Convergence Analysis of Parallel Domain Decomposition Algorithm for Navier-Stokes Equations

Kaitai Li and Cuihua Li

1 Introduction

In the paper [1], we developed a Schwarz's domain decomposition algorithm and a convergence analysis for the stationary incompressible Navier-Stokes problem. But this is a serial algorithm. In this paper, we discuss a class of parallel algorithms. We consider the stationary Navier-Stokes equations with the Dirichlet boundary condition:

$$\begin{cases}
-\nu\Delta u + \sum_{j=1}^{N} u_j \frac{\partial u}{\partial x_j} + \operatorname{grad} p = f \\
\operatorname{div} u = 0 & \text{in } \Omega \\
u|_{\partial\Omega} = 0,
\end{cases}$$
(1)

where Ω is a bounded domain of $R^N(N=2,3)$ with a Lipschitz-continuous boundary $\partial\Omega$. The vector $u=\{u_i\}_{i=1}^N$ is the velocity of the fluid, $\nu>0$ is its kinematic viscosity (assumed to be constant), p its pressure and the vector $f=\{f_i\}_{i=1}^N\in [H^{-1}(\Omega)]^N$ the density of the body forces per unit mass. We introduce the following spaces:

$$X=[H^1_0(\Omega)]^N, \quad V=\{v|v\in X; {\rm div} v=0, {\rm in} \quad \Omega\},$$

$$M=L^2_0(\Omega)=\{q|q\in L^2(\Omega); \int\limits_{\Omega}qdx=0\}.$$

e-mail: KTLi@XJTU.EDU.CN

Domain Decomposition Methods in Sciences and Engineering, edited by R. Glowinski et al. © 1997 John Wiley & Sons, Ltd.

O Project Supported by State Key Basic Research Project & NSFC

College of Science, Xian Jiaotong University, Xian, 710049, P.R.CHINA.

The weak formulation of (1) is

(P)
$$\begin{cases} \text{ Find } u \in V \text{ such that} \\ a_0(u,v) + a_1(u;u,v) = < f, v >, \forall v \in V, \end{cases}$$

or

$$\left\{ \begin{array}{l} \text{Find } \{u,p\} \in X \times M \quad \text{such that} \\ \\ a_0(u,v) + a_1(u;u,v) - b(p,v) = < f,v>, \forall v \in X \\ \\ b(q,u) = 0, \quad \forall q \in M, \end{array} \right.$$

where

$$a_0(u,v) = \nu(\mathrm{grad} u, \mathrm{grad} v), \quad a_1(u;v,w) = \sum_{i,j=1}^N \int\limits_{\Omega} u_j \frac{\partial v_i}{\partial x_j} w_i dx,$$

$$b(p,v) = (p,\mathrm{div} v), \quad < f,v> = \int\limits_{\Omega} f \cdot v dx, \quad \forall u,v,w \in X.$$

Problem (P) is equivalent to problem (Q) and there exists at least one solution [2,3].

2 The Parallel Algorithm

Assume that Ω is split into m subdomains Ω_i :

$$\Omega = \bigcup_{j=1}^m \Omega_j \quad (m \geq 2),$$

satisfying

$$\begin{split} \exists \xi_j \in C_0^{+\infty}(\Omega_j), & 0 \leq \xi_j \leq 1, \text{in} \quad \Omega_j; \xi_j = 0, \text{in} \quad \Omega \backslash \Omega_j, \\ \text{such that} \quad & \sum_{j=1}^m \xi_j = 1, \text{in} \quad \Omega. \end{split} \tag{2}$$

Later on, we denote by r(x) the number of subdomains to which the point x belongs. Let

$$V_j = \{u \in [H^1_0(\Omega_j)]^N; \operatorname{div} u = 0, \text{in} \quad \Omega_j\} \quad (j = 1, 2, \cdots, m).$$

and consider V_j as a closed subspace of V by extending its elements to $\Omega \backslash \Omega_j$ by 0. Then we have the following simple result.

Lemma 1 ([1]). Under the condition (2), we have

$$V = V_1 + V_2 + \dots + V_m,$$

and, for all $v \in V$, there exist $v_j \in V_j$ such that

$$v = \sum_{j=1}^{m} v_j$$
 and $\max_{1 \leq j \leq m} \parallel v_i \parallel_1 \leq C_0 \parallel v \parallel_1$,

K. Li and C. Li

where C_0 is some positive constant.

