Convergence Analysis of Parallel
Domain Decomposition Algorithm
for Navier-Stokes Equations

Kaitai Li and Cuihua Li

1 Introduction

In the paper [1], we developed a Schwarz’s domain decomposition algorithm and a
convergence analysis for the stationary incompressible Navier-Stokes problem. But
this is a serial algorithm. In this paper, we discuss a class of parallel algorithms, We
consider the stationary Navier-Stokes equations with the Dirichlet boundary condition:

N du
—vAu+ ) ujé;:_- +gradp = f
J

J=1
divu =0 in
ulBQ = 01

(1)

where © is a bounded domain of RV (N = 2,3) with a Lipschitz-continuous boundary
O082. The vector u = {u;}fil is the velocity of the fluid, v > 0 is its kinematic viscosity
(assumed to be constant), p its pressure and the vector f = {f;}¥, € [H~*(Q)]" the
density of the body forces per unit mass. We introduce the following spaces:

X =[H}QP, V={vweX;divv=0,in Q},

M = L3(@) = {glq € L*(®); / gdz = 0}.
Q

% Project Supported by State Key Basic Research Project & NSFC
1 College of Science, Xian Jiaotong University, Xian, 710049, P.R.CHINA,
e-mail: KTLI@XJTU.EDU.CN

Domain Decomposition Methods in Sciences and Engineering, edited by R. Glowinski et al.
© 1997 John Wiley & Sons, Ltd.



494 Convergence Analysis of Domain Decomposition Algorithm

The weak formulation of (1) is
Find v € V such that
ag(u,v) + a1 (u;u,v) =< f,v >,Vw eV,

(P)

or
Find {u,p} € X x M such that

(Q) ao(u,v)+a1(u;u,v)—b(p,v) =< f,’U>,V’U€X
b(g,u) =0, Vg€ M,

where

N
ao(u,v) = v(gradu, gradv), a;(u;v,w) = Z /uj%widz,
Li=19 g

b(p,v) = (p,divw), < f,v>= /f -vdz, Yu,v,w € X.
Q

Problem (P) is equivalent to problem (Q) and there exists at least one solution[2,3].

2 The Parallel Algorithm

Assume that 2 is split into m subdomains );:

j=1

satisfying
3¢ € CF®(©;),0< & <Lin Q¢ =0,in Q\Qy,
m . )
such that > & =1,in Q.
i=1

Later on, we denote by r(z) the number of subdomains to which the point z belongs.
Let

‘G:{ué[H&(ﬂj)]N;divuz(),in 9} ((=1,2,---,m).

and consider V; as a closed subspace of V by extending its elements to \Q; by 0.
Then we have the following simple result.

Lemma 1 ([1]). Under the condition (2), we have
V=Vi+Va+ -+ Vm,
and, for all v € V, there exist v; € V; such that

m
=3, -
2 v; and 1I<Ea_<‘_xm Il v; 1< Coll v 1,
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where Cp is some positive constant,
The algorithm is designed as follows:
Step 0. Choose an initial value u° € V.
Step 1. For j =1,2,---,m and n > 0, solve in parallel the following subproblems:

( Find u7*! € u™ + V; and pptt € L3(9y) such that

ao(ujt,v)g; + a1 (Wit Ut v)g, - b(pit,v)g;

$ =< f,v>q;, Wve[H}HQ)]Y, (3)
bgujt™a, =0,  Vge L3(Qy),

pptt=0,  inQ\Q;

\

m
Step 2. Choose ¢; € (0,1) such that Y. 6; =1 and for n > 0 set
i=1

m 1 m

+1 _ gt n-+1 —_ 1:l+1

u” - Zleﬂuj > P (fIJ) = 7‘(511) j_zlp] . (4)
= =

Set n =n+ 1, go to Step 1.
Here the notations are given by:

N
Ov;
ao(u,v)o; = u/gradu-gradvdz, ay(u;v,w)g; = Z /’Uj'é‘w—;widw,
tj=1
Q; 3 Q;

b(p,v)q, = /pdivvdw, < fv >Qj=/f-vdac.
Q; 2

3 The Convergence

Let H be a Hilbert space, I’ a differentiable mapping from H into H' (the dual space
of H), DF(-) its derivative, and let u € H be a solution of the equation F'(u) = 0. We
say that u is a nonsingular solution if there exists a constant 7o > 0 such that

| DF(u) v [l+>2v0 vz YvedH
For the Navier-Stokes problem, we define a C?-mapping F'(-) : V — V" as follows:
< F(u),v >= ap(u,v) + a1 (u;u,v)— < f,v > Vu,ve V.

