that lead
to the hybrid (two-level) FETI methods. The FETI–FETI-DP method proposed
in [7, 8] combines the classical FETI method used on the global level with the
FETI-DP method used on the clusters. In this paper, we deal with the TFETI–
TFETI method that uses the TFETI method on both levels [3, 10]. It will be
denoted as the H(ybrid)TFETI method. The new approach presented in this
paper is called HTFETIker. In this method the gluing of subdomains (belonging
to one cluster) is done using kernels of the local subdomains. This technique ac-
celerates iterations like in the case of the transformation of basis discussed in [7].
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In the numerical experiments we compare HTFETIker with HTFETIcor method
where the subdomains belonging to one cluster are glued by the Lagrange mul-
tipliers (LMs) corresponding to the corner nodes. Such method is similar to
the FETI–FETI-DP method. The basic idea of the two-level FETI method is
graphically explained in the following benchmark, in which we introduce also
respective notation.

In order to simplify the presentation of the method, we use a simple cube
benchmark with a hierarchical decomposition and discretization depicted in Fig.
1.

original

domain containing

8 clusters

1 cluster 

containing

8 subdomains

1 subdomain

containing

27 elements
element

Fig. 1. Two levels of decomposition: 2 clusters (C = 2), 2 subdomains (N = 2), 3
elements (n = 3) in each space dimension

This hierarchical decomposition and discretization consists of three levels:

– Level 1 - decomposition into clusters is controlled by parameters Cx, Cy, and
Cz (numbers of clusters in x, y, and z direction). Each cluster occupies one
computational node.

– Level 2 - each cluster is decomposed into the subdomains controlled by pa-
rameters Nx, Ny, and Nz (numbers of subdomains in x, y, and z direction).

– Level 3 - each subdomain is discretized uniformly by hexahedral finite ele-
ments handled by parameters nx, ny, nz (numbers of elements in x, y, and
z direction).

If, for example, the number of clusters in all directions is the same Cx = Cy =
Cz = 2, the description in the text is simplified to C = 2. This simplified notation
is also applied to subdomains N and elements n.

2 Cluster constraints

2.1 Types of subdomains-gluing

In the following part we are going to focus on the constraints among subdomains
in the cluster. All the details of the HTFETI method and also the derivation of
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the algorithm can be found in [10]. The notation used in this section relates to
the same paper.

Compared to the FETI method, in the described hybrid variant the neighbor-
ing subdomains are grouped into clusters using additional constraints. Together,
with the commonly used joining of subdomains via corner nodes known in the
FETI-DP method, we present a new technique based on the kernels of stiffness
matrices. Such an approach requires a robust algorithm for factorizing singular
matrices but, on the other hand, it simplifies implementation of the HTFETI
method. Implicitly, it enforces zero averages across the faces between the neigh-
bouring subdomain.

For simplification, let us use the cluster consisting of two subdomains Ωj and
Ωk (see Fig. 2). The stiffness matrix of I-th cluster then will be

K̃I =

(
Kj:k B>c,j:k
Bc,j:k O

)
=

Kj O B>c,j
O Kk B>c,k
Bc,j Bc,k O

 (1)

which corresponds to Eq. (14) in [10] if interval j : k consists of j and k only.
Here, Kj and Kk are stiffness matrices, Bc,j , Bc,k are linear constraints keeping
both subdomains together, and O is a zero matrix with the appropriate size. In
the next subsections, let us explain how to choose the blocks Bc,j , Bc,k.

Corner gluing                             Kernel based gluing

3

3

3

3

6

Fig. 2. Two-subdomain bonding, corners versus kernels: 3 forces per corner node (12
LM in total) / 3 forces and 3 moments per interface (6 LM in total).

Corner strategy - HTFETIcor method Using this method, Bc,j , Bc,k are
signed booleans matrices that enforce the connectivity across the corner nodes
(see Fig. 2 left). The structure is similar as matrix of constraints in the FETI
method (commonly denoted as B).

