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ADDITIVE SCHWARZ METHODS AND ACCELERATION
WITH VARIABLE WEIGHTS

TSI-MIN SHIH CHIN-BO LIEM TAO LU

ABSTRACT. In section 1, we use Lions' framework to prove
the convergence of a synchronous domain decomposition
method for solving Dirichlet problems of linear uniformly
elliptic equations, and to prove, under a more servere
condition, the convergence -will be geometrical. - In sec-
tion 2, we show that for the corresponding finite element
solution the rate of convergence for the cases with
generous overlap and minimal overlap are of 0((1+1n H/h)_l)
and of O0((1+ H/h)—l) respectively., In section 3, we prove
that acceleration with variable weights will converge
faster.

1. A domain decomposition method for
overlapping subdomains

Consider the following Dirichlet problem

Lu

f, in Q

u =g, on 82

where Q < RN is a bounded open set,

N
8 du
Lu = - izj:-l —6—; (AiJ(X) —3_)-(;) + B(x)u,

i
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AIJ(X) satisfy the uniformly positive definite condition and
B(x) = 0.
m
Let = U Ql, here Ql, i=1, ..., m, are overlapping

1=1
opensets.

Algorithm 1 (Continuocus case):

1° Choose an initial u € H;(Q) .

2°  Solve in parallel for i =1, 2, ..., m,
Lu' = f, in @
n i
() u1 =u, on 4Q
n n i

here u' - u € HY(Q ) and set u' = u in O\Q .
n n o i n n i

° 1
3 u = —
n+i mi

ui. Set n + 1= n and go to 2°.
1

I t~138

In order to prove the convergence, we make use of the
Lions’ interpretation of the Schwarz alternating method I[1,
2]. Consider the bilinear form

N
aluy) = J (¥ Au g% Z_;:
i J

Q i,j=1

+ B u v)dx.

From the assumptions, a(u,v) is uniformly elliptic in H;(Q),

i.e., there exists a constant v > 0, such that

2 2 1
3 full™ A =
(3) lu _A a(u,u) leuHH;(Q), Yue HO(Q).

Now the subproblem (2) implies for i =1, 2, -+-, m,

(4) a(ui—u,v)=a(u~u,v),VveH1(Q),
n n n 0 i
and
(5) w-u =P(u-u).
n n i n

1
Here Ple;(Q) > Homx) are the projection operators with

respect to the energy norm Ilullz. Using (5), we deduce that

(6) u-u =(0-P)u-u)i=12 ... m
n i n
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and m
_ ~q-L cu) =Ly ety
(7) u uml— m?P(u u)—(I 'rr—le:Pl) (u uo).
Theorem 1.
(a). If
1 1 1 1
{(8) HO(Q) = HO(Ql) + HO(QZ) + ... * HO(Qm) ,

then u_ will converge to u, ie.,, lu—ull >0, as n > .
n n a

(b). 1If
1 ol 1 1
(9) HO(Q) = Ho(ﬂl) + HO(QZ) + ...+ Ho(Qm),

then u will converge to u geometrically.
n

n+l

m
Remark 1. In step 3° instead of settingu =% Yy u, we

1
may set u = Z w ul + {l-w)u , where w >0, i =
n+l i n i

=1
m
., myandw = Z . Evidently,

m
u-u = (1 - lZjlwiPl)(u - un),

and we still have lu ~ull 30, as n > o .
n a

2. Finite element solutions with an estimate of
the rate of convergence

Let @ ¢ R® be a polygon. Decomposite © into m

non-overlapping triangles Q, i=1, ..., m. Denote Hi = diam
Q, H= max H and Q" = (Ql}i o
Subdivide every Q1 step by step and at last we have the

refined triangulation Q" For each i, construct a polygon

h
Q’l > Ql. The vertices of Q’l are also the nodes of Q.

2.1 (Q;)T-l has generous overlap. Assuming that Hx is of
order H and that
(10) p(aﬂ’l\éﬂ, anl\a(z) =CH,i=12, ..., m

here C is a constant independent of i.
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Algorithm 2 (Finite element approximation with generous
overlap):

1° Choose an initial U, satisfying u, - gI e V.

2° Solve the f ollowing m + 1 subproblems in parallel:

For i =1, 2, ..., m, find u; such that u:1 - un € V}; and
satisfies
(11) a(u:l , v = (f, vh), Vv e V:‘ .

3° Find u® such that u: - RI " e Vg and satisfies
n

(12) a(u: ,vh) = (f, vh), v v e VZ :

here gI is a linear interpolation of g on Q" and R' is the
linear interpolation operator which restricts u on Q .
n
m m
o i
4 Set U= Y wu -, where W, >0 and } w = 1.
1=0 1=0
The following theorem can be proved by applying a theorem
from Dryja and Widlund [3].

h .
Theorem 2 . u_ converges to u and the rate of convergence is
n

-1
of O (1 + In % ] . Here the rate of convergence is defined

tobep=-ln|I- ¥ ©, Pi][ .
2.2. {Q’i )n;=1 has minimal overlap. Instead of (10), we obtain
Q; by adding to Ql the refined triangles next to Qi, therefore

the width of the overlapping area will be of order h.

Algorithm 3 (Finite element approximation with minimal
overlap}):
Step 1° and 2° are the same as Algorithm 2.
] m i m
Step 3 Set u, = Y wu_, where w >0and Y o = 1.

+1
i=1 i=1

By the Theorem 3 of Dryja and Widlund [8], we can prove
the following

h .
Theorem 3. u converges to u and the rate of convergence is
n

-1
H
of0(1+ H} .



ADDITIVE SCHWARZ METHODS AND ACCELERATION 303
3. Acceleration with variable weights

In the previous algorithms, the weights do not vary with
the position. But in [4], we introduced an algorithm with
weights varying with the position. Here we prove that this
algorithm is better than Algorithm 1.

m
Suppose that Q = U Qi, here (Ql)r:__1 are overlapping sets.
1=1 -

m
et 1 = ne. For k =1, 2, -, m - 1, define n* be the
m =1 J k
set of ¢ multiple points (£ = k), i.e., Q € w’ if there exist
¢
£ = k subsets Qx’ !'2l , e, Ql such that Q € N Qx' Now
1 2 L J=1 7}

m
define nk= #'\ell U ), n© are open sets consist exactly of
J=k+1
k- multiple points.
The algorithm given in [4] is as follows.
Algorithm 4 (Acceleration with variable weights):

Steps 1° and 2° are the same as Algorithm 1.

k
Step 3°. 1f Q e T and Q € Ql , then set
=1 ]
_ , K 1j
un+1(Q) = E Z un (Q) ‘
i=1
1 1 1
Theorem 4. Assume that HO(Q) = Homx) U Ho(ﬂm).

Algorithm 4 is better than Algorithm 1 with respect to the

2
energy norm Huli® = a(u,u).
a

Remark 2. From Lions’ Theorem 4 [2], if U, is a subsolution
or supersolution, then it is easy to prove that En(Q)

approaches zero faster than en(Q) does.

The algorithms are tested by examples and we find that all
the results fit the theorems very well.
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