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Recall Newton methods
l Given                                                           and iterate      

we wish to pick          such that

where

l Neglecting higher-order terms, we get

where                                   is the Jacobian matrix, 
generally large, sparse, and ill-conditioned for PDEs

l In practice, require

l In practice, set                                     where      is 
selected to minimize         
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Jacobian-free Newton-Krylov
l In the Jacobian-Free Newton-Krylov (JFNK) method, a 

Krylov method solves the linear Newton correction 
equation, requiring Jacobian-vector products

l These are approximated by the Fréchet derivatives

(where       is chosen with a fine balance between 
approximation and floating point rounding error) or 
automatic differentiation, so that the actual Jacobian 
elements are never explicitly needed

l One builds the Krylov space on a true F’(u) (to within 
numerical approximation)
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Recall idea of preconditioning
l Krylov iteration is expensive in memory and in 

function evaluations, so k must be kept small in 
practice, through preconditioning the Jacobian with an 
approximate inverse, so that the product matrix has 
low condition number in

l Given the ability to apply the action of           to a 
vector, preconditioning can be done on either the left, 
as above, or the right, as in, e.g., for matrix-free:

)]()([
1 11 uFvBuFvJB −+≈ −− ε
ε

bBxAB 11 )( −− =
1−B



DD15 Tutorial, Berlin, 17-18 July 2003

Philosophy of Jacobian-free NK
l To evaluate the linear residual, we use the true F’(u) , giving 

a true Newton step and asymptotic quadratic Newton 
convergence

l To precondition the linear residual, we do anything convenient 
that uses understanding of the dominant physics/mathematics 
in the system and respects the limitations of the parallel 
computer architecture and the cost of various operations:
n Jacobian of lower-order discretization
n Jacobian with “lagged” values for expensive terms 

n Jacobian stored in lower precision 
n Jacobian blocks decomposed for parallelism

n Jacobian of related discretization 
n operator-split Jacobians 

n physics-based preconditioning
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Using Jacobian of related discretization

l To precondition a variable coefficient operator, such 
as ∇·(α∇ •) , use          , based on a constant 
coefficient average

l Brown & Saad (1980) showed that, because of the 
availability of fast solvers, it may even be acceptable 
to use             to precondition something like

2∇α

y
v

x
u

∂
•∂

+
∂

•∂
+•∇−

)()(
)(2

2∇−



DD15 Tutorial, Berlin, 17-18 July 2003

Operator-split preconditioning
l Subcomponents of a PDE operator often have special 

structure that can be exploited if they are treated 
separately

l Algebraically, this is just a generalization of Schwarz, by 
term instead of by subdomain 

l Suppose                                and a preconditioner is to be 
constructed, where                 and                   are each 
“easy” to invert

l Form a preconditioned vector from     as follows: 

l Equivalent to replacing      with

l First-order splitting error, yet often used as a solver!
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Operator-split preconditioning, cont.
l Suppose S is convection-diffusion and R is reaction, 

among a collection of fields stored as gridfunctions

l On a small regular 2D grid with a five-point 
stencil:

l R is trivially invertible in block diagonal form

l S is invertible with one multilevel solve per field

J = S + R
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l Preconditioners assembled from just the “strong” elements 
of the Jacobian, alternating the source term and the 
diffusion term operators, are competitive in convergence 
rates with block-ILU on the Jacobian
n particularly, since the decoupled scalar diffusion systems are 

amenable to simple multigrid treatment – not as trivial for the coupled 
system

l The decoupled preconditioners store many fewer elements 
and significantly reduce memory bandwidth requirements 
and are expected to be much faster per iteration when 
carefully implemented

l See “alternative block factorization” by Bank et al.; 
incorporated into SciDAC TSI solver by D’Azevedo

Operator-split preconditioning, cont.
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Physics-based preconditioning
l In Newton iteration, one seeks to obtain a correction 

(“delta”) to solution, by inverting the Jacobian 
matrix on (the negative of) the nonlinear residual:

l A typical operator-split code also derives a “delta” to 
the solution, by some implicitly defined means, 
through a series of implicit and explicit substeps

l This implicitly defined mapping from residual to 
“delta” is a natural preconditioner

l Software must accommodate this!