Kernel strategy - HTFETIker method The kernel strategy glues the do-
mains Ωj and Ωk in a weaker sense using the kernel Rj of matrix Kj . Instead of
enforcing relative zero displacements in particular nodes belonging to the inter-
face Γjk = Ωj ∩Ωk, we prescribe constraints acting onto all DOFs belonging to
the face Γjk. The number of these constraints is determined by the defect d of
Kj (and Kk) that is d = 6 for the three-dimensional linear elasticity problems.
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Let Qj be an appropriate permutation matrix separating Rj into two parts:

QjRj =

(
Rj,Ωj\Γjk
Rj,Γjk

)
,

where Rj,Γjk is given by the rows of Rj belonging to the interface Γjk = Ωj∩Ωk
and Rj,Ωj\Γjk contains by the remaining rows. It is required that Rj,Γjk ∈ Rm×d,
where m ≥ d. In the case of a three-dimensional linear elasticity problem, this
requirement is always satisfied if the common interface between two neighboring
subdomains is given by at least three nodes not lying in one line. The parameter
m is then equal to 9 (number of all degrees of freedom belonging to this set of
nodes). Then we define Bc,j and Bc,k as follows:

B>c,j = Q>j

(
O

Rj,Γjk

)
, B>c,k = Q>k

(
O

−Rj,Γjk

)
, (2)

where the permutation matrix Qk maps the rows of −Rj,Γjk (in Ωk) onto the
corresponding rows of Rj,Γjk (in Ωj). The non-sigularity of the matrices Bc,jRj

and Bc,kRk guarantees that the subdomains Ωj and Ωk are properly glued
together [9]. The gluing condition is schematically depicted in the right Fig. 2.
The presented idea can be simply extended to the clusters with more than two
subdomains. The approach is also applicable to non-singular matrices (transient
problems).

Fig. 3. Domain decomposition of Ω body into 2 subdomains Ωi and Ωj .

Example: Constraints assembled from the analytically computed ker-
nel. Let us explain some general ideas regarding the analytical form available for
kernels in linear elasticity . Let the nodes shared by Ωi and Ωj lying on the inter-
face Γi,j = Ωi∩Ωj depicted in Fig. 3 be indexed by the set G = {1, 2, · · · , nΓi,j}.
Let the displacement vector of the g-th node xg = (xg, yg, zg) ∈ Γi,j be denoted
ui,g = (ui,g, vi,g, wi,g) with respect to Ωi and uj,g = (uj,g, vj,g, wj,g) with re-
spect to Ωj . It follows from the mechanical arguments that two subdomains are
kept together by 3 forces and 3 moments acting across the whole interface Γij
that avoids mutual movements and rotations. It can be achieved by zero averages
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of displacements

nΓ∑
g=1

(ui,g − uj,g) = 0,

nΓ∑
g=1

(vi,g − vj,g) = 0,

nΓ∑
g=1

(wi,g − wj,g) = 0,

and rotations

nΓ∑
g=1

((ui,g − uj,g) · yg − (vi,g − vj,g) · xg) = 0,

nΓ∑
g=1

((ui,g − uj,g) · zg − (wi,g − wj,g) · xg) = 0,

nΓ∑
g=1

((vi,g − vj,g) · zg − (wi,g − wj,g) · yg) = 0

across Γi,j . It also guarantees that the subdomains are sufficiently and optimally
bonded together with the minimal number of constraints.

Apart from the natural accelerating property, there is also another significant
feature of kernel-based Bc,i. Since its constraints enforce the equality across the
interface on average, the Dirichlet preconditioner acts on the whole interface as
well and it is completely adopted from (T)FETI method in an unchanged form.

2.2 Rank of the cluster constraint matrix Bc,j:k

Sufficient mutual gluing of all cluster subdomains realized by kernels requires 6
constraints per interface between two neighboring subdomains. The comparison
with the corner strategy will be shown on the cube problem. Since the matrix
Bc,j:k is always assembled without linearly dependent constraints, the rank and
number of rows are equal.

Academic problem For the sake of clarity, the cube problem is uniformly
decomposed into subdomains by setting: C = 1 and N = 2, 3, · · · , 10. Thanks
to a simple cube geometry and the uniform discretization and decomposition,
we can derive the dependency between the number of subdomains N and the
rank of the cluster matrix Bc,j:k. If the corner strategy is used, three following
situations can occur. The node is shared by two subdomains (then it produces
3 · 1 LM), by four subdomains (3 · 3 LM) or by eight subdomains (3 · 7 LM).
In the first case, the subdomains are glued using corner nodes, the dimension of
Bc,j:k is

rank
(
Bcor
c,j:k

)
= 21(N − 1)3 + 54(N − 1)2 + 36(N − 1). (3)

