CHAPTER 1

Towards a Unified Theory of Domain Decompoasition
Algorithms for Elliptic Problems*

Maksymilian Dryjat
Olof B. Widlundt

Abstract. A distinction is often made between domain decomposition algorithms for elliptic partial
differential equations which use overlapping subregions and those which do not. Schwarz’s alternating
method, the oldest of them all, belongs to the first category. It has recently been discovered that many of
the algorithms that belong to the second category can also be regarded as generalizations of the classical
Schwarz method or an additive variant thereof. This new approach provides new tools for the analysis and
development of domain decomposition algorithms. In this paper, we introduce an abstract additive Schwarz
method and develop a simple framework for the analysis of its rate of convergence. We show that it is possible
and convenient to specify algorithms in terms of a set of subspaces and related orthogonal projections. This
family of algorithms is further expanded by replacing the linear systems of equations, which correspond to
the projections, by suitable preconditioners.

We illustrate the usefulness of this approach by considering additive Schwarz methods of a relatively
conventional type, iterative substructuring methods, domain decomposition methods defined on the curves or
surfaces which subdivide the region, and iterative refinement methods. Throughout we work in a framework
of conforming finite elements and self-adjoint problems, but we also mention some new results for more
general elliptic finite element problems.

1. Introduction. In this paper, we survey our recent research on domain decompo-
sition and related algorithms for elliptic finite element problems. One of our aims is to
develop a set of common and powerful tools for the development and analysis of a great va-
riety of methods. We have recently discovered that many iterative substructuring methods
can be viewed as so-called additive Schwarz methods and that the analysis of these methods
can be simplified; cf. Dryja and Widlund [28]. Here, we discuss and extend this result and
provide further evidence that many domain decomposition methods fit into a framework
provided by the Schwarz additive methods.

We note that the bounds given for the condition number of the iteration operators
for many domain decomposition algorithms considered in this and other papers are either
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uniform in the number of subdomains and subregions or grow only polynomially in the
logarithm of the number of degrees of freedom associated with an individual subregion.
The algorithms are therefore, in a certain sense, almost optimal.

The paper is organized as follows. After introducing two elliptic model problems and
certain finite element methods in Section 2, we begin Section 3 by reviewing Schwarz’s
alternating algorithm in its classical setting. Following Sobolev [50] and P. L. Lions [34], we
indicate how this algorithm can be expressed in a variational form. Since this formulation
is very convenient for the analysis of finite element problems, we work in this Hilbert space
setting throughout the paper.

In Section 3, we also introduce the additive variant of Schwarz’s method; cf Dryja [24],
Dryja and Widlund [26], [28], Matsokin and Nepomnyaschikh [41] and Nepomnyaschikh
[44]. We present it in a general form and show how algorithms of this kind can be defined
in terms of a set of subspaces and projections. An additive Schwarz method can be viewed
as an iterative method for the solution of an auxiliary linear problem that has the same
solution as the original finite element problem. We also introduce tools, which make it
possible to estimate the condition number x(P) of the operator P of this new problem.

It is often straightforward to obtain an upper bound for the spectrum of P. A lower
bound of the eigenvalues is obtained in terms of an upper bound of a Rayleigh quotient which
measures the extent by which the subspaces are linearly independent.. (If the subspaces are
orthogonal, the Schwarz method converges in one step.) We show that preconditioners can
be used as approximate solvers for the linear systems, which are related to the individual
projections, and that it is easy to obtain bounds for the condition number of the resulting
algorithm in terms of the spectrum of the basic operator and any bounds for the individual
preconditioned problems that might be available.

Section 3, thus, provides us with a basic framework. In the rest of the paper, we turn
to a series of applications.

In Section 4, we summarize our work on additive Schwarz methods of a type directly

related to the classical case. For previous discussions of this algorithm, see Dryja [24], Dryja -

and Widlund [26], [28], with the most details given in [28]. We note that this method has
been extended successfully to certain stationary and parabolic convection-diffusion problems
in the dissertation of Xiao-Chuan Cai [20],[19], and to mixed finite element methods of the
Raviart-Thomas type, cf. [46], in the dissertation of Tarek Mathew [40]. In this paper, we
are unable to provide details about their work since it would require the introduction of many
notations, etc. We also discuss a result on multilevel algorithms obtained in collaboration
with Xuejun Zhang, a Courant Institute graduate student.

In Section 5, we discuss a well-known family of domain decomposition methods known
as iterative substructuring methods; cf. e.g. Agoshkov [1], Bjgrstad and Hvidsten [6],
Bjgrstad and Widlund [9], Bramble, Pasciak and Schatz [15], [14], [16], [17], [18], Dryja [23],
Dryja, Proskurowski and Widlund [25], Dryja and Widlund [28], Lebedev [32], Marchuk,
Kuznetsov and Matsokin [39], Quarteroni [45], Smith and Widlund [49] and Widlund [54].
These algorithms are based on a non-overlapping subdivision {§; } of the region Q. ( Bor-
rowing a term from structural engineering, the subregions are often called substructures.)
Surprisingly enough, as shown already in Dryja and Widlund [28], many of these methods
also fit well in the Schwarz framework. In this paper, we further extend our analysis and
include a more detailed discussion of the three-dimensional case. In this study, it is fruitful
to take a substructure by substructure view, estimating the contribution to the strain en-
ergy from an individual substructure in terms of the corresponding local contribution to the
preconditioner. This approach is similar to that of Jan Mandel, and his coworkers Babugka,

Craig and Pitkdranta, cf. (2], [37], [36], [35], who have begun a systematic study of domain
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decomposition methods for p—version finite element methods; cf. also Bramble, Pasciak and
Schatz [18] for a fundamental study of h~version methods. This approach highlights how
preconditioners can be constructed from parts which are strictly local with respect to an
individual substructure, parts which involve interaction between pairs of neighboring sub-
structures and a coarse global model with relatively few degrees of freedom. Many of the
results which were obtained for two subregions in the early development of the theory can
now be recycled to yield useful results for the much more interesting case of many substruc-
tures. We note that some of our results have been extended to a class of two-dimensional
stationary and parabolic convection-diffusion problems by Xiao-Chuan Cai [20], [19).