)()]([ 1 kkk uFuJu −−=δ

kk uuF δa)(



DD15 Tutorial, Berlin, 17-18 July 2003

Physics-based Preconditioning
l We consider a standard “dynamical 

core,” the shallow-water wave 
splitting algorithm, as a solver

l Leaves a first-order in time splitting 
error

l In the Jacobian-free Newton-Krylov 
framework, this solver, which maps a 
residual into a correction, can be 
regarded as a preconditioner

l The true Jacobian is never formed yet 
the time-implicit nonlinear residual at 
each time step can be made as small as 
needed for nonlinear consistency in 
long time integrations
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Example: shallow water equations
l Continuity (*)

l Momentum (**)

l These equations admit a fast gravity wave, as can be 
seen by cross differentiating, e.g., (*) by t and (**) by 
x, and subtracting:

0
)(

=
∂

∂
+

∂
∂

x
u

t
φφ

0
)()( 2

=
∂
∂

+
∂

∂
+

∂
∂

x
g

x
u

t
u φ

φ
φφ

termsother
x

g
t

=
∂
∂

−
∂
∂

2

2

2

2 φ
φ

φ

×
∂
∂
t

×
∂
∂
x



DD15 Tutorial, Berlin, 17-18 July 2003

1D shallow water equations, cont.

l Wave equation for geopotential:

l Gravity wave speed φg

l Typically                        , but stability restrictions 
would require timesteps based on the Courant-
Friedrichs-Levy (CFL) criterion for the fastest wave, 
for an explicit method

l One can solve fully implicitly, or one can filter out the 
gravity wave by solving semi-implicitly
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1D shallow water equations, cont.
l Continuity (*)

l Momentum (**)
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l Solving (**) for                   and substituting into (*),   

where

1)( +nu φ

x
S

xx
g

n
n

n
nn

∂
∂

+=
∂

∂
∂
∂

−
+

+ φ
φ

φτφ )(
1

21

x
u

uS
n

nn

∂
∂

−=
)(

)(
2φ

τφ



DD15 Tutorial, Berlin, 17-18 July 2003

1D shallow water equations, cont.
l After the parabolic equation is spatially discretized and 

solved for          , then                   can be found from  
n
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l One scalar parabolic solve and one scalar explicit update
replace an implicit hyperbolic system

l This semi-implicit operator splitting is foundational to 
multiple scales problems in geophysical modeling

l Similar tricks are employed in aerodynamics (sound 
waves), MHD (multiple Alfvén waves), reacting flows 
(fast kinetics), etc.

l Temporal truncation error remains due to the lagging 
of the advection in (**)

1+nφ 1)( +nu φ

To be dealt with shortly
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1D Shallow water preconditioning
l Define continuity residual for each timestep:

l Define momentum residual for each timestep:
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l Momentum delta form (**):
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1D Shallow water preconditioning, cont.
l Solving (**) for                   and substituting into (*),   

l After this parabolic equation is solved for δφ , we have

l This completes the application of the preconditioner to one 
Newton-Krylov iteration at one timestep

l Of course, the parabolic solve need not be done exactly; 
one sweep of multigrid can be used

l See paper by Mousseau et al. (2002) for impressive results 
for longtime weather integration
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Physics-based preconditioning update

l So far, physics-based preconditioning has been 
applied to several codes at Los Alamos, in an effort 
led by D. Knoll

l Summarized in new J. Comp. Phys. paper by Knoll 
& Keyes (2002, under review)

l PETSc’s “shell preconditioner” is ideal for inserting 
physics-based preconditioners, and PETSc’s solvers 
underneath are ideal building blocks, but there are 
not yet examples in the public release
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SciDAC philosophy on PDEs

l Solution of a system of PDEs is rarely a goal in itself 
n PDEs are solved to derive various outputs from specified inputs

n actual goal is characterization of a response surface or a design 
or control strategy

n together with analysis, sensitivities and stability are often 
desired

⇒Tools for PDE solution should also support these 
related desires
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PDE-constrained optimization

l PDE-constrained optimization: a relatively new horizon
n … for large-scale PDE solution

u next step after reducing to practice parallel implicit solvers for coupled 
systems of (steady-state) PDEs

u now “routine” to solve systems of PDEs with millions of DOFs on thousands 
of processors

n … for constrained optimization
u complexity of a single projection to the constraint manifold for million-DOF 