In the case Bc,j:k is assembled via parts of the kernels, each common interface
generates 6 LM and the dimension is

rank
(
Bker
c,j:k

)
= 18N2(N − 1). (4)
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The ratio between “corner” and “kernel” case for N →∞ is

lim
N→∞

rank
(
Bcor
c,j:k

)
rank

(
Bker
c,j:k

) =
7

6
≈ 1.1667. (5)

In the numerical tests presented later we have used a variant with 1000 sub-
domains (N = 10) for each cluster. The kernel strategy exhibits an interesting
property because it provides fewer iterations, although in the corner strategy (in
this particular case) the matrix Bcor

c,j:k contains 23.5% more constraints.

3 Numerical test

The described algorithms were implemented into our ESPRESO (ExaScale PaR-
allel FETI SOlver) package developed at IT4Innovations National Supercomput-
ing Center in Ostrava, the Czech Republic [11, 1].

For these computations we used facilities of IT4Innovations Czech national
supercomputing center (www.it4i.cz), namely Salomon cluster. The Salomon
cluster consists of 1008 compute nodes. Each node contains 24 core Intel Xeon
E5-2680v3 processors and 128 GB RAM. The interconnect is a 7D Enhanced
hypercube InfiniBand.

We varied the decomposition and discretization parameters on a cube bench-
mark test in order to demonstrate the scalability of our method. The cube (30
mm) is made of steel with the following parameters: Young’s modulus E =

2.1 · 105 MPa, Poisson’s ratio µ = 0.3, density ρ = 7850 kg/m
3
, and gravity

constant gx1 = 9.81 m/s
2
. The cube is fixed on the plane x = 0, and loaded by

its own weight in the x direction.
The problem is solved by the projected preconditioned conjugate gradient

method. The iterations are stopped after the relative preconditioned residual is
reduced by stopping criterion to preconditioned residual ε = 1 · 10−4. The first
test shows weak scalability for the benchmark depicted in Fig. 1 with one cluster,
a fixed number of DOFs on each subdomain, and a variable number of subdo-
mains. The considered parameters are: C = 1, N = 2, 3, · · · , 12 and n = 10.
The initial and last variant contain 27, 783 DOFs and 5, 314, 683 DOFs, respec-
tively. The linear system is preconditioned by the Dirichlet preconditioner. In
Fig. 4 left, the problem is decomposed uniformly. Naturally, the TFETI method
provides the best results. For the HTFETIker method, the number of iterations
slightly increases with the increasing number of subdomains N3. The hybrid
variant with corners (the HTFETIcor method) exhibits the worst results of all
three methods. On the other hand when METIS is used as the decomposer (Fig.
4 right), the TFETI method can lose the scalability due to the irregular inter-
face. The HTFETIcor method is also influenced by the decomposition, but the
HTFETIker method keeps the relatively same performance (a slightly increasing
number of iterations) as in the uniform decomposition case.

Result of similar tests with a larger number of DOFs per subdomain (pa-
rameters: C = 1, N = 2, 3, · · · , 6, n = 20, DOFs ranging from 206, 763 to
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Fig. 4. Decomposition: uniform-left, METIS-right; C = 1, N = 2, 3, · · · , 12, n = 10.
Number of unknowns ranges from 27, 783 to 5, 314, 683.

5, 314, 683) are displayed in Fig. 5. For a uniform decomposition, the TFETI and
HTFETIker method exhibit an equal number of iterations. It implies that if the
interface is large enough (in this case 20× 20 nodes versus 10× 10), the TFETI
method can be replaced by the HTFETIker method containing one cluster. How-
ever, the HTFETIker method is more expensive in preprocessing and partially
also during the iterations. On the other hand, as it was already observed, when
METIS is used, the TFETI method loses scalability faster, and therefore the
utilization of the HTFETI method can be meaningful.
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Fig. 5. Decomposition: uniform-left, METIS-right; C = 1, N = 2, 3, · · · , 6, n = 20.
Number of unknowns from 206, 763 to 5, 314, 683.

The next set of numerical experiments in Fig. 6 shows weak scalability with
the lumped preconditioner (the number of iterations on the left, solver time on
the right) up to 1, 259, 712 subdomains and 10.4 billion unknowns. Because of
the very large number of subdomains, the TFETI method cannot be used for all
the settings, and for this reason, it is not included in this comparison. However,
both diagrams show weak scalability of the HTFETI method. It is also seen that
the variant based on kernels requires three times fewer iterations compared to
the case with corners.
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Fig. 6. HTFETI, uniform decomposition; C = 2,3,...,12, N = 9, n = 14. Number of
unknowns from 4, 858, 2831 to 10, 390, 538, 091.