In Section 6, we consider Schwarz methods on the lower dimensional manifolds formed
by the curves or surfaces, which partition the domain into substructures. These algorithms
can also be viewed as Schwarz methods for problems of potential theory. This idea has
previously been discussed by Nepomnyaschikh [44] for the case of a few substructures and
without a full development of the theory. We include a discussion and estimates of the rate
of convergence of a method developed by Bourgat, Glowinski, Le Tallec and Vidrascu [11]
and also discuss some recent work by Barry Smith, a Courant Institute graduate student;
cf. [48].

In Section 7, we survey our recent work on iterative refinement methods. These are
methods for the solution of the linear systems of algebraic equations, which arise from
elliptic finite element problems defined on composite meshes. The study of these methods
was pioneered by McCormick and his coworkers Hart and Thomas [31], [42], [43]. An
analysis of two-level algorithms is given in Bramble, Ewing, Pasciak and Schatz [13] and
in Mandel and McCormick [38]. Proofs of the results discussed in this section are given in
Dryja and Widlund [27] and Widlund [56]. The main difficulties in this work are related
to an effort of obtaining bounds for the rate of convergence which are independent of the
number of refinement levels as well as the number of degrees of freedom. We note that in
the dissertation of Tarek Mathew [40], certain results are obtained on iterative refinement
methods for Raviart-Thomas finite elements.

In this paper, we primarily consider algorithms that are of additive Schwarz type.
We note that a variety of multiplicative algorithms also can be defined systematically. At
present, the general multiplicative case appears to be less well understood than the additive,
except in the case of two subspaces. For the two subspace case, Bjorstad and Mandel [7]
have recently extended their earlier work, cf. [5] and [38], obtaining a detailed comparison
of the spectra of the additive and multiplicative algorithms. We note that there are cases
for which a satisfactory theory already exists in the case of more than two subspaces. Thus
the algorithm of Bank, Dupont and Yserentant [3] is a multiplicative variant of the original,
additive algorithm of Yserentant’s [58]; it is just as well understood. Similarly, the basic
theory for the multilevel iterative refinement methods has advanced to the same level in
the two cases; cf. Widlund [56] and Dryja and Widlund [27]. We note, finally, that in the
recent thesis of Mathew important progress is reported for the general multiplicative case;
cf. Mathew [40] and a remark in Section 3.

?

2. Model Problems and Finite Elements. In this section, we introduce finite el-
ement approximations of a standard Poisson equation and a special second order elliptic
problem with variable coefficients.

In the model problems, the continuous and discrete problems are of the form

a(u,v) = f(v), Vve V,
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and
(1) a(up,vp) = f(vp), Yo, € VP,

respectively. We consider homogeneous Dirichlet problems on bounded Lipschitz regions in
two or three dimensions and continuous, piecewise linear finite elements. For the Poisson
problem, the bilinear form is defined by

(2) a(u,v) = /Q Vu-Vodz.

This form defines a semi-norm lul gy = (a(u, u))Y/? in the Sobolev space H}(Q). It is a
norm of V' = H}(). Here H}(Q) is the subspace of H1(Q) functions with zero trace; all
elements of V and its subspace V" vanish on 99, the boundary of . We note that if § ¢ Q,
then any element of H3({)) can be extended by zero to an element in H}(Q), and that the
extension operator is continuous. We therefore regard H3({) as a subspace of HE(0).

Almost all our results can be extended immediately to general conforming finite element
approximations of any self-adjoint elliptic problem, which can be formulated as a minimiza-
tion problem, and to more general boundary conditions. However, some of the bounds can
be very poor if there is a great variation in the values of the coefficients. In this paper, we
consider only one generalization,

| 3) a(u,v) = /ﬂp(m)Vu -Vodz,

where p(z) > 0 can be discontinuous, but varies slowly in each subregion. There is ex-
perimental evidence that some domain decomposition methods of Neuman-Dirichlet type
perform quite poorly for certain problems of the form (3); cf. Greenbaum, Li and Chao,
[30]. For other algorithms a satisfactory theory already exists with bounds which only de-
pend on the local variation of p(2); see Section 5. For still others, this issue is still to be
fully addressed.

The triangulation of Q is introduced in the following way. The region is first divided
into non-overlapping substructures ;, i = 1,.--, N. We assume that the substructures are
chosen so that the discontinuities of p(z) occur only at substructure boundaries. To simplify
the description, we confine most of our study to triangular (simplicial) substructures. In
such a case, the original region must, of course, be a polygon (polyhedron). We note that
the rate of convergence of the iterative methods, which are considered in this paper, depend
only very mildly on the size of the substructures. The size of the subregions can therefore
be selected primarily to minimize the cost of a single iteration on a particular computer
system.

All the substructures §; are further divided into elements. The common assumption in
finite element theory that all elements are shape regular is adopted and the same assumption
is made concerning the substructures. On the element level this means that there is a
uniform bound on hg /rx , which is independent of the number of degrees of freedom. Here
hx is the diameter of the element K and rx the diameter of the largest inscribed sphere in
K.