PDE is too expensive for an inner loop of traditional RSQP method

u must devise new “all-at-once” algorithms that seek “exact” feasibility only 
at optimality

l Our approach starts from the iterative PDE solver side
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Optimizers

l Many simulations are properly posed as 
optimization problems, but this may not 
always be recognized

l Unconstrained or bound-constrained 
applications use TAO

l PDE-constrained problems use Veltisto
l Both are built on PETSc solvers (and 

Hypre preconditioners)
l TAO makes heavy use of AD, freeing 

user from much coding
l Veltisto, based on RSQP, switches as 

soon as possible to an “all-at-once” 
method and minimizes the number of 
PDE solution “work units”
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Recent optimization progress

l Unconstrained or bound-
constrained optimization
n TAO-PETSc used in quantum 

chemistry energy minimization

l PDE-constrained optimization
n Veltisto-PETSc used in flow control 

application, to straighten out wingtip 
vortex by wing surface blowing and 
sunction; performs full optimization 
in the time of just five N-S solves

l “Best technical paper” at SC2002 
went to our SciDAC colleagues at 
CMU (Ghattas, PI, speaking here 
Thursday morning):
n Inverse wave propagation employed 

to infer hidden geometry

4000 controls

128 procs

2 million controls

256 procs
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Motivating examples for 
simulation-based optimization

l Stellarator design

l Materials design and molecular structure 
determination

l Source inversion 
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Stellarator design
l Dec 2002 report to DOE

l Multiphysics simulation for 
shape optimization of 
magnetic confinement fusion 
devices featured as a key 
technology for fusion energy

l Currently genetic algorithms 
used to optimize single-
physics subsystems, e.g., 
magnetic flux surfaces of the 
plasma, magnetic coil shape 
of the controls – many 
analysis runs



DD15 Tutorial, Berlin, 17-18 July 2003

Molecular-level materials design
l Jul 2002 report to DOE

l Optimization methods 
frequently invoked by 
nanoscientists as a pressing 
need – though there is much 
work ahead to make this 
concrete mathematically, 
except for …

l … Multilevel optimization 
for energy minimization in 
molecular structure 
determination – well along in  
protein folding, etc.
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Source inversion
l Oct 2002 Sandia LDRD 

final report 
l Model source inversion 

problem solved by 
multilevel optimization, 
using Sundance/rSQP++

l Simultaneous Analysis and 
Design (SAND) framework 
exploited to save an order 
of magnitude in execution 
time, relative to blackbox
methods
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Constrained optimization w/Lagrangian
l Consider Newton’s method for solving the nonlinear 

rootfinding problem derived from the necessary 
conditions  for constrained optimization

l Constraint
l Objective
l Lagrangian
l Form the gradient of the Lagrangian with respect to 

each of x, u, and λ:
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Newton on first-order conditions
l Equality constrained optimization leads to the KKT 

system for states x , designs u , and multipliers λ
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RSQP when constraints are PDEs
l Problems

n is the Jacobian of a PDE ⇒ huge!

n involve Hessians of objective and constraints ⇒ second 
derivatives and huge

n H is unreasonable to form, store, or invert

xJ
αβW

l Proposed solution: Schwarz inside Schur!
n form approximate inverse action of state Jacobian and its 

transpose in parallel by Schwarz/multilevel methods 

n form forward action of Hessians by automatic differentiation; 
exact action needed only on vectors (JFNK)

n do not eliminate exactly; use Schur preconditioning on full 
system
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Schur preconditioning from DD theory
l Given a partition

l Condense:

l Let  M be a good preconditioner for  S
l Then                                       is a preconditioner for A

l Moreover, solves with       may be approximate if all 
degrees of freedom are retained (e.g., a single V-cycle)

l Algebraic analogy from constrained optimization: “i” 
is state-like, “Γ” is decision-like
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PDE-constrained Optimization

c/o G. Biros and O. Ghattas

Lagrange-Newton-Krylov-Schur implemented in Veltisto/PETSc

wing tip vortices, no control (l); optimal control (r)wing tip vortices, no control (l); optimal control (r)

optimal boundary controls shown as velocity vectorsoptimal boundary controls shown as velocity vectors

l Optimal control of laminar viscous flow
n optimization variables are surface 

suction/injection 
n objective is minimum drag
n 700,000 states; 4,000 controls
n 128 Cray T3E processors
n ~5 hrs for optimal solution (~1 hr for analysis)

www.cs.nyu.edu/~biros/veltisto/
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PETSc codeUser code

