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Summary. We consider an additive Schwarz preconditioner for the algebraic sys-
tem resulting from the discretization of second order elliptic equations with discon-
tinuous coefficients, using the lowest order Crouzeix-Raviart element on nonmatch-
ing meshes. The overall discretization is based on the mortar technique for coupling
nonmatching meshes. A convergence analysis of the preconditioner has recently been
given in Rahman et al. [2003]. In this paper, we give a matrix formulation of the
preconditioner, and discuss some of its numerical properties.

1 Introduction

We consider the Crouzeix-Raviart (CR), or the nonconforming P1 finite ele-
ment discretization on nonmatching meshes of the following elliptic problem
with discontinuous coefficients: Find u∗ ∈ H1

0 (Ω) such that

a(u∗, v) = f(v), v ∈ H1
0 (Ω), (1)

where Ω ⊂ R2 is a bounded, simply connected polygonal domain, a(u, v) =
∑N

i=1 ρi(∇u,∇v)L2(Ωi) and f(v) =
∑N

i=1

∫

Ωi
fv dx, and Ω = ∪N

i=1Ωi is the
partition of Ω into nonoverlapping polygonal subdomains Ωi of diameter Hi.
The coefficients ρi are positive constants with possibly large jumps across sub-
domain interfaces. Let Xh(Ωi) be the nonconforming P1 (Crouzeix-Raviart)
finite element space defined on a quasi-uniform triangulation Th(Ωi) of mesh
size hi, of the subdomain Ωi, consisting of functions which are piecewise
linear in each triangle τ ⊂ Ωi, continuous at the interior edge midpoints
xk ∈ ΩCR

ih , and vanishing at the edge midpoints lying on the boundary ∂Ω.
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Since the triangulations on Ωi and Ωj may not match on their common inter-
face Γ ij = Ωi ∩Ωj , the functions in Xh(Ω) = ΠN

i=1Xh(Ωi) are discontinuous
at edge midpoints along the interface. We use a special technique, known as
the mortar technique, cf. Bernardi et al. [1994], for the coupling of nonmatch-
ing meshes. An analysis of the mortar technique for the Crouzeix-Raviart
element has been given in Marcinkowski [1999].

According to the mortar technique, a weak continuity condition, called
the mortar condition, is imposed on the function along the interfaces. A func-
tion uh = {ui}

N
i=1 ∈ Xh satisfies the mortar condition on the interface Γij ,

if Qmui = Qmuj, where Qm : L2(Γij) → Mhj (δm(j)) is the L2-projection

operator defined as: (Qmu, ψ)L2(δm(j)) = (u, ψ)L2(δm(j)), ∀ψ ∈ Mhj(δm(j)),

where δm(j) ⊂ ∂Ωj is the nonmortar side of Γij , M
hj(δm(j)) ⊂ L2(Γij) is the

test space of functions which are piecewise constant on the triangulation of
δm(j), and (·, ·)L2(δm(j)) denotes the L2 innerproduct on L2(δm(j)). The other
side of Γij , called the mortar side, is denoted by γm(i) ⊂ ∂Ωi. The discrete
problem takes the following form: Find u∗h = {ui}

N
i=1 ∈ Vh such that

ah(u∗h, vh) = f(vh), ∀vh ∈ Vh, (2)

where Vh ⊂ Xh is a subspace of functions which satisfy the mortar con-
dition on all interfaces, and ah(u, v) =

∑N
i=1 ρi

∑

τ∈Th(Ωi)
(∇u,∇v)L2(τ) =

∑N
i=1 ai(u, v). Vh is a Hilbert space with an inner product defined by ah(·, ·).

The problem has a unique solution and a priori error estimates have been
provided in Marcinkowski [1999].

Even though, there exists a lot of work concerning the nonconforming P1
element on matching grids, cf., e.g., Brenner [1996], Hoppe and Wohlmuth
[1995], Sarkis [1997], the work on nonmatching grids is very limited, cf.,
e.g., Marcinkowski [1999], Xu and Chen [2001]. Recently, an efficient additive
Schwarz method for the nonconforming P1 element on nonmatching grids has
been proposed in Rahman et al. [2003]. In this paper, we complement the work
by introducing the matrix formulation of the preconditioner, and discuss some
of its numerical properties.