Since a(up,vy) = a(u,vs), Y vy € V7, the finite element solution is the projection of
the exact solution onto the finite element space with respect to the inner product defined by
the bilinear form. The problems defined on the subregions, from which preconditioners for
the entire problem can be assembled, can often similarly be viewed in terms of orthogonal
projections onto subspaces directly associated with the subregion in question.
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We also need to use matrix representations of the finite element problems since many
algorithmic details can best be described using matrix notations. When doing this, it is con-
venient to consider domain decomposition in light of structural engineering computational
practices. The elements of the stiffness matrix K are given by

kl,m = a(‘Pl;‘Pm) ’

where ¢; and ¢, are standard finite element basis functions. Since an integral over  can be
written as a sum of integrals over the substructures, the stiffness matrix can be assembled
from the stiffness matrices X (9, which have the elements
kD = aq,(¢1,0m) -
Here the relevant | and m correspond to degrees of freedom associated with the closure
of the substructure ©;. The bilinear form agq,(up,vs) represents the contribution to the
integral ag(up, vs) from the substructure ;.
This so-called subassembly process can be summarized in the formula

(4) 2Ky =3 O KO0,

where z() is the subvector of parameter values associated with {;.

Remark. In practice, the subassembly process is often used recursively, creating larger
and larger so-called super elements, This process can be interleaved with the elimination of
all the variables which, at the level in question, are coupled only to other variables of the
same super element; cf. e.g. [4]. Except for a brief discussion in Section 4, we consider only
three levels in this paper: the elements with a characteristic diameter h, the substructures
with a diameter on the order of H and the entire region §2, which, without loss of generality,
is assumed to have unit diameter. '

If we divide the subvectors () associated with the i-th substructure into two, :vgz) and
xg), corresponding to the variables which are interior to the substructure and those which
are shared with other substructures, then the matrix K can be written as

K9

wly xlf )
Since the interior variables are associated with only one of the substructures, they can be
eliminated locally and in parallel. The reduced matrix is a so-called Schur complement and
has the form

; (i DT )~ G
5 = 56, kO KO K.

It is now easy to show that if the corresponding Schur complement of the global stiffness
matrix K is denoted by S, then,

)T (). (¢
(5) e5Syp =S o) 5Oy

The elimination of the interior variables from the substructures can be viewed in terms
of orthogonal projections, with respect to the bilinear form, of the solution uy, of equation
(1) onto the subspaces Hi(2;)NV?, i = 1,---, N. It is easy to show that these subspaces
are orthogonal, in the sense of the bilinear form (4), to the so-called piecewise discrete
harmonic functions given by

KWW 4 k020 <0, i
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If the local problems are solved exactly, what remains is to find a sufficiently accurate
approximation of the part of the solution which is piecewise discrete harmonic. This can
be done by approximately solving the reduced linear system with the matrix §. A specific
iterative substructuring method is obtained by selecting a preconditioner for the matrix S.
Once an approximation of the solution has been found on the boundaries of the substruc-
tures, the solution can be found everywhere by separately solving local Dirichlet problems
on each substructure.

An important family of domain decomposition algorithms can be derived by replacing
each contribution §) to the Schur complement by a different matrix 5. A preconditioner
S of § is then created by assembling the local contributions in the same way as in equation
(5). When choosing 3, it is important to create a linear system, which is cheaper to solve
and, at the same time, to ensure that x(5~1S) is small. A natural idea is to eliminate
the coupling between the groups of variables associated with different edges (faces) of the
individual substructures. Further details are given in Dryja and Widlund [28], where this
process is interpreted as a splitting in the sense of Varga [51]. In the analysis, a simple and
powerful idea is based on the fact that if

(7) aaf) §028) <o) 50 < Ciald 50D vald,
then, ‘

(8) ctlSep <2bS2p < Cablap , Vog,

where

(9) ¢ = min;e; and € = max; C; .

When this technique can be used, it is as easy to derive satisfactory bounds for equations
(3) as for (2); cf. Section 5.

3. Multiplicative and Additive Schwarz Methods. In this section, we first review
Schwarz’s classical alternating method [47], its variational formulation, cf. P. L. Lions [34],
and an additive variant of the algorithm, c¢f. Dryja [24], Dryja and Widlund [26] and
Matsokin and Nepomnyaschikh [41]. We then discuss a general approach to the analysis of
the rate of convergence of the additive algorithms. '

We begin by briefly discussing the classical formulation of Schwarz’s method in the case
of the continuous Poisson equation. There are two fractional steps corresponding to two
overlapping subregions, (2} and Q, the union of which is the region . Let an initial guess
u® € V be given. The iterate u™! is determined from u™ by sequentially updating the
approximate solution in the two subregions:

Ayt = f in Q,
/2 .
urti/2 = oy on QY
and
—Auntt = f in Qf,
urtl = yntl/2 on 0%, .

We could just as well have written down the finite element version of the algorithm.
From now on, we only consider that case. It is easy and convenient to describe this method
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in terms of two projections P, ¢ = 1,2, onto V}* = HA}(QH)NV"*; cf. Lions [34]. The
projections are defined by

(10) a( P, ¢n) = a(vn, d1), Yoi € V.

It is also easy to show that the error propagation operator of this multiplicative Schwarz
method is

(I = B)(I - Py).
This algorithm can therefore be viewed as a simple iterative method for solving
(11) V (Py+ Py — PyPr)up = g,

with an appropriate right-hand side gy .
This algorithm can be generalized immediately to any number of subspaces. Let

Vh= Vi Vot ...+ Vy.

