Contemporary Mathematics

Terascale Implicit Methods for Partial Differential Equations

David E. Keyes

1. Introduction

Computational peak performance on full-scale scientific applications, as tracked
by the Gordon Bell prize, has increased by four orders of magnitude since the prize
was first awarded in 1988 — twenty-five times faster than can accounted for by
Moore’s Law alone. The extra factor comes from process concurrency, which is
as much as 8,192-fold on the $100M “ASCI White” machine at Lawrence Liver-
more, currently ranked as the world’s second most powerful, after the new Japan-
ese “Earth Simulator”. The latter was recently clocked at more than 35 trillion
floating point operations per second (Tflop/s) on the LINPACK benchmark and at
more than 25 Tflop/s on a climate application. Though architectural concurrency
is easy to achieve, algorithmic concurrency to match is less so in scientific codes.
Intuitively, this is due to global domains of influence in many problems presented
to the computer as implicitly discretized operator equations — implicitness being
all but legislated for the multiscale systems of global climate, transonic airliners,
petroleum reservoirs, tokamaks, etc., the simulation of which justifies expenditures
for the highest-end machines.

For many years, we have been pursuing optimal parallel algorithms for PDE
simulations through the Jacobian-free Newton-Krylov methodology, preconditioned
with Schwarz and Schur decompositions, including multilevel generalizations of the
former. One of the main benefits of the Jacobian-free Newton-Krylov approach is
the exploitation of multiple discrete representations of the underlying continuous
operator, the idea being to converge fully to a representation of high fidelity through
a series of inexpensive and stable steps based on representations of lower fidelity.
Simultaneous advances in object-oriented software engineering have enabled the
construction of internally complex software systems in which these algorithmic ele-
ments can be combined modularly, recursively, and relatively efficiently in parallel,
while presenting a programming environment that allows the user to function at

1991 Mathematics Subject Classification. Primary 65N55; Secondary 65Y05, 65N30.

Supported in part by the U.S. Department of Energy under SciDAC subcontract FC02-
01ER25476 to Old Dominion University, by Lawrence Livermore National Laboratory under ASCI
Level-2 subcontract B347882 to Old Dominion University, and in part by NASA under contract
NAS1-19480 to ICASE.

©0000 (copyright holder)

2 DAVID E. KEYES

a rather high level. Since our work is applications driven, we have also been con-
cerned with the development of robustification techniques for large systems with
strong nonlinearities, including pseudo-transient continuation, parameter continu-
ation, grid sequencing, model sequencing, and nonlinear preconditioning. Recently,
we have helped show how some large-scale PDE-constrained optimization problems
(e.g., design, control, parameter identification usually the ultimate problems
behind the proximate PDEs) can be placed into the same rootfinding algorithmic
framework as the PDE, itself.

Terascale simulation of systems based on PDEs is a technology in demand by
a variety of federal and industrial organizations. It has been well said (by R. W.
Hamming) that, “The purpose of computing is insight, not numbers.” Increasingly,
however, the purpose of computing is numbers — numbers accurate enough to
base policy decisions and hardware investments upon! Analytical investigations are
limited in applicability to relatively simple systems. Experimental approaches are
often controversial (e.g., in biology), dangerous (e.g., in global climate), prohibited
(e.g., in nuclear weapons techology), impossible to perform (e.g., in cosmology),
difficult to instrument (e.g., in automotive safety), or simply expensive (e.g., in
high energy physics). In these, and in many other areas, computational simulation
has become a critical companion to experiment. However, simulation is far from
a reliable investigative methodology in problems of multiple spatial or temporal
scales. It is not yet routinely possible to work with systems that are represented
by a number of degrees of freedom in excess of billions. Large computational plat-
forms have been provided, capable of multiple teraflop/s, but these systems often
perform at a small fraction (less than 10%; sometimes closer to 1%) of their peak
on production scientific workloads.

The architecture of the terascale systems available in the United States, built
around hierarchical distributed memory, appears hostile to conventional sequential
optimal PDE algorithms in some respects, but is ultimately suitable apart from
reservations about memory bandwidth. The distributed aspects must be overcome
with judicious combinations of message-passing and/or shared memory program
models. The hierarchical aspects must be overcome with register blocking, cache
blocking, and prefetching. Algorithms for these PDE-based simulations must be
highly concurrent, straightforward to load balance, latency tolerant, cache friendly
(with strong temporal and spatial locality of reference), and highly scalable (in
the sense of convergence rate) as problem size and processor number are increased
in proportion. The goal for algorithmic scalability is to fill up the memory of
arbitrarily large machines while preserving constant (or at most logarithmically
growing) running times with respect to a proportionally smaller problem on one
processor. Domain-decomposed multilevel methods are natural for all of these
desiderata. Domain decomposition is also natural for the software engineering of
simulation codes, although it is not within the scope of this chapter to examine
this last issue in deserved detail. Valuable extent code designed for a sequential
PDE analysis can often be “componentized” and made part of an effective domain-
decomposed, operator-split preconditioner.