2 An additive Schwarz preconditioner

In this section, we describe the additive Schwarz preconditioner of Rahman
et al. [2003], for the problem (2), which is based on the idea of solving local
subproblems on nonoverlapping subdomains, and coarse problems on specially
constructed subspaces of small dimensions. The preconditioner is defined using
the general framework for additive Schwarz methods, cf. Smith et al. [1996].

We decompose Vh as Vh =
∑

γ V
γ + V 0 +

∑N
i=1 V

i, where the first sum

is taken over the set of all mortar sides {γ}. For i = 1, · · · , N , V i is the
restriction of Vh to Ωi, with functions vanishing at subdomain boundary edge
midpoints ∂ΩCR

ih as well as on the remaining subdomains. V γ is a space of
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Fig. 1. Examples of Φi corresponding to a subdomain Ωi having only mortar sides
(left) or nonmortar sides (right), indicating the nonzero values of the function.

functions given by their values on mortar edge midpoints γCR
h , V γ = {v ∈

Vh : v(x) = 0, x ∈ Ω
CR

h \ γCR
h }. The coarse space V 0, a special space having

a dimension equal to the number of subdomains, is defined using the function
χi ∈ Xh(Ωi) associated with the subdomain Ωi. χi is defined by its nodal

values as: χi(x) = 1/
∑

j ρj(x) at x ∈ Ω
CR

ih , where the sum is taken over

the subdomains which x is common to, V 0 is given as the span of its basis
functions, Φi, i = 1, · · · , N , i.e., V 0 = span{Φi : i = 1, · · · , N}, where Φi

associated with Ωi, is defined as follows (cf. Figure 1).

Φi(x) =



































1, x ∈ ΩCR
ih ,

ρiχi(x), x ∈ γCR
m(i)h,

ρiQm(χj)(x), x ∈ δCR
m(i)h, δm(i) = γm(j),

ρiQm(χi)(x), x ∈ δCR
m(j)h, δm(j) = γm(i),

ρiχj(x), x ∈ γCR
m(j)h, γm(j) = δm(i),

0, x ∈ ∂ΩCR
ih ∩ ∂Ω,

(3)

and Φi(x) = 0 at all other x in Ω
CR

h . We use exact bilinear forms for all our
subproblems. The projection like operators T i : Vh → V i are defined in the
standard way, i.e., for i ∈ {{γ}, 0, · · · , N} and u ∈ Vh, T iu ∈ V i is the solution
of ah(T iu, v) = ah(u, v), v ∈ V i. Let T =

∑

γ T
γ + T 0 + T 1 + · · · + TN . The

problem (2) is now replaced by the following preconditioned system,

Tu∗h = g, (4)

where g =
∑

γ T
γu∗h +

∑N
i=0 T

iu∗h. Let c and C represent generic constants
independent of the mesh sizes h = infi hi and H = maxiHi, and of the jumps
of the coefficients ρi, then the following result holds.

Theorem 1 (Rahman et al. [2003]). For all u ∈ Vh,

c
h

H
ah(u, u) ≤ ah(Tu, u) ≤ Cah(u, u). (5)
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The proof of this theorem is given in Rahman et al. [2003], which uses the
general theory for Schwarz methods, cf. Smith et al. [1996]. It follows from the
theorem, that the condition number of the operator T is bounded by c(H

h
).

2.1 Matrix formulation

Our aim is to derive a matrix representation for the preconditioned system (4).
The finite element space V h can be expressed as V h = span{φk}, where each
basis function φk is associated with a node xk which is either a subdomain

interior edge midpoint or a mortar edge midpoint. Let ϕ
(i)
k denote the standard

nodal basis function of Xh(Ωi), associated with the edge midpoint xk. The
basis functions are defined as follows.