The subspaces V; can be chosen quite arbitrarily. The projections are defined as in equation
(10). ,

The operator of (11) is a polynomial of degree two and, thus, the method is not ideal for
parallel computing, since two sequential steps are involved. If more than two subspaces are
used, this effect is further pronounced even if the degree of the polynomial representing the
multiplicative algorithm often is lower than maximal. This is so because a product of two
projections associated with subspaces that do not intersect nontrivially vanishes; cf. further
Widlund [53], [55]. This can best be described in terms of the coloring of an undirected
graph in which the nodes represent the subspaces and the edges nontrivial intersections of
pairs of subspaces. The problems associated with all subspaces of the same color can be
solved in parallel since those subspaces are mutually orthogonal. For the purpose of theory,
we can then regard all subspaces of the same color as one subspace; this can greatly improve
the upper bound for the eigenvalues of the operator P, which we are about to introduce.

The basic idea behind the additive form of the algorithm is to work with the simplest
possible polynomial in the projections. The equation

(12) Pup = (P + Py+ oo + Py)uy, = g;l ,

is solved by an iterative method. (In fact, we could just as well work with Ef\;1 o B,
where @; > 0 are suitably chosen constants.) Since we can show that the operator P is
symmetric and positive definite, with respect to the bilinear form, the method of choice is
the conjugate gradient method. Equation (12) must have the same solution as equation (1),
i.e. the correct right-hand side must be found. Since a(up,én) = f(én), by equation (1),
the right-hand side g} can be constructed by solving equation (10) for all values of 7 and
adding the results. It is similarly possible to apply the operator P of equation (12) to any
element of V* by applying each projection P; to the element and adding the results. Most
of the work, in particular that which involves the individual projections, can be carried out
in parallel. We note that an additive Schwarz algorithm is fully specified by its subspaces.
In this survey paper, we will sometimes just specify the subspaces without much discussion
of how the corresponding algorithm can be implemented. }

It is well known that the number of steps required to decrease an appropriate norm of
the error of a conjugate gradient iteration by a fixed factor is proportional to V& , where &
is the condition number of the relevant operator; see e.g. Golub and Van Loan [29] . We
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therefore need to establish that the operator P of equation (12) is not only invertible but
also that satisfactory upper and lower bounds on its eigenvalues can be obtained.

An upper bound for the eigenvalues of P is given by N since P is the sum of projections.
By combining all subspaces of the same color into one, as indicated above, this bound can be
improved by replacing N by the number of colors of any coloring of that graph. For several
algorithms this results in an upper bound, which is independent of the number of subspaces.
In other instances, a useful technique is provided by strengthened Cauchy inequalities; cf.
Mandel and McCormick [38], Widlund [56] and Yserentant [58].

A lower bound can often be obtained conveniently by using a lemma, inspired by Lions
[34]; the simple proof is also given in Widlund [56).

LemMaA 1. Let up = Zfil Upi, where up; € V;, be a representation of an element
of VP = Vi + ...+ V. If the representation can be chosen so that SN alun g, upg) <
Calun, un),Yup € VE, then Amin(P) > C52.

Remark. If we expand individual subspaces, there is a larger choice in selecting uy ; € V;.
The best bound for Cy can then only improve. If we can expand the subspaces without
worsening the upper bound, which is often possible, our estimate of k(P) improves. On the
other hand, an enlarged subspace also means that the subproblem has more variables and
that it is worse conditioned. For the special case of the classical Schwarz method on two
regions, this tradeoff is well understood; for a discussion of precise estimates of the rate of
convergence; see Bjgrstad and Widlund [10]. '

Remark. In his recent dissertation, Tarek Mathew [40] has given a bound on the rate of
convergence of the multiplicative algorithm in terms of Cy and the number of colors of the
graph. While his bound can probably be improved considerably, it nevertheless shows that
if these parameters are bounded independently of the mesh parameters, then the spectral
radius of the error propagation operator is uniformly bounded by a constant that is less
than 1.

One of the attractive features of the framework introduced in this section is the ease
by which variants of the basic algorithm, obtained by replacing the local linear systems
by preconditioners, can be analyzed. Let us, for example, consider the additive Schwarz
method for a finite element approximation of the problem discussed in the beginning of this
section. We can write the projection P in matrix terms. After a suitable permutation of
the variables, it corresponds to

(13) y= Pz = ( ) g)m.

Here K(;) represents the stiffness matrix of the Dirichlet problem on Qf. It is easy to see
that the matrix of (13) is symmetric in the K -inner product that corresponds to the bilinear
form. If K(’i} is replaced by I(a;, etc., then it is easy to show by using a Rayleigh quotients

argument that the eigenvalues of the resulting operator P satisfy

(14) Amin(P) min (Amn(]((z)Ka;)) < /\[m‘n(jj),
and
(15) /\max(p) < /\max(P) maX(Amax(I((z)K(;)l)) .

An estimate of x(P) follows immediately,
. max; Amax (K K
(16) (p) < X Ame F0 M)
min; )\min(]((i)jf(;) )

Kk(P).
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4. Additive Schwarz Methods on Overlapping Subregions. We now describe
the additive Schwarz method introduced in Dryja and Widlund [26], [28]; cf. also Dryja
[24]. In those papers only Poisson’s equation was considered. In the original technical
report, good results were given only for problems in two dimensions, but we now need no
such restrictions. The most satisfactory proof, so far, is given in [28]. Here, we also discuss
problems of the form (3).