The algorithm is designed as follows:

Step 0. Choose an initial value $u^0 \in V$.

Step 1. For $j = 1, 2, \dots, m$ and $n \ge 0$, solve in parallel the following subproblems:

$$\begin{cases} \text{Find } u_{j}^{n+1} \in u^{n} + V_{j} \text{ and } p_{j}^{n+1} \in L_{0}^{2}(\Omega_{j}) \text{ such that} \\ a_{0}(u_{j}^{n+1}, v)_{\Omega_{j}} + a_{1}(u_{j}^{n+1}; u_{j}^{n+1}, v)_{\Omega_{j}} - b(p_{j}^{n+1}, v)_{\Omega_{j}} \\ = \langle f, v \rangle_{\Omega_{j}}, \quad \forall v \in [H_{0}^{1}(\Omega_{j})]^{N}, \\ b(q, u_{j}^{n+1})_{\Omega_{j}} = 0, \qquad \forall q \in L_{0}^{2}(\Omega_{j}), \\ p_{i}^{n+1} = 0, \quad \text{in } \Omega \backslash \Omega_{j}. \end{cases}$$

$$(3)$$

Step 2. Choose $\theta_j \in (0,1)$ such that $\sum_{j=1}^m \theta_j = 1$ and for $n \ge 0$ set

$$u^{n+1} = \sum_{j=1}^{m} \theta_j u_j^{n+1}, \quad p^{n+1}(x) = \frac{1}{r(x)} \sum_{j=1}^{m} p_j^{n+1}. \tag{4}$$

Set n = n + 1, go to Step 1.

Here the notations are given by:

$$\begin{split} a_0(u,v)_{\Omega_j} &= \nu \int\limits_{\Omega_j} \mathrm{grad} u \cdot \mathrm{grad} v dx, \quad a_1(u;v,w)_{\Omega_j} = \sum_{i,j=1}^N \int\limits_{\Omega_j} u_j \frac{\partial v_i}{\partial x_j} w_i dx, \\ b(p,v)_{\Omega_j} &= \int\limits_{\Omega_j} p \mathrm{div} v dx, \quad < f,v>_{\Omega_j} = \int\limits_{\Omega_j} f \cdot v dx. \end{split}$$

3 The Convergence

Let H be a Hilbert space, F a differentiable mapping from H into H' (the dual space of H), $DF(\cdot)$ its derivative, and let $u \in H$ be a solution of the equation F(u) = 0. We say that u is a nonsingular solution if there exists a constant $\gamma_0 > 0$ such that

$$||DF(u) \cdot v||_* \ge \gamma_0 ||v||_H \quad \forall v \in H.$$

For the Navier-Stokes problem, we define a C^2 -mapping $F(\cdot): V \to V'$ as follows:

$$\langle F(u), v \rangle = a_0(u, v) + a_1(u; u, v) - \langle f, v \rangle \quad \forall u, v \in V.$$

Clearly, $F(\cdot)$ is infinitely differentiable in V and its derivative $DF(u) \in \mathcal{L}(V;V')$ is given by:

$$< DF(u)v, w >= a_0(v, w) + a_1(u; v, w) + a_1(v; u, w).$$

As a consequence, problem (P) can be rewritten as:

$$\begin{cases} \text{ Find } u \in V \text{ such that} \\ \langle F(u), v \rangle = 0, \quad \forall v \in V. \end{cases}$$
 (5)

In addition, we introduce the abstract Stokes operator: $A \in \mathcal{L}(V; V')$ defined by

$$\langle Au, v \rangle = a_0(u, v), \quad \forall u, v \in V.$$

Obviously^[3] A is symmetric, V-elliptic, and there exists $A^{-1} \in \mathcal{L}(V';V)$. Furthermore, the mapping $f \in V' \to \parallel f \parallel_{V'} = \langle A^{-1}f, f \rangle^{\frac{1}{2}}$ is a norm on V' that is equivalent to the dual norm^[3].