If xk ∈ ΩCR
ih , a subdomain interior node, then φk(x) is exactly equal to

ϕk(x). If xk ∈ γCR
m(i)h, a mortar node, then φk(x) = ϕk(x) on Ωi, while on

δm(j), where γm(i) = δm(j), φk(x) = Qm(ϕk)(x) at x ∈ δCR
m(j)h. φk is zero at

the remaining edge midpoints of Ωj , and zero everywhere on the remaining
subdomains. Note that there are no basis functions associated with nonmortar
edge midpoints. Using these basis functions of Vh, the problem (2) can be
rewritten in the matrix form as

Au∗ = f , (6)

where u∗ is a vector of nodal values of u∗h, and A is a matrix generated by
the bilinear form ah(., .) on Vh ×Vh. We shall now see how this matrix can be

obtained from the local matrices Êi generated by ai(., .) on Xh(Ωi)×Xh(Ωi).

Observing that ah(., .) =
∑N

i=1 ai(., .), where ai(., .) = ah(., .)|Ωi
, we can

calculate the elements of A from their local contributions restricted to in-
dividual subdomains Ωi. In order to calculate the local contribution ai(., .),
we use only those basis functions that have nonzero supports on Ωi. These
basis functions are exactly the ones associated with the nodes of ΩCR

ih , γCR
m(i)h

(γm(i) ⊂ ∂Ωi), and the set γCR
m(j)h (γm(j) = δm(i) ⊂ ∂Ωi) of neighboring mortar

edge midpoints except those on ∂Ω. Let Λi be the set of all these nodes.
Let Pi be the restriction matrix which is a permutation of a rectangular

identity matrix, such that Piu returns the vector of all coefficients of u, as-
sociated with the nodes of Λi. PT

i is the corresponding extension matrix. Let
Ei, associated with the subdomain Ωi, be the matrix generated by ai(., .) on
span{φk : xk ∈ Λi}× span{φl : xl ∈ Λi}. Using these three types of matrices,

we can assemble the global matrix as A =
∑N

i=1 PT
i EiPi.

We note that Ei =
{

ai(φk, φl)
}

, where xk, xl ∈ Λi, and Êi =
{

ai(ϕk, ϕl)
}

,

where xk, xl ∈ Ω
CR

ih . If xk, xl ∈ ΩCR
ih ∪ γCR

m(i)h, then ai(φk, φl) = ai(ϕk, ϕl). If

xk ∈ γCR
m(j)h, then the calculation of an element of Ei involving φk, requires

the values of Qm(ϕk)(xo) at the nodes xo ∈ δCR
m(i)h, since, by definition, φk =

∑

xo∈δCR
m(i)h

Qm(ϕk)(xo)ϕo in Ωi. In the following, we derive these coefficients

{Qm(ϕk)(xo)} from the mortar condition.
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We assume that the subdomain Ωi has only one nonmortar side δm(i), the
extension to more than one nonmortar edge is straightforward. Let Mγm(j)

=
{

(ϕk, ψo)L2(δm(i))

}

and Sδm(i)
=

{

(ϕo, ψo)L2(δm(i))

}

, for xk ∈ γCR
m(j)h and

xo ∈ δCR
m(i)h, be the master and the slave matrix, respectively. Then

Qm(i) = S−1
δm(i)

Mγm(j)

is the matrix representation of the mortar projection Qm. The columns of this
matrix correspond to the nodes xk ∈ γCR

m(j)h, containing exactly the coefficients

{Qm(ϕk)(xo)}. We note that Sδm(i)
is a diagonal matrix containing the lengths

of the edges along δm(i), as entries.
Now define the matrix Qi = diag(I,Qm(i)), where I is the identity matrix

corresponding to the nodes of ΩCR
ih and γCR

m(i)h, and Qm(i) is the projection

matrix corresponding to the nodes of γCR
m(j)h. Then it is easy to see that Ei =

QT
i ÊiQi. Finally, we have A =

∑N
i=1 PT

i QT
i ÊiQiPi. In the same way, we get

f =
∑N

i=1 PT
i QT

i f̂ i.
We follow the standard procedure, cf. Smith et al. [1996], for express-

ing the preconditioned system in matrix form. Since V i ⊂ Vh, for i ∈
{{γ}, 0, 1, · · · , N}, the interpolation operators Ii : V i → Vh are simply the
imbedding operators. Let RT

i be the matrix representation of Ii. In matrix
form, T i is then given by Ti = RT

i A−1
i RiA, where Ai = RiART

i . Now,

setting T =
∑

γ Tγ +
∑N

i=0 Ti, which is the matrix representation of T , the
preconditioned system (4) takes the following matrix form.

