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A non-overlapping DDM of
Robin-Robin type for parabolic
problems

G. LUBE, L. MULLER, F.-C. OTTO'

Introduction

We consider a time-dependent advection-reaction-diffusion model. An A-stable
implicit semidiscretization in time leads to a sequence of elliptic problems. Here we
use the discontinuous Galerkin method DG(r). Tt allows time-step control based on
a-posteriori estimates.

Domain decomposition methods (later referred to as DDM) provide a promising tool
for solving the arising elliptic problems. Overlapping methods require a minimal
overlap which depends on the recent time step [Kus90], [Ran94]. This results in
a cumbersome implementation if the time step varies. Therefore we prefer non-
overlapping DDM. There is some recent progress in such methods for elliptic problems
using interface conditions of Robin type [Gas96], [Nat95], [Aug98], [A1098].

In Sec. 2 we introduce the semidiscrete problem. In Sec. 3 we apply, for DG(0), the
DDM to the fully discretized, and SUPG-stabilized problem. The main result is an
a-posteriori error estimate of the discrete DDM using the interface error, which can
be used as a stopping criterion. Additionally we get a bound for a parameter in the
interface condition which depends on the (variable) time steps. Then we discuss briefly
the extension to DG(1). Numerical results are given in Sec. 4.

For a domain G we denote by W*P((F) the Sobolev space with norm || - || , ¢ and
seminorm | - | , . (-, ") and || - || are the inner product and the norm in L*(G). In
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case of G = Q we usually omit the index. For a sufficiently smooth curve S C Q, we
denote by (-, )s the inner product in L?(S) or, whenever needed, the duality product
between H~1/2(S) and H'/?(S). C is a generic constant not depending on relevant
parameters.

Stable semidiscretization in time

In a bounded domain Q C R%,d < 3, we consider

g—?-l—LEu::g—l;—eAu-l-g-Vu-l-cu = f in (0,7] x €, (1)
u=0 on (0,7] x 9Q; u = ug(z) in {0} x Q. (2)

Assume that V-5 =0 and ¢ > 0.
The discontinuous Galerkin method allows a systematic construction of A-stable,
implicit, and high-order schemes for problem (1)-(2). Galerkin orthogonality is a basic

ingredient of a-posteriori estimates used for time—sfep control. We set dfv := (i)qv ,

ot
V= Wé”z(Q) with norm || - ||1 @. V™ is the dual space.
The weak formulation of (1)-(2) reads :

Findu e W(0,T)={z € L?(0,T; V)| 8z € L*(0,T; V*)} s.t. Yo € L?(0,T; V)

/OT(atu,v) dt+/ﬂT Ba(u,v) dt = /OT(f, v) dt, u(0) = uo, (3)

1/ - .

Ba(u,v) = (¢Vu, Vo) + 5 (- Vu,0) = (- Fo,0)) + (cu,0). (4)
Let 0 = 19 < t1 < ... < tyr41 = T be a sequence of discrete time levels with
time step 7(t) = T = tmt1 — tm,t € Im = [tm,tms1). II-(Ip) denotes the

space of polynomials of degree r € Ng with coefficients in V. Furthermore we set
v = limes 0 v(tm £ 5), [v7]
The DG(r)-method requires the solution of elliptic problems resp. systems on each
time slab I, x @, m=0,..... M

M __ ,m
=) — ol

Find ul' € U, (I,) s.t. AG(ul,v) = FGZ(v) Yv eIl (I,), (5)
1
AZ(v,w) = T—{(atv,w)jm + Bg (v, w) + (v}, wi) ],
1
Fén(w) = T_{(faw)1m+(vr—717w$)}a U(l = Ug

where (v, w)r,, = f[m (v, w) dt and Bg (v, w) = f[m Ba (v, w) dt.

We apply the DG(r)-method with » = 0 resp. » = 1 for long time resp. time accurate
calculations. Error estimates can be derived for problem (5), say for time-independent
coefficients b and ¢, which extend the results in [Tho97], Ch.12.