Clearly,F(-) is infinitely differentiable in V and its derivative DF(u) € L(V;V') is

given by:
< DF(u)v,w >= ag(v,w) + a1 (u; v, w) + a1 (v; u, w).

As a consequence, problem (P) can be rewritten as:
Find w €V .such that
< F(u),v>=0, YveV

(5)
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In addition, we introduce the abstract Stokes operator: A € L(V; V') defined by
< Au,v >= ap{u,v), Yu,veV.

Obviously!®! 4 is symmetric, V-elliptic, and there exists A~! € £(V'; V). Furthermore,
the mapping f € V! || f lvi=< A7 f, f >% is a norm on V' that is equivalent to
the dual norm®).

We define the functional

1
T®) = 5 I F@) I3
Then problem (5) is equivalent to:

Find u €V such that
= (6)
J(u) = 1}2{/ J(v).

Lemma 2. Let u* be a nonsingular solution of Navier-Stokes problem (1).Then the
functional

J(v) = % < A7'F(v), F(v) >

is strictly convex in a neighborhood of u* and weakly lower semicontinuous. This means
that there exist two constants, p > 0 and a > 0, such that

D*J(v) - (w,w) > a|w ||}, VveS(u*;p),YweV. (M
Here
S(u*;p)={veV;llv-u" i< p}.

Proof. The strict convexity of J(v) in a neighborhood of a nonsingular solution »*
can be found in [3].

Now, we will prove the weak lower semicontinuity. To do this, let {v;} be a weakly
convergent sequence in V. Assume that v; — v, weakly in V. We then have

lim < F(v;),v >=< F(v.),v> WveV.
1o
(see chapter 9 in [4]. Let A F(v.) = g4, A7 F(v;) = g, ie.
Ags = F(vs), Agi = F(v;),
< A(gs - gi),v >=< F(v.) — Fvi),v >= ao(g — 9i,V)-
Hence

zlg{.lo ao(gs — gi,v) = 11_1)n010 < F(v,) = F(v.),v >~ < F(v,) — F(v,),v>=0 YoeV.

This implies g; — g« weakly in V.
Also, with Ag = F(v)

J(v) =< A7 F(v), F(v) >=< g, Ag >=ao(g,9),
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since
a0(gi — g+, 9 — 9+) 2 0,  a0(gi, 9i) > 2a0(9i, 9+) — 20(gs, s ),

Jlim inf ao(9:, 9:) > ao(ge, ).

It follows that
lim inf J(v;) > J(v).
=300

J(v;) is weakly lower semicontinuous. o

Let u® be an initial value in S(u*,p), and let R = J(u®). It is clear that
D = {v € V;J(v) £ R} N S(u*;p) is not empty because of u® € S(u*,p), and
functional J(v) is strictly convex in D. Its derivative DJ(v) is uniformly continuous
in DBl Therefore there exist constants a,C' > 0 such that (see (7))

J) - Jw)—~ < DJ(u),v—u>>allv-u|? VYuveD (8),

and
W DJ(w) - DJw) lv<Cllv-uli VYuveD. (9)

Now, we consider a local minimization problem:

Find vweD such that
(10)

J{u) = 3161]13 J()

Theorem 1. There exists a unique solution u* of (10) which satisfies (6).
Proof By using lemma 2, J(v) is weakly lower semicontinuous in V' and D is a
closed subset in V,J(v) > 0. Then the generalized Weierstrass theorem shows that

(10) has a unique solution u*. ]
Clearly, the domain decomposition algorithm for (10) consists of
P Find u;."“ € {u"+V;}ND such that
B\ ap(ul*,0)a, + a1 (I umt, v)g, =< f,v>q, Vo€V,
(Py) is equivalent to
U‘;H'l = argmf J('ll:n + ’U) in Q]
vEY;
u*+v€ED (11)
v;'H_l =0, in O\
wPt =y 4ot in Q.