4 Conclusion

This work presents the Hybrid variant of the Total FETI method.The main idea
stems from the work published in [7], where the FETI and FETI-DP method are
combined. Here, the presented version is the TFETI-TFETI method that uses
the TFETI method on both levels. In the newly proposed variant, the subdo-
mains are not glued together by corners but through the whole interface between
each neighboring pair of subdomains via the kernels of the stiffness matrices. The
numerical tests show efficiency of our algorithm. The very promising results were
obtained for non-uniform decompositions. The Hybrid TFETI method based on
kernels exhibits better weak scalability compared to the TFETI method.
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Small coarse spaces for overlapping Schwarz
algorithms with irregular subdomains

Olof B. Widlund and Clark R. Dohrmann

1 Introduction

Coarse spaces are at the heart of many domain decomposition algorithms. Building
on the foundation laid in [10], we have an ongoing interest in the development of
coarse spaces based on energy minimization concepts; see [2, 4, 5, 6].

This paper is a short report on a project which substantially extends results in
a DD21 conference paper, [7], and which now has resulted in an archival publica-
tion [8]. Our work primarily concerns two-level overlapping Schwarz methods and
is exclusively for low order, conforming finite element approximations of three–
dimensional elliptic problems. What is new in this paper are some variants of the
algorithms reported in [8]. The focus of this study is the development of smaller
coarse spaces which, to the extent possible, will give us similar rates of convergence
as for those developed in the past. Extensive large scale experiments show that this
is possible and important; see e.g. [11] in these proceedings.

The domain of a scalar elliptic or elasticity operator is partitioned into non-
overlapping subdomains Ωi each of which is the union of elements. We use nodal
equivalence classes of finite element nodes on the interface, i.e., the nodes that be-
long to more than one subdomain boundary, in the construction of our coarse spaces.
Two such nodes belong to the same equivalence class if they belong to the same set
of subdomain boundaries. The coarse nodes are associated with those equivalence
classes which are maximal in the sense that they are not subsets of any other. In
many cases, the coarse nodes are simply the vertices of the subdomains but there
are also other cases which are identified automatically by our algorithm. Each in-

Olof B. Widlund
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terface node n is thereby associated with a set of coarse nodes Cn. A coarse node
c is included in Cn if the equivalence class of n is a subset of that of c. For each
coarse node, we will construct one coarse basis function for scalar elliptic and six
for elasticity problems, which span the coarse space.

2 Elliptic Problems and the Coarse Basis Functions

In our study, we consider scalar elliptic problems defined in terms of a bilinear form∫
Ω

ρ∇u ·∇v dx

where ρ(x)> 0 and constant = ρi in each subdomain Ωi into which Ω has been par-
titioned. The functions u and v belong to a subspace of H1(Ω) subject to a Dirichlet
condition on ∂Ω or a subset thereof. We also consider linear, compressible elasticity
defined by a bilinear form

2
∫

Ω

µ ε(u) : ε(v) dx+
∫

Ω

λ div uuu div vvv dx,

where µ(x) and λ (x) are the positive Lamé parameters, εi j(u) = 1
2 (

∂ui
∂x j

+
∂u j
∂xi

), and

ε(u) : ε(v) := ∑
3
i=1 ∑

3
j=1 εi j(u)εi j(v). The Lamé parameters are also assumed con-

stant, µi and λi = (2µiνi)/(1− 2νi), in Ωi, with 0 < νi < 1/2. This variational
problem is posed in a subspace of (H1(Ω))3 determined by a Dirichlet condition.
The energy of these systems are defined by these bilinear forms.