We define the functional

$$J(v) = \frac{1}{2} \parallel F(v) \parallel_{V'}^2$$

Then problem (5) is equivalent to:

$$\begin{cases} \text{ Find } u \in V \text{ such that} \\ J(u) = \inf_{v \in V} J(v). \end{cases}$$
 (6)

Lemma 2. Let u^* be a nonsingular solution of Navier-Stokes problem (1). Then the functional

$$J(v) = \frac{1}{2} < A^{-1}F(v), F(v) >$$

is strictly convex in a neighborhood of u^* and weakly lower semicontinuous. This means that there exist two constants, $\rho > 0$ and $\alpha > 0$, such that

$$D^2 J(v) \cdot (w, w) \ge \alpha \parallel w \parallel_1^2, \quad \forall v \in S(u^*; \rho), \forall w \in V. \tag{7}$$

Here

$$S(u^*; \rho) = \{v \in V; ||v - u^*||_1 < \rho\}.$$

Proof. The strict convexity of J(v) in a neighborhood of a nonsingular solution u^* can be found in [3].

Now, we will prove the weak lower semicontinuity. To do this, let $\{v_i\}$ be a weakly convergent sequence in V. Assume that $v_i \to v_*$ weakly in V. We then have

$$\lim_{i \to \infty} \langle F(v_i), v \rangle = \langle F(v_*), v \rangle \quad \forall v \in V.$$

(see chapter 9 in [4]. Let $A^{-1}F(v_*)=g_*, A^{-1}F(v_i)=g_i$, i.e.

$$Ag_* = F(v_*), Ag_i = F(v_i),$$

 $< A(g_* - g_i), v > = < F(v_*) - F(v_i), v > = a_0(g_* - g_i, v).$

Hence

$$\lim_{i \to \infty} a_0(g_* - g_i, v) = \lim_{i \to \infty} \langle F(v_*) - F(v_*), v \rangle - \langle F(v_*) - F(v_*), v \rangle = 0 \quad \forall v \in V.$$

This implies $g_i \to g_*$ weakly in V.

Also, with Ag = F(v)

$$J(v) = \langle A^{-1}F(v), F(v) \rangle = \langle g, Ag \rangle = a_0(g, g),$$

K. Li and C. Li

since

$$a_0(g_i - g_*, g_i - g_*) \ge 0, \quad a_0(g_i, g_i) \ge 2a_0(g_i, g_*) - a_0(g_*, g_*),$$

$$\lim_{i \to \infty} \inf a_0(g_i, g_i) \ge a_0(g_*, g_*).$$

It follows that

$$\lim_{i \to \infty} \inf J(v_i) \ge J(v).$$

 $J(v_i)$ is weakly lower semicontinuous.

Let u^0 be an initial value in $S(u^*, \rho)$, and let $R = J(u^0)$. It is clear that $D = \{v \in V; J(v) \leq R\} \cap S(u^*; \rho)$ is not empty because of $u^0 \in S(u^*, \rho)$, and functional J(v) is strictly convex in D. Its derivative DJ(v) is uniformly continuous in $D^{[3]}$. Therefore there exist constants $\alpha, C > 0$ such that (see (7))

$$J(v) - J(u) - \langle DJ(u), v - u \rangle \ge \alpha \| v - u \|_1^2, \quad \forall u, v \in D$$
 (8),

and

$$||DJ(v) - DJ(u)||_{V'} \le C ||v - u||_1 \quad \forall u, v \in D.$$
 (9)

Now, we consider a local minimization problem:

$$\begin{cases}
Find & u \in D \quad \text{such that} \\
J(u) = \inf_{v \in D} J(v)
\end{cases}$$
(10)

Theorem 1. There exists a unique solution u^* of (10) which satisfies (6).

Proof By using lemma 2, J(v) is weakly lower semicontinuous in V and D is a closed subset in $V, J(v) \geq 0$. Then the generalized Weierstrass theorem shows that (10) has a unique solution u^* .