We start with the same triangular (simplicial) non-overlapping substructures 2; that
have been considered before. We extend each substructure to a larger region /We assume
that the overlap is generous, assuming that the distance between the boundaries 99; and
98, is bounded from below by a fixed fraction of H;, the diameter of ;. We also assume
that 02, does not cut through any element. We make the same construction for the
substructures that are next to the boundary except that we cut off the part of ) that is
outside of Q.

Remark. The analysis of Schwarz methods is more complicated when the overlap is less
generous; cf. a discussion in Lions [34]. Such a situation occurs if the region is L-shaped
and partitioned into two overlapping rectangles. A similar situation is discussed in Dryja
and Widlund [28] in an analysis of iterative substructuring methods; cf. also Section 5.

Our finite element space is represented as the sum of N1 subspaces

VE=Vi4 v+ VR

The first subspace V§ is equal to V', the space of continuous, piecewise linear functions
on the coarse mesh defined by the substructures §; . The other subspaces are related to
the subdomains in the same manner as in a traditional Schwarz algorithm, i.e. V! =
HQHNVE. .

Remark., There are few differences between the problem related to the first subspace
and the others. The right hand side of the particular linear system is generated as weighted
averages with weights determined by the coarse mesh basis functions. We also need to
interpolate the solutions in V' when combining them with the contributions from the other
subspaces. The coarse, global approximation of the elliptic equation is otherwise quite
similar to the local problems.

The global coarse problem provides a mechanism for the global transportation of infor-
mation. As shown in Widlund [54], the rate of convergence of any domain decomposition
method, for which the interaction is only through next neighboring subdomains, has a
condition number which grows at least as fast as 1/H?2.

The following result is established in Dryja and Widlund [28].

THEOREM 1. The operator P of the additive algorithm defined by the spaces VI and
Vi, applied to equation (2), satisfies the estimate x(P) < const.

In the proof, a quasi-interpolant, [ , which is a bounded operator in H(Q) and satifies

[[up, ~ jHUh”Lz(Q) < COTLSt.]’IluhIHl(Q),

is used. By examining the proof, it is easy to see that if uniform bounds of the same form
hold for the weighted spaces L () and H{ (), defined by

/Qp(x)lu|2da: and /Qp(ac)[Vu|2da:,

respectively, then the optimality also holds for the variable coefficient case (3). This is a
difficult problem, still not fully understood; cf. Xu [57] for partial results. We note that
for two-dimensional problems the proof given in Dryja and Widlund [26] works just as well
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for equation (3). The bound of the condition number given in that paper is proportional to
(1 + log(H/h).

We have also considered the use of more than two levels of partitioning of the region
and established that for equation (2) x(P) does not grow faster than quadratically in the
number of levels. We do not know if this result can be improved. For convex regions,
we have shown that the growth is linear in the number of levels. This result cannot be
improved. Our work has been carried out jointly with Xuejun Zhang, who has also made
a large number of numerical experiments. Rapid convergence can be obtained when using
such methods solving only very small linear systems of equations.

As we have already pointed out in the introduction, Xiao-Chuan Cai [20], [19] and Tarek
Matew [40] have extended our analysis to certain nonsymmetric and indefinite problems.

5. Iterative Substructuring Methods as Schwarz Methods. In this section, we
show how iterative substructuring methods can be derived by using the framework of sub-
spaces and projections developed in Section 3. We first consider problems in the plane and
give an estimate of the condition number of the operator P that corresponds to a specific
choice of subspaces. For this basic algorithm, the proof of the estimate does not rely on
the extension theorems, which have played an important role in previous estimates for it-
erative substructuring methods; cf. Widlund [52]. We then indicate how results for the
special case of two substructures, and an argument about preconditioners for the subspace
problems, can be used to derive different algorithms, including one due to Bramble, Pasciak
and Schatz [14]. We also consider a second choice of subspaces and show that the resulting
algorithm extends to a fast method for the three-dimensional case. The resulting algorithm
is similar but not identical to one of the two algorithms considered in Bramble, Pasciak and
Schatz [18]; cf. also Dryja [23] for early work on the three-dimensional case. The discussion
in this section extends that in Dryja and Widlund [28] and relies in part on ideas from
Mandel [36].

We assume that the region is divided into substructures and elements as in Section 2.
We first consider the two-dimensional case and introduce an additive Schwarz method. We
use the coarse space V¥ introduced in Section 4 and let the subregions ;; = Q; UT';; UQ;
play the same role as Q) in Section 4. Here ; and Q; are adjacent substructures with a
common edge I';;. The local subspaces Vzé‘ are thus defined as V;’J‘ = HH Q)N VE

Compared with the subspaces used in the previous section, we use less overlap in the
sense that only the elements of VH can differ from zero at the vertices of the substructures.
This is reflected in a poorer bound on the condition number when we work with Lemma 1.

THEOREM 2. In the two-dimensional case, the operator P of the additive algorithm
defined by the spaces VT and Vzg satisfies the estimate k(P) < const.(1+ log(H/h))? for
equations (2) and (8). The constant is independent of h, H and the discontinuities of the
coefficient p(x).

For this algorithm, Amax(P) £ 4 ; of. Dryja and Widlund [28]. It is easy to see that no
more than four colors are needed to color the graph; each interior substructure is covered
exactly three times by the subspaces associated with its three edges and, in addition, we
have the global space V¥ which intersects all other subspaces. In our proof of the lower
bound of the spectrum of P, given fully in [28], we use Lemma 1 and the following lemma,
which also plays an important role in the more traditional theory of iterative substructuring
algorithms.