Tu∗ = g. (7)

In this, T = BA and g = Bf , where B =
∑

γ RT
γ A−1

γ Rγ +
∑N

i=0 RT
i A−1

i Ri

is the preconditioner. The restriction matrices Ri, i = 1, · · · , N , and Rγ are
all permutations of rectangular identity matrices such that Riu and Rγu
return vectors of coefficients of u, associated with the subdomain interior
edge midpoints ΩCR

ih and the mortar edge midpoints γCR
h , respectively. The

construction of R0 is different but simple. Let vi be the vector of nodal values
of Φi, then the columns of RT

0 consist of exactly these vectors, i.e., vi, i =
1, · · · , N . The matrices Pi and Ri, i = 1, · · · , N , and Rγ are never formed in
practice. Their use in this section has been merely for the representation.

Most iterative methods for solving (7) require the actions of A and

B on different vectors in each iteration. Once the matrices Qm(i) and Êi,
i = 1, · · · , N , and Ai, i ∈ {{γ}, 0, · · · , N}, are generated, the actions of A
and B on the vectors can be calculated by multiplying the vectors with the
expressions of A and B, respectively.

3 Numerical Examples

In this section, we present numerical results and discuss some of the properties
of the preconditioner presented in the previous section. The Preconditioned
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Table 1. Numerical results for varying jumps in the coefficients. d× d = 36 subdo-
mains, each having 2m2 = 72 or 2n2 = 50 elements, are used for the triangulation.

Coefficient Condition CG-iteration L2-norm of H1

h-seminorm of
jump ρ number κ2 counts error error

100 31.580 35 0.9516 · 10−3 0.4366 · 10−1

102 32.755 39 0.1099 · 10−2 0.4558 · 10−1

104 32.825 39 0.1104 · 10−2 0.4565 · 10−1

106 32.834 39 0.1104 · 10−2 0.4565 · 10−1

Conjugate Gradients (PCG) method has been used for solving the precon-
ditioned system (4), which stops as the relative norm of the residual drops
below the tolerance 10−6. In all our experiments, a uniform triangulation has
been used in each subdomain employing, in a checker board order, either 2m2

or 2n2 triangular elements, where m and n are chosen differently in order to
have nonmatching grids with different mesh sizes across subdomain interfaces.

Test I

The objective of this test is to study the effect of coefficient jumps on the
convergence. We consider a model problem for which the exact solution is
known. The problem is defined on a unit square initially defined as the union of
2×2 nonoverlapping square subregions with coefficients ρ1 = ρ, ρ2 = 1, ρ3 =
1, and ρ4 = ρ so that the jump in the coefficients across any subregion interface
is equal to ρ > 0. The function f is chosen such that the exact solution can
be given by u(x, y) = sin(πx) sin(πy). Note that ∇u · η vanishes along the
subregion interfaces.

Numerical results for varying jumps in the coefficients are presented in Ta-
ble 1, showing condition number estimate of the preconditioned system, and
the L2-norm and the broken H1-seminorm (H1

h) of the error in the numerical
solution. The condition number estimates, as shown in the table, remain un-
changed as the jump increases, illustrating that the preconditioner is robust
with respect to jumps in the coefficients. In Table 2, we present the weighted
L2-norm (L2

ρ) and the weighted broken H1-seminorm (H1
ρh) of the error for

varying subdomain size and mesh size, where the weights are the coefficients

Table 2. Numerical results for varying subdomain size and mesh size, and fixed
ρ = 10. H and h of the second row correspond to d = 4, m = 12 and n = 11.