Three recipes for the construction of coarse space elements have been developed
in [8], each defined in terms of a partition of unity for each interface node. The
simplest one, referred to as Option 1, is given by

pnc := 1/Nc, (1)

where Nc := |Cn|. Of the two other recipes, the one relevant for this paper is the
third defined in terms of di(n), i = 1, . . . ,Nc, the distances between an interface node
n and the ci ∈ Cn, and given by

pnci :=
1/di(n)

1/d1(n)+1/d2(n)+ . . .+1/dNc(n)
. (2)

This Option 2 is the only one used in the experiments reported in this paper.
The values of these functions are used as Dirichlet data and extended into the in-

terior of the subdomains, minimizing the energy, and resulting in continuous coarse
basis functions for scalar elliptic problems. The support of a coarse basis function
associated with the coarse node c is the union of the closure of all Ω j with c on their
boundaries. For elasticity, we multiply the scalar function pnc by a 3×6 matrix with
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columns forming a basis for the space of rigid body modes prior to extending the
resulting values on the interface into the interiors of the subdomains. We note that
the resulting finite element functions will all be continuous given that there are no
jumps in the Dirichlet data across the interface.

The choice of minimal energy extensions results in coarse basis functions which
sum to 1, in any subdomain that does not touch the Dirichlet boundary, for the scalar
elliptic problems and rigid body modes for elasticity. This fact shows that the null
space condition will be satisfied, a condition necessary to obtain a convergence rate
bounded independently of the number of subdomains for any domain decomposition
algorithm. This approach works well even for subdomains with irregular boundaries
such as those obtained from mesh partitioners. The crucial part of the analysis of an
overlapping Schwarz algorithm requires a bound on the sum of the energy of the
components of the coarse space and of the local spaces of finite element functions,
supported in the overlapping subdomains chosen to define the local problems, in
terms of the energy of the sum of these functions; see, e.g., [15, Chapter 2]. The
choice of minimal energy extensions therefore makes sense also for this reason.

The development of domain decomposition theory has often focused on the ef-
fect of large discontinuities of the coefficient. Thus, for iterative substructuring algo-
rithms, based on non-overlapping subdomains, a number of strong results have been
developed for elliptic problems where the coefficients are constant or vary slowly
inside the subdomains but without any restrictions on their variation across the inter-
face between the subdomains; see, e.g., [15, Chapters 4–6] and [14]. Many of these
algorithms are well-defined for arbitrary subdomains although the theory has been
fully developed mostly for subdomains that are tetrahedral or unions of a few large
tetrahedra; we note that some of the standard tools now have been extended to Lip-
schitz subdomains, see [8]. In contrast, the theory for two–level additive Schwarz
methods is developed only for constant coefficients in [15, Section 3.2]. However,
the classical coarse spaces for these Schwarz algorithms have been shown to be sta-
ble for quasi–monotone coefficients in [9]; for a related condition, see Assumption 1
of this paper. The results in [9] considerably expanded the class of subdomain co-
efficients for which results quite similar to those for constant coefficients became
possible.

To derive the final bounds for our overlapping Schwarz algorithms, we also need
to consider the components associated with local problems on overlapping subdo-
mains, which are often constructed by extending the nonoverlapping subdomains,
Ωi, into which the given domain Ω has been decomposed, by adding one or a few
layers of elements. Observing that we need solvers for Dirichlet problems on the
original subdomains Ωi to construct the coarse basis functions, we will in some of
our numerical experiments instead use the Ωi as part of the covering. In addition, to
cover all of the domain Ω , we can then use boundary layers, which are unions of
elements which include all points within a minimal distance δi to the boundary of
an individual Ωi. As an alternative, we also use sets created by adding one or more
element layers to the closure of the individual subdomain faces.

We note that no new ideas are required to complete the part of the analysis re-
lated to these locally supported subspaces; cf. [15, Subsection 3.2] and the discus-
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sion in [6, Section 3]. Therefore, we have been able to focus on developing the
coarse spaces and bounds for the coarse component, which are always required in
the analysis of any Schwarz algorithm; see [15, Subsection 2.3].

The subdomains, Ωi, are unions of elements, that form quasi–uniform meshes
for each subdomain, and often have irregular boundaries, in particular, if they have
been generated by a mesh partitioner. Some of the tools used in our analysis, such as
a trace theorem, will require that the subdomains are Lipschitz. We note that in our
previous studies of two-dimensional problems, [3, 6], we have been able to extend
our analysis even to subdomains with fractal boundaries assuming only that they are
uniform in the sense of Jones [12].