LemMA 2. Let o be any conver combination of values of up(z),z € Q. Then

leh = el ey < const. (1+log(H /1)) unlfp g, -
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Variations of this result date back at least to 1966 and proofs are given in a number
of papers; see e.g. Bramble [12], Bramble, Pasciak and Schatz [14] or Yserentant [58].

Since all the elements of Vl’; vanish at the vertices of the substructures, we must choose
the interpolant Iyuy; as the element in V¥ when, as required by Lemma 1, we define the
representation of uy . It is easy to show that ’IHuhlip(Qi) can be estimated from above by

(17) > (un(or) — up(21))?,

kleV;

where the V; is the set of vertices of the substructure Q; . It then follows from Lemma 2
that

(18) |Iyuh|§]1(9i) < const.(l + 10g(]1/h))|uh|i11(gi) .

For a bound on the other terms in the decomposition, required when using Lemma 1, see
Dryja and Widlund [28].

Using the method with local preconditioners developed in the end of Section 3, a number
of algorithms can be derived from the basic method that we have just introduced. All that
is needed is to replace the Dirichlet problem on @;; by a preconditioner with a symmetric,
positive definite coefficient matrix. A proof of the main result of Bramble, Pasciak and
Schatz [14] can be obtained in this way by using (14), (15), Theorem 2 and a bound for the
condition number of the two subregion problem defined on ;. Such local bounds are given
e.g. in Bjgrstad and Widlund [8], Bramble, Pasciak and Schatz [15] and Dryja [21], [22].

In our previous paper, only equation (2) was considered. By using the formulas (7), (8),
and (9), the proof can be extended immediately to equation (3); the whole machinery can
also be used locally. In this variant of the proof, only four subspaces play a role, namely,
the three-dimensional space of linear functions on €;, and the restriction to Q; of the spaces
VZ? which correspond to the three edges of that substructure.

In preparation for the three-dimensional case, we develop an alternative basic algo-
rithm for the two-dimensional problems. This algorithm is defined in terms of subspaces
related to individual substructures. For any substructure £2;, we keep the three local sub-
spaces obtained as above from the spaces Vz}; For an interior substructure, we replace the
three-dimensional space of linear functions, used previously, by the three-dimensional space
spanned by

(19) v =080 S i+ B, ke
leV;

Here ¢, is the standard nodal basis function associated with an element of V;. We note that,
just as tlie regular nodal basis functions, ¢,(;)(ml) = bk, k,l € V;. The positive constants
ﬁ,(:) are chosen below, so that

> =
keV;

Then,
o) =L

keV;

This subspace, thus, also contains the constants, i.e. the null space of the elliptic operator
restricted to £; with a Neumann boundary condition. (When these methods are extended to
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elasticity problems, we similarly have to include the whole null space of that operator in the
space that accounts for the global transportation of information.) For a substructure that
intersects the boundary, we simply use the space spanned by the standard basis functions ¢y,
corresponding to the vertices of the substructures where a Dirichlet condition is not imposed.
For the correct definition of boundary substructures for the case of three dimensions; see
below. '

A straightforward computation shows that, for an interior substructure, the quadratic
form associated with this subspace is given by

(20) S kD un(ar) — al))2.
key;

Here, ﬁg_f) is the weighted average of up(z;), k € V;, with the weights ,8,(;). It is easy to see
that this quadratic form can be bounded from above and below by the form (17) given in
the discussion of the previous algorithm.

Inspired by Mandel [36], we now introduce the quadratic form

(21) T y) =5 5" k8 (un(r) — y)2 - 25" 5 up(ap)pl).

i keV; 1 k€EV;

For substructures which have at least one vertex on 90, we set y() = 0. In three dimensions,
we adopt the same rule for all substructures which have at least an edge on 912, but treat
those which only touch the boundary at individual points as if they were interior.

The vector b(®) corresponds to the part of the load vector which is associated with ;.
Its components are computed by evaluating an appropriate functional at Qﬁ,(j).

It is easy to show that if

Bl = k) -
ZléVikl(;)
then,
(22) oy = agmin 3k (un(er) - 07
Y kev

Therefore, the solution of the linear system corresponding to these subspaces can be ob-
tained by minimizing .7 with respect to uy and y. By setting the gradient of J equal to zero,
we obtain a linear system of equations, which naturally can be written in a two-by-two block
form. The diagonal blocks are diagonal with elements Yo k,(j]g and 3 4ey, /ﬂl(jk), respectively.
The off-diagonal blocks are sparse and are also given by /c,(:k)‘

Since the diagonal blocks are diagonal, it is easy to eliminate all the variables wp(2g).
This elimination step results in a sparse system, similar to that of a finite difference problem
on a coarse mesh that is dual to the one used to define the space VH . 1t is often feasible
and economical to solve this system by a direct method. Once the values of ﬂgf) are known,
it is easy to determine the values of uy(zy), k € V;, and the corresponding element of the
subspace. The contributions of the other subspaces can now be computed, while observing
that we must make the sum of all the contributions continuous across the interfaces between
the substructures.

Remark. The method just outlined draws heavily on the work of Bramble, Pasciak
and Schatz [16]. However, the current algorithm uses a different average and basis. Our
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theory does not require that the linear system, which determines the averages, to have a
M ~matrix. Our method can therefore be extended to the elliptic systems of elasticity; cf.
also Mandel {36].

It can be shown, straightforwardly, that there is no longer a need to insist on triangular
substructures. In the general case, we can simply redefine V; as the set of nodal points
which belong to the boundaries of at least three substructures.