Proposition 1 Assume that 0;t'u is smooth. Then we obtain for the semidiscrete
DG (r)—method the a-priori error estimate

m—1
o7 () = ) < €302 [ ortul? at
i=0 d
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and for r = 0 an a-posteriori estimate with C' ~ (] + ||b||oo\/tm) \/log :—: +1

)

The a-posteriori estimate is useful for an adaptive time-step control. As a first step
for r = 0, one can take the jumps u’ — u'~! as an error indicator.

ut — uz—l

[402) = ult)] < € g 7 (sup 0] + |
rSm— tEIi

Robin-Robin DDM for the elliptic problems

DD iteration for the semidiscrete problem

Now we apply a non-overlapping DDM to the semidiscrete problems (5) arising from
the DG(0)-method, i.e. with constant (in time) u™ on I,. Setting Em = % fIm b dt,
Cm = % fIm cdt,ép, = cm-l—%, m= % (flm fdt+ um_l), the variational problem
(5) is related to the elliptic problem

erum = —eAu" + b, VU™ + ™ = f77 in u™ =0 on 9. (6)
Let @ = UgQy be a non-overlapping partition with Tx; = 99 N 0Q;,j # k,
Ty = 0Qx \ 0Q. Now we seek for n € N a sequence of approximations u]’, to u™|q,
on Q using the additive iteration-by-subdomain method of Robin-Robin type

Crupy = f7in Qg Uy =0 on 90 NOQ, (7)
durly m. m Qui_y m_ m .
€ o +pruny = GW +prup_q; on Tyy, j#k. (8)

The main problem is the design of the p*. In [Aug98] we obtained convergence to the
solution of (6) for pi* = —%I;m g+ ozt 2 > 0.

Denoting by Ag;k(~, -) and Fg’k() the restrictions of AZ(-,-) resp. FZ () to Q, the
weak formulation of (7), (8) can be written as :

Find upyy € V(Q):= Vg, s.t. Yo € V(Q), V¢ € V]r,,
mym

AGH W w) + (v, = FEE )+ 30 Nl o), (9)
i(#k)
g @), = (G +2) wite = Moy O, (10)

Stabilized Galerkin method and domain decomposition

Now we consider a fully discrete version of the DDM using a SUPG-stabilized FEM.
Let T be an admissible triangulation of Q with simplicial elements K. Furthermore
assume that the macroelement partition {Qg}g is aligned with 75. Let V), C 'V be
the subspace of piecewise polynomials of degree { € N. The discrete space II; () in
each slab I, x Q is the set of polynomials of degree r w.r.t. ¢ with coefficients in V.
In the singularly perturbed case we consider the stabilized Galerkin FEM:

Find Uffh e, n(Im) st A’S”G(Uzlh,v) = Fig(v) Yv eIl 4(Im), (11)
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Afo(v,w) = AF(, w)+zK5K(”, Vu)
Fio(w) = FE(w) + SR (175 Vu)

The usual Galerkin FEM corresponds to 6% = 0. (11) is approximately consistent
to the continuous problem (6). The parameter set {67} is determined in such a way
that (11) yields a stable and accurate method. If only steady state calculations (with
time-independent coefficients b and ¢) are considered, one can replace the semidiscrete
residual L7 v — fI" by Lcv — f, i.e. the approximation }(um —u™1) of dyu is not
used in the stabilizing terms. "

We denote by qug(~, -) and F;nG’k() the restrictions of AT, (-, ") resp. Fig(:) to Q.
Furthermore, l_["Tc n(Im) is the restriction of T, 5 (I,) to I, x Q. The discrete DDM
(for n € N) consists in the parallel solution of problems on I, x Q:

Find Ul €15, (Im) st Yo €115, (Inm), vqsen,h([ ),

Aglcf( nkr U )+<2k n;k”v>r‘k = F.;nGk )+ Z n— 1ykav Tu;’ (12)
J(#k)
<Anm§kj’¢>1“kj = <(Zk + j ) r??k - An—l;jk’¢>rkj' (13)

The subproblems are well-posed: Standard arguments for stabilized FEM for elliptic
problems yield for all v € TI¥ , (I,,,) the coercivity estimate

" 5 _ T -
2455 (v,v) > |||U|||§G;n,c = €|U|iz,n,c + | Cm””é,z,nk + Z % [[bm - v””%,z,K-
KeQy
Existence and uniqueness of U, follow from Lax-Milgram Lemma.