We note from formula (1) that pnc is the same for all n in a nodal equivalence class
and for a particular c∈Cn; in the case of tetrahedral subdomains, the basis functions
constructed will be built from the face and edge functions, θF and θE , used exten-
sively in the development of iterative substructuring algorithms as in [15, Chapters
4-6]. The fact that these functions are piecewise constant causes large changes in
the coarse basis functions across boundaries between equivalence classes, resulting
in logarithmic factors, (1+ log(Hi/hi)), in our estimate of the energy of the coarse
basis functions; cf. [15, Lemma 4.25] for a bound on the energy of the classical face
function θF . Here, Hi is the diameter of Ωi and hi the diameter of its smallest ele-
ment. In [8], we have obtained the same quality bound for Lipschitz subdomains by
generalizing bounds for the face and edge functions for subdomains to the Lipschitz
case. By using the alternative (2), we obtain smoother coarse basis functions and
improved bounds.

3 Assumptions and Major Results

We will now consider two different assumptions on the coefficient µ of the elasticity
problem. The same assumptions are also used for the coefficient, ρ, of the scalar
elliptic problems.

Assumption 1 (Quasi-monotone face-connected paths) Let c be any coarse node
of Ωi and Sc be the index set of all subdomains containing c on their boundaries.
Select jc ∈Sc such that µ jc ≥ µ j for all j ∈Sc. Assume that there exists a constant
C and for any i ∈Sc a sequence {i = j0

c , j1
c , ..., jp

c = jc}, all in Sc, such that µi ≤
Cµ j`c

and that Ω j`−1
c

and Ω j`c
have a subdomain face F j`−1

c , j`c
in common for all `=

1, . . . , p and i = 1, . . . ,N. In the case that c ∈ ∂Ω , we also assume that ∂Ω jc ∩∂Ω

contains at least one subdomain face.

In other words, Assumption 1 means that there is a face connected path between
Ωi and Ω jc such that the Lamé parameter µi is no greater than a constant times
the Lamé parameter of any subdomain along the path. This assumption is similar
to the quasi-monotonicity assumption of [9]. We will also work with an additional
assumption.
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Assumption 2 (Quasi-monotone edge-connected paths) Using the same notation
as in Assumption 1, assume that there exists a sequence {i = j0

c , j1
c , ..., jp

c = jc}, all
in Sc, such that ρi ≤ Cρ j`c

and Ω j`−1
c

and Ω j`c
have at least a subdomain edge in

common for all ` = 1, . . . , p and i = 1, . . . ,N. In the case that c ∈ ∂Ωi also assume
that ∂Ω jc ∩∂Ω contains at least one subdomain edge.

We note that Assumption 2 is weaker than Assumption 1 since we have more
options of continuing at every step in the construction of a path. We note that in our
proof for linear elasticity, we have had to use the more restricted Assumption 1. The
need for this has also been demonstrated by experiments reported in [8].

Our analysis can closely follow the theory as developed in [15, Section 2.3]; a
main effort is directed to constructing a coarse component u0, for any u, with a good
bound on the energy E(u0) in terms of E(u), the energy of the function u..

With estimates for our coarse interpolants in hand, we can then perform a local
analysis for an overlapping additive Schwarz algorithm using basically the same
approach as in [3] or [6]. This involves a set of partition of unity functions {ϑ j}N

j=1
with 0≤ ϑ j ≤ 1, |∇ϑ j| ≤C/δi, and with ϑ j supported in the closure of a subdomain
which is part of the covering of Ω . Here, δ j is the thickness of the part of subdomain
which is common to its neighbors. Given an estimate of the form

E(u0)≤CΘ(H/h)E(u),

where H/h := maxi Hi/hi, the resulting condition number estimate for the precon-
ditioned operator is given by

κ(M−1A)≤CΘ(H/h)(1+H/δ ), (3)

where H/δ := maxi Hi/δi. For Option 2, we can prove a uniform bound of Θ(H/h)
if Assumption 1 is satisfied. In addition, we have a bound Θ(H/h)≤ (1+ log(H/h))
for the scalar case if Assumption 2 holds.

We note that our coarse spaces could alternatively be combined with local spaces
previously developed for iterative substructuring algorithms such as those of [10];
see also [15, Chapter 5].