Lemma 2 holds only in two dimensions; it resembles a Sobolev inequality which is far
from valid in three dimensions. However, for finite element functions, we can find a useful
bound of the Ly — norm over an interval in terms of the strain energy. Let W; denote
the wire basket of the substructure §;. This is the union of the edges of the tetrahedral
substructure; more generally, it is defined as the set of nodal points of §);, which belong to
the boundaries of at least three substructures. The following lemma is essentially a corollary
of Lemma 2.

LEMMA 3. Let a be any convez combination of values of up(z),z € W;. Then

hlup ~ a”l%(w,ﬂ) < const. (1 -+ log(]f/h))]uhﬁ]l(gi) .

An algorithm for the three-dimensional case can now be defined in terms of the sub-
spaces Vg, which are defined just as in the two-dimensional case, and a special subspace.
This subspace is given in terms of a basis defined as in (19), where we replace the set V;
by W;. The study of the linear algebra problem associated with this basis proceeds very
much as in the two-dimensional case. We only note that when we compute the expression
corresponding to (20), we also get off-diagonal terms corresponding to nodes on W;, which
are next neighbors. It is however easy to show that these contributions can be disregarded.
The rest of the analysis and the development now follows just as in the two-dimensional
case. We note that the number of elements in W; grows linearly with H/h. The nontrivial
part of the sparse linear system of the special subspace has a dimension, which is equal to
the number of interior substructures.

We have obtained the following result.

THEOREM 3. The operator P of the additive algorithm defined by the spaces V} and
that defined by the basis functions given by (19), or the corresponding formula for the three-
dimensional case, satisfies the estimate k(P) < const.(1+1log(H/h))? for equations (2) and
(8). The constant is independent of h, H and the discontinuities of the coefficient p(z).

6. Schwarz Methods for Problems on the Interfaces. We have already seen
that the original linear systems of equations can be reduced to smaller systems, where the
remaining variables are associated with the boundaries 9€Q; of the substructures. We have
also shown that this reduced set of variables are associated with the piecewise discrete
harmonic functions. This is quite similar to potential theory for elliptic problems where
there is also a reduction in dimension.

Here, we only consider the first model case (2), since at this time, we do not know if
bounds independent of the variations of the coefficients of equation (3) can be obtained for
the methods that we are going to introduce. We denote by V! (T') the space of piecewise
discrete harmonic functions defined by the values of the finite element functions on the set

(23) T = o0\ o9

The space of traces H/%(T) are the restrictions of H(Q) to I'. As is well known, the norm
of this space can be defined by '

(24) luldpsrery = Z %2000,
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where
(25) hrony = [ (uCe(6)) = u(eO)F/le(s) - s(0)ydsdt.

Here, d = 2,3, for problems with Q ¢ R®. ~ ‘
We consider several different additive Schwarz methods. The first is defined by the
partitioning

(26) Vh})r;,rm(r) = Z Vlfm‘m,i’

harm (L) With zero values on I' outside 99;. By using
the same technique as in the previous three sections, it is easy to see that the operator P,
which correspond to this set of subspaces, is bounded uniformly from above. We can use
the techniques of Widlund [54] and Dryja [23] for the two- and three-dimensional cases,
respectively and Lemma 1, to obtain the bound C2 < const.(1 + log(H/h))? Tt is not
possible to obtain a uniform bound, since then the spaces H(%? and H/2 would have to be
the same; cf. Lions and Magenes [33].

The computations associated with the space Vh’zm,i involve piecewise discrete harmonic
functions, which differ from zero in all the substructures which are next neighbors of ;.
The coefficient matrix of the linear system, which is solved when computing the projection
of VA onto Vh":”myi is the principal minor of § associated with the nodes on 0Q;. It

where V,f‘mmﬂ. is the subspace of V}

also involves contributions from the matrices S of the neighbors of ;. It is natural to
replace this matrix by 5(), since the use of this preconditioner only involves a problem on
one substructure.

What we have just given is an alternative derivation of an algorithm introduced by
Bourgat, Glowinski, Le Tallec and Vidrascu [11]. We note that there is a minor technical
issue related to the fact that §O) is singular for interior substructures, but that it is easy
to solve that problem. Using the formalism developed in Section 2, we can write down the
following formula for the preconditioner which corresponds to this algorithm,

A AL - ;
(27) L5 Yyp = Z:xg) 50) 1yg).

Using Lemma 3.2 in Widlund [54], the corresponding estimates developed for the three-
dimensional case in Dryja [23] and the estimate (16), we can conclude the proof of the
following result.

THEOREM 4. The operator P of the additive algorithm defined by the spaces Viarm,i,
applied to equation (2), and the local preconditioner defined by oM satisfies the estimate
&(P) < const.(1 +log(H/h))L. The constant in the estimate is independent of h but not of
H.

By using an elementary argument given in Widlund [54], it is easy to see that k(P)
must grow at least as fast as 1/H?, since in each iteration, information is exchanged only
with neighboring substructures. The performance of the algorithm, for the case of many
substructures, can be improved by introducing the same spaces of modest dimension, which
provide some global transportation of information in the methods considered in Section 5.
After this modification, the constant in the theorem can be shown to be independent of
as well.