Clearly, the domain decomposition algorithm for (10) consists of

$$(P_n)\left\{ \begin{array}{l} \text{Find} \quad u_j^{n+1} \in \{u^n + V_j\} \cap D \quad \text{such that} \\ a_0(u_j^{n+1}, v)_{\Omega_j} + a_1(u_j^{n+1}; u_j^{n+1}, v)_{\Omega_j} = < f, v >_{\Omega_j} \quad \forall v \in V_j. \end{array} \right.$$

 (P_n) is equivalent to

$$\begin{cases}
v_j^{n+1} = \underset{v \in V_j}{\operatorname{arginf}} J(u^n + v) & \text{in } \Omega_j \\
v_j^{n+1} = 0, & \text{in } \Omega \setminus \Omega_j \\
v_j^{n+1} = u^n + v_j^{n+1} & \text{in } \Omega.
\end{cases}$$
(11)

Similarly, (11) has a unique solution sequence $\{u_i^n\}$.

Theorem 2. Assume that $\{u^*, p^*\}$ is an isolated solution of the N-S Eqs. Then the sequence $\{u^n, p^n\}$, defined by (11) and (4), converges strongly in $X \times M$ to $\{u^*, p^*\}$. **Proof** It follows from (11) that

$$J(u_j^{n+1}) \le J(u^n), \quad u_j^{n+1} \in D \quad (n \ge 0, j = 1, 2, \dots, m).$$

Since J(v) is convex in D, we have

$$J(u^{n+1}) = J(\sum_{j=1}^{m} \theta_j u_j^{n+1}) \le \sum_{j=1}^{m} \theta_j J(u_j^{n+1}) \le J(u^n), \quad (n \ge 0).$$
 (12)

Therefore there exists a $q \in \mathbb{R}^1$ such that $J(u^n) \to q$, as $n \to +\infty$. Thus, $\{u^n\} \subset D$. Furthermore, (11) yields

$$\begin{cases}
 \langle DJ(u_j^{n+1}), v_j \rangle = 0 & \forall v_j \in V_j \\
 u_j^{n+1} - u^n \in V_j & (j = 1, 2, \dots, m; n \ge 0).
\end{cases}$$
(13)

Combining (11) with (7), we deduce

$$J(u^n) - J(u_j^{n+1}) \ge \alpha \| u^n - u_j^{n+1} \|_1^2$$
.

For $\theta_j \in (0,1)$ satisfying $\sum_{j=1}^m \theta_j = 1$, we have

$$\alpha \sum_{j=1}^{m} \theta_{j} \| u^{n} - u_{j}^{n+1} \|_{1}^{2} \le J(u^{n}) - \sum_{j=1}^{m} \theta_{j} J(u_{j}^{n+1})$$

$$\le J(u^{n}) - J(u^{n+1}) \to 0, \text{ as } n \to +\infty.$$

Therefore,

$$||u^n - u_j^{n+1}||_1 \to 0 \quad (j = 1, 2, \dots, m), \text{ as } n \to +\infty.$$

By using Lemma 1, for each $v \in V$, there exist $v_j \in V_j$ such that

$$v = \sum_{j=1}^{m} v_j$$
 and $\max_{1 \leq j \leq m} \parallel v_j \parallel_1 \leq C_0 \parallel v \parallel_1$.

Combining this with (7) and (8), we deduce

$$|\langle DJ(u^{n}), v \rangle| = |\sum_{j=1}^{m} \langle DJ(u^{n}), v_{j} \rangle| = |\sum_{j=1}^{m} \langle DJ(u^{n}) - DJ(u_{j}^{n+1}), v_{j} \rangle|$$

$$\leq C_{0} \sum_{j=1}^{m} ||DJ(u^{n}) - DJ(u_{j}^{n+1})||_{V'} ||v||_{1} \leq C_{0} C \sum_{j=1}^{m} ||u^{n} - u_{j}^{n+1}||_{1} ||v||_{1}.$$

Hence

$$||DJ(u^n)||_{V'} \le C_0 C \sum_{i=1}^m ||u^n - u_j^{n+1}||_{1} \to 0$$
, as $n \to +\infty$.

Since u^* is a solution of problem (6), we find

$$J(u^*) \le J(u^n) \quad (n \ge 0).$$

Using again (7), we get

$$\alpha \parallel u^n - u^* \parallel_1^2 \le J(u^*) - J(u^n) + < DJ(u^n), u^n - u^* > .$$

K. Li and C. Li 499

$$\leq < DJ(u^n), u^n - u^* > \leq ||DJ(u^n)||_{V'} ||u^n - u^*||_1$$
.