A-priort and a-posteriort estimates for the Robin-Robin method

Here we consider the simplified case Q = Q; U Qy with Q1N Qs =0, 0, NN £ 0
and H; = diam(Q;). The interface is T' = 0Q; N 0Qy. Furthermore, set V(;) =V

Vi =Vila, W= H1/2( T), W, = Vi|r. We can prove [Lub98§]

Theorem 1 Let 0 < 7 < 2" = 2" € L>(T), A" € L*(T). Then the solutions (Un%)
of (12)-(13) converge to the solution of (11) as

Qi

U = U awlllsa.ae =0, n—o00, k=1,2.

In order to have a stopping criterion for the DD iteration in each time-step, we derive
an a-posteriori error estimate which controls the subdomain error U, — U, |q, w.r.t.
Il - [|lsc;q, in terms of the interface error. Later on we apply

Lemma 1 [Lub98] The trace mapping Tr; : V(Q;) — L%(T'), the extension operator
W V(€;) and the injection of LQ(F) into W are continuous:

[[Triv|joar < Crelvlioa, Yv € V(Q;), Crr~H;, (14)
Tri'ehoa, < Crolélw V6EW,  Cpoiwl, (15)
|éllo2r < Crllo|lw Yo € W, Cr ~ +\/H,. (16)

Furthermore we need Friedrichs inequality

vllo2.0: < Crilvli2n,  YoeV(Q)  Cri~ Hi. (17)
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For convenience, we skip index m of the time slab, e.g. A%, (:,") := AZL(’;(, -) resp.
FE () = F;nG’k() Let U; be the restriction of the global discrete solution of (11) to
Q;. Then the a-posterior: estimate reads

Theorem 2 Let U € Vy, with Ulq, =: U; € V; resp. (U, UZY) be the solutions of
the global discrete problem (11) resp. of the two domain variant of the discrete DDM
(12)-(13). Then there exists a constant C' > 0 such that for all n € N holds

U7+ = Uilllsea. + 11U5 = Uslllse,a. < C max Ky |UP* = U lw (18)
Ki1 = Y?zlocor Cr Croi) (19)

. 1 -
Ki = 5—= sup [|b - 7ii]|0,c0 rC1 Crr, (20)

2\/¢€ tei,,

1 .
gy (m (o= + b VIl ) Crs 4 /7 sup ||b||o,oo,nz) |
i vV Tm telm, R tel,

The estimate remains valid if Q1 and Q4 are interchanged.

Sketch of the proof: (i) Problem (11) is equivalent to find (U1,Us) € Vi 5 X Vg
and Ay, Ay € Wy sit. Uy =Us on I' and

AgG(Uia V;) + <inia Vz)l" = F};(;(V;) + <AJ aV;'>F Vi € Vi,ha (21)

Aisd)p = (s +2)VUi=Aj o) YoeW,  (22)

(i) Set EP .= UP? — U; and n? := A? — A;. Taking the difference of (21),(22) and
(12),(13), we obtain for ¢ # j the error problem

Asq(BPT V) 4+ (wEMY Vi) = (Vi) VVi € Vi, (23)

< f+1, q5>1, = <(zz + Zj)E:;L-H -7, ¢>F Yo € W. (24)

(iti) Let z; € L®(T) and K;; as in (19),(20). Then basically using Lemma (1) we
obtain for all w € W), that

[(ziw, B}t yp| Kiq |[|EPT!

<
(7! = 4 BP wyr| < Ko |EP|lsaa.

(iv) Starting from (23), (24), we find after some manipulations
A.ls‘G(E{H_la Vl) + A%G(Ega VQ) = <77; - ZlE’l‘L-Ha V1>F + <777f_1 - ZQEga V2>F
= (z(Bf — EYT), Viyp+ (0 — 2B8 Vo — Vi) (27)

Set now Vi = E’f+1, Vs := E% in (27). We derive lower and upper bounds using the
coercivity of A%, and step (iii)

n n 2 n n n n
(NET M sa + MBS ll2,56)” < Asq(E7H, BT + ASq(E3, )

B~ =

< max (K113 K2,0) ([1E7 |56 + B3 llz,50) 125 — BT lw. (28)
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Noting that Ef — EP*! = UP+! — U2 on T this implies the assertion. m