4 Numerical Results

Numerical results are presented in this section to help confirm the theory and to
demonstrate some advantages of the face-based local spaces. We note that large-
scale experiments with closely related algorithms are also reported in [11]. Our
results are for a unit cube domain with homogeneous essential boundary conditions
applied to one of its faces. Condition numbers (cond) of the preconditioned operator
and the number of iterations (iter) needed to achieve a relative residual tolerance of
10−8 for the solution of the linear system of equations, Ax = b, with random right-
hand-side vectors b are reported. The domain is decomposed into smaller cubic
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subdomains, and formula (2) is used to construct the coarse space. We note that
the interface preconditioner is of a hybrid type which employs overlapping Schwarz
local spaces as in [5]. We also note that at the end of each step of the iteration, the
residual will vanish at all interior nodes of the subdomains. We use the lowest order
hexahedral nodal elements and Matlab.

Three different local spaces are considered. The standard one starts with all the
nodes of a non-overlapping subdomain and adds to them nodes from an integer
number of layers of elements adjacent to the original nodes. The boundary layer
local spaces are identical to the standard ones with the exception that the starting
nodes only include those on the subdomain interfaces. We note these local spaces
were considered previously in [5]. Finally, the face local spaces of this study start
with nodes in the closure of each subdomain face and add layers of elements just
as for the other two local spaces. These spaces locally precondition an interface
problem.

Our example has the overlap parameter H/δ = 3 fixed while the number of ele-
ments (H/h) in each subdomain direction increases. In addition to condition num-
bers and iteration counts, we also report in Table 1 the number of non-zeros in the
sparse Cholesky factorizations for the local spaces. Specifically, rnnz denotes these
numbers normalized by the number for the standard local space. Further, we report
estimates of the maximum eigenvalue λmax of the preconditioned operator.

Consistent with the theory, condition numbers for the face local spaces exhibit
sub-linear growth with respect to H/h. Although the number of iterations and con-
dition numbers are noticeably larger compared with the standard and boundary layer
spaces, the number of non-zeros in the local factorizations are considerably smaller
for the face spaces. One reason for the larger condition numbers of the face spaces
are the larger values of λmax shown in Table 1. The larger values can be explained
using a coloring argument. For instance, there are 12 different faces which include
each subdomain vertex in their closures. In contrast, each subdomain vertex is in-
cluded in only 8 of the standard or boundary layer spaces.

Table 1 Results for a unit cube decomposed into 64 smaller cubic subdomains with overlap
H/δ = 3 for three different local spaces. The material properties are constant with ρ = 1 for scalar
problems and µ = .385, λ = 1.54 for elasticity problems.

standard boundary layer face
H/h iter cond λmax iter cond rnnz λmax iter cond rnnz λmax

scalar problem results
3 26 14.1 8.2 27 14.8 0.47 8.2 39 32.7 0.18 12.1
6 28 17.7 8.2 31 18.9 0.77 8.2 50 40.9 0.25 12.0
9 30 19.7 8.2 33 21.1 0.80 8.2 55 45.9 0.28 12.0
12 30 30.0 8.2 33 22.5 0.87 8.2 58 49.6 0.30 12.0

elasticity problem results
3 33 13.6 8.2 34 14.4 0.47 8.2 47 30.9 0.17 12.1
6 36 15.8 8.2 38 16.8 0.69 8.2 59 35.3 0.23 12.0
9 37 17.1 8.2 40 18.2 0.78 8.2 62 38.7 0.26 11.9
12 38 18.0 8.2 41 19.1 0.78 8.2 64 41.2 0.27 11.9
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Normalized solution times for the preconditioned conjugate gradient algorithm
applied to an elasticity problem (see bottom half of Table 1) are shown in Figure 1
for the boundary layer and face local spaces. Notice for all values of H/h that the
normalized times are less than 1 for the boundary layer local spaces. Remarkably,
the smallest times are achieved using the face local spaces for H/h > 5 even though
the number of iterations are larger than those for the other two local spaces. The
improved performance here can be attributed to the much smaller factorization sizes
for the face spaces.

Fig. 1 Elasticity problem solution times for the preconditioned conjugate gradient algorithm nor-
malized with respect to solution times for the standard local space.

As found in [5], the number of iterations can be reduced significantly, for all
three local spaces, by dividing each element in the right-hand-side vectors for the
local solvers by the number of local spaces which share this element. Although this
results in a non-symmetric preconditioner, reduced solution times can be achieved
as for restricted additive Schwarz preconditioners [1]. As a final note, for parallel
computations, it makes sense to assign the work for each face to just one of the
two subdomains, i.e. processors, which contain it. To achieve good load balance, an
assignment algorithm can be used to approximately minimize the maximum work
for any one processor.
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