Similarly, (11) has a unique solution sequence {u}}.

Theorem 2. Assume that {u*,p*} is an isolated solution of the N-S Egs. Then the
sequence {u™, p"}, defined by (11) and (4), converges strongly in X x M to {u*,p*}.
Proof It follows from (11) that

J@t) < Jw"), wtteD (n20,j=12--,m)
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Since J(v) is convex in D, we have

T = JOL 0 < YOI <T@, (20, (12)

j=1 =1

Therefore there exists a ¢ € R! such that J(u™) — q, as n — +oo. Thus,
{u™} C D. Furthermore, (11) yields

< DJ(u;""l),vj >=0 Vu; €V (13)
Wt —wreV; (j=1,2,---,m;n>0).
Combining (11) with (7), we deduce

J@™) = J@j™) 2 affu —ut 1}

m
For 8; € (0,1) satisfying 3 6; = 1, we have
i=1

a) 6 |lu” —uft i< T@w™) - )6 (i)
i=1

=1
< J(@™) - J(u™*) = 0,as n — +oo.
Therefore,
Ju® —u* 4= 0 (j=1,2,---,m), as n—+oo.
By using Lemma 1, for each v € V, there exist v; € V; such that

m

= ; h< .
v ,;U] and lgljasxmllva i< Co lf v llx

Combining this with (7) and (8), we deduce

m m
| < DI@W™),v>| =Y < DIu™),v; >|=|)_ < DJ(u") - DJ@]™),v; > |
=1 =1

< Co > I DI@™) — DI Iyl v 1< CoC > lum —uf™ il v Iy -
Hence

m
| DIW™) lv'< CoC Y flum —ult ||} 0, as n— +oo.
—

Since u* is a solution of problem (6), we find
Jw') < I@w") (n>0).
Using again (7), we get

allu® —u* |I< J(u*) — J@u)+ < DJ@™),u” —u* > .
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<< DI, u” —u* > <L DI@W”) [yl w™ —u” Iy .

Therefore 1
| u™—u* 1< = I DJ@™) lv:— 0, as n - +oo.

Thus, the sequence {u"} converges strongly in V to the isolated solution u* of problem
(6)1\'Iext, we consider the convergence of the pressure sequence {p"}.
Let the pair {u*,p*} be a solution of Problem (Q). We know that
| u™ —u* 1= 0, u;‘""l —u*h—=0, as n—o +oo(j=1,2,---,m).
Moreover, using (Q), we have for any v; in [H3(2;)] with v; = 0 in Q\9;:

b( n+1 —p, v]) — ao(un+1 —u* ’UJ) 4 al(un+1 u?].—l*—l)vj)

and
—ay(u*;u*,v;) = 0% as n - +oo.

Similarly, if Q; N Q; # &, then we have for any v;; in [C§°(2; N )Y with v;; =0 in
O\ (s N Q)
b(pPt! — .+1,v”) -0, as n— oo
Since C*°(€; N Q;) is dense in L?(€; N ), we get
b(pp ™ — pit v)a;ne; - 0,Yv € [H (N Q)Y,a8 n— +oo.
Hence, we get for all v; € [H3(2;)]V, with v; = 0 in Q\Q;:

b(™ - p* vy, = b —pp)e; +b( ( y 2 anﬂ -t vj)e;

= b(]D;-le - p*,v5); + ( ) z:b(p"Jr1 —p;'+1,’vj)gjngk -0, as n-—-+oo.
Set v; = &v, for all v € [H}(Q)]". We assert that

b(p"t! —p*,v) = Zb(p’“‘l —-p*,vj)e; =0, as n—r+oo,
g=1

ie. Vv e [HXQ)Y, (p"+! — p*,divy) — 0 as n = +oo. Since div maps [HE ()N onto
L3(9)([3]), we obtain

p" —+p* weaklyin M asn— +oo.

The inf-sup condition [3] yields

p* — p* stronglyin M asn — +oo.

Hence, Theorem 2 is valid.
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