Therefore

$$||u^n - u^*||_1 \le \frac{1}{\alpha} ||DJ(u^n)||_{V'} \to 0$$
, as $n \to +\infty$.

Thus, the sequence $\{u^n\}$ converges strongly in V to the isolated solution u^* of problem (6).

Next, we consider the convergence of the pressure sequence $\{p^n\}$. Let the pair $\{u^*, p^*\}$ be a solution of Problem (Q). We know that

$$||u^n - u^*||_1 \to 0, ||u_i^{n+1} - u^*||_1 \to 0, \text{ as } n \to +\infty (j = 1, 2, \dots, m).$$

Moreover, using (Q), we have for any v_i in $[H_0^1(\Omega_i)]^N$ with $v_i = 0$ in $\Omega \setminus \Omega_i$:

$$b(p_i^{n+1}-p,v_j)=a_0(u_j^{n+1}-u^*,v_j)+a_1(u_j^{n+1};u_j^{n+1},v_j)$$

and

$$-a_1(u^*; u^*, v_j) \to 0^{[3]}, \text{ as } n \to +\infty.$$

Similarly, if $\Omega_i \cap \Omega_j \neq \Phi$, then we have for any v_{ij} in $[C_0^{\infty}(\Omega_i \cap \Omega_j)]^N$ with $v_{ij} = 0$ in $\Omega \setminus (\Omega_i \cap \Omega_j)$

$$b(p_i^{n+1} - p_i^{n+1}, v_{ij}) \to 0$$
, as $n \to +\infty$.

Since $C_0^{+\infty}(\Omega_i \cap \Omega_j)$ is dense in $L^2(\Omega_i \cap \Omega_j)$, we get

$$b(p_i^{n+1}-p_j^{n+1},v)_{\Omega_j\cap\Omega_j}\to 0, \forall v\in [H^1(\Omega_i\cap\Omega_j)]^N, \text{as}\quad n\to+\infty.$$

Hence, we get for all $v_j \in [H_0^1(\Omega_j)]^N$, with $v_j = 0$ in $\Omega \setminus \Omega_j$:

$$\begin{split} b(p^{n+1}-p^*,v_j)_{\Omega_j} &= b(p_j^{n+1}-p^*;v_j)_{\Omega_j} + b(\frac{1}{r(x)}\sum_{k=1}^M p_k^{n+1}-p_j^{n+1},v_j)_{\Omega_j} \\ &= b(p_j^{n+1}-p^*,v_j)_{\Omega_j} + \frac{1}{r(x)}\sum_{k=1}^m b(p_k^{n+1}-p_j^{n+1},v_j)_{\Omega_j\cap\Omega_k} \to 0, \quad \text{as} \quad n \to +\infty. \end{split}$$

Set $v_j = \xi_j v$, for all $v \in [H_0^1(\Omega)]^N$. We assert that

$$b(p^{n+1} - p^*, v) = \sum_{i=1}^{m} b(p^{n+1} - p^*, v_j)_{\Omega_j} \to 0, \text{ as } n \to +\infty,$$

i.e. $\forall v \in [H_0^1(\Omega)]^N$, $(p^{n+1} - p^*, divv) \to 0$ as $n \to +\infty$. Since div maps $[H_0^1(\Omega)]^N$ onto $L_0^2(\Omega)([3])$, we obtain

$$p^n \to p^*$$
 weakly in M as $n \to +\infty$.

The inf-sup condition [3] yields

$$p^n \to p^*$$
 strongly in M as $n \to +\infty$.

Hence, Theorem 2 is valid.

REFERENCES

- [1] Li Cuihua & Li Kaitai (1995) Domain-decomposition Method for Navier-Stokes Equations (in Chinese), J. Xian Jiaotong Univ., 6(29).
- [2] Temam R. (1984) Navier-Stokes Equations, Theory and Numerical Analysis. North-Holland, Amsterdam, New York.
- [3] Girault V. and Raviart P. A. (1985) Finite Element Method of the Navier-Stokes Equations, Springer-Verlag.
- [4] Li Kaitai, Ma Yichen (1992) Hilbert Space Method for Mathematical Physical Equations (in Chinese), Xian Jiaotong University Press.