Nonlinear PDE solution w/PETSc

AD-generated code

Application
Initialization

Function
Evaluation

Jacobian
Evaluation

Post-
Processing

PC KSP
PETSc

Linear Solvers (SLES)

Nonlinear Solvers (SNES)

Solve
F(u) = 0

Application Driver

• Automatic Differentiation (AD): a technology for automatically augmenting 
computer programs, including arbitrarily complex simulations, with statements for 
the computation of derivatives, also known as sensitivities.
• AD Collaborators: P. Hovland and B. Norris (http://www.mcs.anl.gov/autodiff)

(c/o Lois Curfman McInnes, ANL)
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Application
Initialization

Post-
Processing

PETSc Solve
F(u) = 0

Zoom on user routine structure

PETSc codeUser code AD-generated code

Nonlinear Solvers (SNES)

Main Routine

Parallel Jacobian
assembly

Global-to-local 
scatter of ghost  values

Seed matrix
initialization

Local Jacobian
computation

Global-to-local 
scatter of ghost  values

Parallel function
assembly

Local Function 
computation

(c/o Lois Curfman McInnes, ANL)
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Using AD with PETSc:
Creation of AD Jacobian from function

Global-to-local 
scatter of ghost  values

Parallel function
assembly

Local Function 
computation

Parallel Jacobian
assembly

Global-to-local 
scatter of ghost  values

Local Jacobian
computation

Local Function 
computation

ADIFOR or ADIC

Local Jacobian
computation

Script file

Seed matrix 
initialization

• Fully automated for structured meshes
• Currently manual setup for unstructured    
meshes; can be automated

Current status:

(c/o Lois Curfman McInnes, ANL)
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Parameter identification model

l Nonlinear diffusion PDE BVP:
l Parameters to be identified: α(x), β
l Dirichlet conditions in x, homogeneous Neumann 

in all other dimensions (so solution has 1D 
character but arbitrarily large parallel test cases 
can be set up)

l Objective:                                where          is 
synthetic data specified from a priori solution 
with given α(x) piecewise constant, β=2.5 (Brisk-
Spitzer approximation for radiation diffusion)

2||)()(|| xTxT −=Φ )(xT

0))(( =∇•∇ TTx βα



DD15 Tutorial, Berlin, 17-18 July 2003

Progress to date (Samyono thesis)
l Parallel implementation using PETSc’s “shell 

preconditioner” functionality to build the block 
factored KKT preconditioner recursively

l Solution method: LNKS with Schwarz preconditioning 
of the PDE Jacobian blocks, ILU on Schwarz 
subdomains

l ADIC generates Jacobian blocks from user functions 
l Newton-like convergence for PDE analysis
l Rougher, but monotone, convergence for parameter 

identification problems
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Implementation
l PETSc’s “shell preconditioner” functionality used to 

build the block factored KKT preconditioner recursively
l Solution method: LNKS with Schwarz preconditioning 

of the PDE Jacobian blocks, ILU on Schwarz 
subdomains

l MPI-based parallelization
l ADIC generates Jacobian blocks from user functions 
l Illustrative results (next slide) fix α(x) and identify 

exponent β only, while uniform mesh density is refined in 
2D; have also identified α(x) throughout full domain

l Newton-like, mesh-independent convergence for overall 
residual
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Illustrative results

2-norm of residual of full system 
F(T(x),β,λ(x)) vs. iteration

|β -β*| vs. iteration

[solid: 25×25 2Dmesh, dash: 50×50, dot-dash: 100×100, dot-dot-dash:200×200]
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Related URLs
l Personal homepage: papers, talks, etc.

http://www.math.odu.edu/~keyes

l SciDAC initiative
http://www.science.doe.gov/scidac

l TOPS project
http://www.math.odu.edu/~keyes/scidac

l PETSc project
http://www.mcs.anl.gov/petsc

l Hypre project
http://www.llnl.gov/CASC/hypre

l ASCI platforms
http://www.llnl.gov/asci/platforms
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