Subdomain Mesh Condition CG-iteration L2

ρ-norm of H1

ρh-seminorm of
size size number κ2 counts error error

H 1

2
h 131.27 68 0.2541 · 10−3 0.2914 · 10−1

H h 65.08 47 0.1056 · 10−2 0.6057 · 10−1

1

2
H 1

2
h 66.20 53 0.3778 · 10−3 0.3293 · 10−1
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ρi. The condition number estimates of the table are in accordance with the
theory. The error in the L2

ρ-norm and H1
ρh-seminorm indicate convergence as

O(h2) and O(h), respectively.

Test II

In our second test, we consider the choice of mortar or nonmortar sides, and
the ratio between mesh sizes from neighboring subdomains, and discuss their
possible influence on the convergence. The problem is defined on a unit square,
with the force function f(x) = 2π2 sin(πx) sin(πx). We assume the domain to
be the union of d × d subregions (subdomains) with coefficients ρi = 1 or
ρi = ρ = 104 distributed in a checkerboard order.

Table 3. Condition number and CG-iteration counts (in parentheses) for two op-
posite choices of mortar sides and varying mesh size ratio. m = 12 for ρi = ρ, and
n = 11, 6 for ρi = 1 giving hρi=ρ/hρi=1 ≈ 1, 1

2
.

Subdomains Choice I Choice II
d × d m = 12, n = 11 m = 12, n = 6 m = 12, n = 11 m = 12, n = 6

6 × 6 68.63 (57) 68.63 (54) 68.62 (57) 63.28 (49)
9 × 9 68.79 (59) 68.95 (55) 68.72 (57) 63.40 (49)

Each column in Table 3 and Table 4, corresponds to a fixed pair {m,n}
representing a fixed H

h
ratio. Two opposite choices of mortar sides, called

‘Choice I’ and ‘Choice II’, have been chosen for the experiment. ‘Choice I’
corresponds to choosing the sides with larger coefficients as the mortar sides,
and ‘Choice II’ corresponds to the opposite choice. Under each choice of mortar
sides, two sets of results corresponding to different mesh size ratios between
neighboring subdomains are presented. The difference between the tables is as
follows: In Table 3, we use a finer mesh on subdomains with larger coefficient,
i.e. hρi=ρ < hρi=1, (this gives a better a priori error, cf. Bernardi and Verfürth
[2000]), and in Table 4, we do the opposite.

Table 4. Condition number estimate and iteration counts (in parentheses) for two
opposite choices of mortar sides and varying mesh size ratio. m = 11, 6 for ρi = ρ,
and n = 12 for ρi = 1 giving hρi=1/hρi=ρ ≈ 1, 1

2
.

Subdomains Choice II Choice I
d × d m = 11, n = 12 m = 6, n = 12 m = 11, n = 12 m = 6, n = 12

6 × 6 62.86 (55) 33.78 (45) 62.87 (57) 33.77 (43)
9 × 9 62.99 (51) 34.04 (42) 62.99 (51) 34.05 (40)
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As seen from the tables above, for a particular choice of mortar sides and
a fixed H

h
ratio, the condition number estimates remain bounded. In fact,

the choice of mortar sides show no or only a mild influence on the condition
number estimates. The place where this mild influence is seen in the table,
is for the mesh size ratio hρi=ρ/hρi=1 = 1

2 , cf. Table 3. It has however been
observed through experiments that the percentile difference between the esti-
mates reduces gradually with the mesh size. We close this section by making
a final remark on Table 4. As seen from the table, the condition number es-
timates for the ratio hρi=1/hρi=ρ = 1

2 are approximately half of those for
hρi=1/hρi=ρ = 1. This is due to the minimum eigenvalue. It is not difficult to
show, taking into account the special shapes of the basis functions {Φi} (due
to the checkerboard distribution of the coefficients) in the proof of Theorem
1, that the bound for the minimum eigenvalue approximately doubles as the
ratio is halved.
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