The a-posteriori estimate of Theorem 2 gives some information on a suitable choice of
the parameter function z;. A reasonable upper bound is then

NG Ve
21|06 0o < Ky o, Zollocor € =————K19. 29
lIz1llo,c0,0 < Cromn lI22llo,c0 0 < Croa K (29)
According to Lemma 1, we can rewrite (29) for ¢ # j as follows:
Jetllo o < 5 sup - iloor + (30)
Zi||0,00,7 < 7 SU “Ni||0,00,T + —m==
0,00,I" = 9 tEII,)n 0,00, \/m /

€ 1 -
+ su cllo oo .>H-+ T sup |60 co 2>.
i (=m0 Ieloa, ) 7+ V7 s

Finally we select z; such that the first r.h.s. term in (30) is replaced with
Observe that time step 7, is a critical parameter in (30).

Extension to the DG(1)-case

Let us briefly discuss the application to the time-accurate DG(1)-variant: We use for
the semidiscrete problem (5) ansatz and test functions

t -t t—1 t tm — 2t
u™ (1) = Luf)n + —uP, W (t) = MT)? + o
m m Tm

with u7”, v7* € Vi, s =0, 1. Then we arrive at the elliptic system

Tm m m ,m m . m Tm m m m—]

5 Dol — o) + (uf o) = P =S )+ (), (31)
Tm m m ,,m m ,,m ™m m m m— ¢
TBG(“O +ul", o) + (ul', ") = 9 (f™ 4 7 v) + (w7 ). (32)

We propose an efficient iterative decoupling of this system starting from the second
equation for urln;l with an initial guess for ugn;o and then solving the first equation
for uT"" using the last approximation u™". As a result, in each time slab we have to
solve a sequence of two different stationary problems. This is again done using the full
discretization by a stabilized FEM and the non-overlapping DD method.

Numerical results

We present some results for problem (1)—(2) in Q@ = (0,1)? showing a reasonable
performance of the (discrete) DD method for the time-accurate case. The computations
are performed on a triangular mesh with h = 1]% with a 2 x 2 partition for the DD
case and using two iterations of decoupling of (31), (32).
Example 1 Consider the heat equation with ¢ = 1, b= 0, ¢ = 0 and the exact
solution u = ZzzLyz sin(10%t) which is highly oscillatory in time. In Fig.1 we present
the discrete L%-error norms for the sequential case with different time-steps which
shows the better accuracy of the DG(1) method and for the DDM with either fixed
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Figure 1 FExample 1 (a)
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Figure 2 Example 2 (a) sequential (b) DD method

number of DD-steps and the stopping criterion (interface error < TOL) arising from

the a-posteriori analysis (cf. Thm. 2).

Example 2 Consider an advection-dominated problem with ¢ = 108, ¢ = 0,
b= (—22+0.5, 21 —0.5)7. The initial condition is a circular cylinder with a slot being
advected with the rotating flow field. In the limit case ¢ = 0, we obtain a periodic
solution with period 7' = 27. This is a hard test problem for both the discretization
and the interface condition of the DDM. The solution after one rotation without and
with domain decomposition is presented in Figure 2. Typical wiggles of the discrete
solution around the discontinuity of the initial profile are observed. No reflections can
be seen for the DDM thus showing the high quality of the interface condition.
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Concluding remarks

The semidiscretization of parabolic problems by the discontinuous Galerkin method
results in a sequence of elliptic problems. We propose the solution of these problems
using a stabilized FEM and a non-overlapping DDM of Robin/ Robin type. An a-
posteriori result allows to control the convergence of the discrete solutions in the
subdomains via convergence of the interface data. Furthermore we obtain some
information how to design the interface condition depending e.g. on a variable time
step. This approach can be easily extended to certain systems of advection-reaction-
diffusion equations (for the linear case cf. [Alo98]).

Our main interest is currently the application to coupled models of the incompressible
Navier-Stokes equations with scalar advection-diffusion-reaction problems (e.g. from
the k/e turbulence model). The research code Parallel NS has been implemented on
different platforms under a message passing system, fore more detail for the stationary
case cf. [Ott98] and [Mue99] for the time-dependent case. Furthermore we refer to
[Ott98] for some foundation of the DDM for the linearized Navier-Stokes problem.
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