We note that in each iteration of this algorithm, both a Neumann and a Dirichlet
problem have to be solved on each substructure. This results in twice as much work per
iteration as for many other domain decomposition methods.
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If there is a red-black ordering of the substructures, there is another way of analyzing
this algorithm. We first consider the two subdomain case. We note that the inverse of
the preconditioner corresponding to the Neumann-Dirichlet algorithm is SO or @7
depending on the roles assigned to the substructures; ¢f. Bjgrstad and Widlund [8]. We
can therefore view the preconditioner introduced in this section as an average of Neumann-
Dirichlet operators. In this simple case, the condition number remains uniformly bounded
since there are no so-called cross points. Similarly, we can use a result by Dryja [23] to prove
that the algorithm for three dimensions, which incorporates the global subspace introduced
in the previous section, has a condition number which is bounded by const.(1+log(H/h))>.
This again follows from the observation that this new preconditioner can be viewed as an
average of two instances of the operator which arises in the study of the version of the
Neumann-Dirichlet algorithm considered in Dryja [23].

We conclude this section by a brief discussion of some recent work by Barry Smith, a
Courant Institute graduate student. His algorithm, described in Smith [48], is an additive
Schwarz method, which uses the subspace V# both in two and three dimensions. We give
some details only for the three-dimensional case. In addition to V¥, there are subspaces
associated with each face, edge and vertex of the substructures. The subspace associated
with a face is ]15({2(1“”) NV, and therefore closely related to the space V{4 introduced in
Section 5. Similarly, for an edge (vertex), Smith uses a space associated with a neighborhood
in I' of the edge (vertex) which extends a distance on the order of the diameter of ;. The
success of this approach can be explained informally by noting that the overlap is relatively
generous. The numerical results, so far confined to two dimensions and simple substructures
with benign aspect ratios, show great promise. In addition to Poisson’s equation, membrane
and shell models have been tested. So far, the condition numbers have always been less
than 4.

The following theoretical result has been established for both two and three dimensions.
It also holds for elliptic systems such as those of linear elasticity; ¢f. Smith [48)].

TuEOREM 5. The operator P of the additive algorithm developed by Smith satisfies the
estimate k(P) < const. The constant in the estimate is independent of h as well as H.

7. Optimal Iterative Refinement Methods. In our study of iterative refinement
methods, we consider problems on a special kind of composite finite element triangulations.
We begin by introducing a relatively coarse triangulation of Q1) = €, and denote the
corresponding space of finite element functions by V. We can think of this space as
having a uniform (or relatively uniform) mesh size hy. Let (%) be a subregion where we
wish to increase the resolution. We do so by subdividing the elements and introducing an
additional finite element space V*2. This space is constructed quite similarly to the previous
one and it contains V™ [ HE(Q2) as a subspace. We assure that the resulting composite
space VM + V7 is conforming by having the functions of V%2 vanish on Q3. We repeat
this process by selecting a subregion Q) of Q(2) and introducing a further refinement of
the mesh and the finite element space, etc. We denote the resulting nested subregions and
subspaces by Q) and V7, respectively. Throughout, we assume that

Q0 ¢ 61
and that
Vh-iq BYOOYy c Vi oc BYOQW), i=2,.. .k
The composite finite element space, on the repeatedly refined mesh, is

Vh=vh vk p v
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The finite element models on composite meshes is thus systematically constructed by
introducing a basic finite element approximation on the entire region and then selecting
subregions, and subregions of subregions etc., where the finite element model is further re-
fined in order to gain higher accuracy. In each iteration of the iterative refinement methods,
problems representing finite element models on the original region and the subregions, prior
to further refinement, are solved. As always, an additive algorithm is defined by specifying
the subspaces V;, or alternatively, the projections P;.

In order to prove the results given at the end of this section, we need some additional
technical assumptions. To make our proofs work, we cannot allow the sets Qi1 \ O to
become arbitrarily thin in comparison with the diameter of Q,_;. We also assume that the
area of any triangle on level ¢ can be bounded by const. ¢*=7 times the area of the triangle
on level j of which it is a part. Here ¢ is a constant < 1 and j < i. '

The fundamental building blocks of our algorithms are the projections P}, j =1i— 1,1,
onto the spaces V% N HI(Q;). We note that if j = ¢— 1, we solve a problem on Q; with a
coarser mesh than if V% were used. The projection P/ is defined in terms of the unique
element of V% N H(Q;), which satisfies

(28) a(P{vn, ¢n) = a(vn, 1), Yy € VP n HE(Q,).

We consider two different algorithms and distinguish between them by using super-
scripts. The perhaps most natural algorithm uses the projections Pz-(l) = P}. The condition
number of this algorithm can grow as fast as linearly with k. By the standard argument,
it is easy to show that the eigenvalues of P(!) are bounded from above by %. This bound
is attained if Vh1 H3 () is not empty, i.e. when the mesh size h; is fine enough. Any
function in this space belongs to V%, i = 1,2,... k, and is exactly reproduced by each
of the projection operators. It is therefore an eigenfunction of P() with the eigenvalue
k. Similarly, any function which belongs to V™ n HL(Qy \ 13) is an eigenfunction with
eigenvalue 1. We have shown in [56], that the eigenvalues of P(!) are bounded from below
by a constant. The condition number of P() is therefore of order k.

We are principally interested in the additive algorithm defined by the projections Pim =
P! -—Pf+1 ,t < k~1,and P,£2) = P,f. It easy to show that these operators are projections and
that the composite finite element space V' is the direct sum of the corresponding subspaces
Vi(z). The following results have recently been demonstrated in Dryja and Widlund [27] and
Widlund [56]. The latter paper also contains a similar result for a multiplicative algorithm.

THEOREM 6. The condition number of P(2) is uniformly bounded by a constant. The
condition number of P grows at most linearly with the number of refinement levels.

We note, that Tarek Mathew [40] has developed iterative refinement methods for
Raviart-Thomas finite element methods and obtained bounds for their rate of convergence.
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