A key requirement of candidate solution algorithms is mathematical optimal-
ity. This means a convergence rate as independent as possible of discretization
parameters. In practice, linear systems require a hierarchical, multilevel approach

TERASCALE IMPLICIT METHODS FOR PDES 3

to obtain rapid linear convergence. Nonlinear systems require a Newton-like ap-
proach to obtain asymptotically quadratic convergence. The concept of optimality
can also be extended into the physical modeling regime to include continuation
schemes and physics-informed preconditioning, so that multiple scale problems are
attacked with a manageable number of scales visible to the numerics at any given
stage. Ill-conditioning is often directly related to the presence of a wide range of
scales.

In this chapter, we review some of the basic algorithmic progress mentioned
above for scalable nonlinearly implicit solution of PDEs. Our approach is nonrigor-
ous, this being justified on one hand by limitations of space and scope, and on the
other by its recent success in many PDE-based “Grand Challenge” problems — “the
proof of the pudding is in the eating.” We hope that computational scientists and
engineers will find helpful paradigms for their own work and that mathematicians
will find gaps in the presentation that are worthy of theoretical examination.

Often, practicing computational modelers bring considerable insight from the
physics of a problem into the numerics, through various types of operator splitting,
in which phenomena arising from balances between subsets of the terms in the full
model are isolated. It behooves the designers of practical algorithms and software
implementations thereof to note and seek to accommodate such “tricks”. Similarly,
computer scientists possess architectural knowledge that ought to influence the
design of algorithms. Floating point operations on operands that are locally cached
are extremely cheap, whereas summoning data values from remote memories can be
the principal bottleneck of the computation. We sometimes bow to the constraints
of the architecture without mathematical justification, and let the overall execution
time, a combination of convergence rate and cost per step, be the arbiter of what
works best.

The organization of this chapter is as follows. Section 2 describes the algo-
rithmic core, Newton-Krylov-Schwarz (NKS), as well as Schur preconditioning, a
domain-decomposed alternative to Schwarz. Various extensions to this core, related
to the large-scale numerical analysis of nonlinear PDEs, are described in Section
3. Section 4 makes a brief foray into the field of optimization subject to large-
scale PDE-based constraints. This is built upon Schur preconditioning applied
algebraically, with Schwarz applied inside of Schur in the usual subdomain-by-
subdomain sense. Section 5 briefly highlights a Gordon Bell prize-winning compu-
tation based on Newton-Krylov-Schwarz algorithmics. This has been thoroughly
documented elsewhere especially in its aspect of high performance, but is sum-
marized here to emphasize the practical rewards of an NKS approach. Finally,
in Section 6 we describe the major goals of a five-year, nine-institution project,
“Terascale Optimal PDE Simulations,” which is one of the seven “Integrated Soft-
ware Infrastructure Centers” of the DOE’s “Scientific Discovery through Advanced
Computing” (SciDAC) initiative, launched in 2001. This project is built on top of
a significant base of existing software, including the PETSc library from Argonne
National Laboratory and the Hypre library from Lawrence Livermore National
Laboratory. To the extent that this chapter serves as a readable bridge to some
of the functions of these freely available packages, which are becoming increasingly
interoperable and extensible, it will serve its main purpose. It is, in effect, a sec-
ond installment of an evolving “metapaper,” the first installment of which [61] it
liberally recycles for background.

4 DAVID E. KEYES

2. The Newton-Krylov-Schwarz Family of Algorithms

To illustrate the algorithmic methodologies of this section, we consider a system
of partial differential equations that can be written in the form
(1) V% + F(u) =0,
where u is a vector of functions depending upon spatial variables x and ¢, F is
a vector of spatial differential operators acting on u, and V is a diagonal scaling
matrix with nonnegative diagonal entries. If all of the equations are “prognostic”
then V has all positive diagonal entries; but we may also accommodate the case
of entirely steady-state equations, V' = 0, or some combination of positive and
zero diagonal entries, corresponding to prognostic equations for some variables and
steady-state constraints for others. Many problems in engineering and applied
physics are so formulated, where the steady-state equations often arise from a priori
assumptions designed to suppress timescales faster than those of dynamical interest,
e.g., acoustic waves in aerodynamics, gravity waves in geophysics, Alfvén waves in
magnetohydrodynamics, etc.

Semidiscretizing in space to approximate F(u) with f(u), and in time with
implicit Euler, we get the algebraic system:

) (o + ') = (Fp)u

Higher-order temporal schemes are easily put into this framework with the incorpo-
ration of addition history vectors with appropriate weights on the right-hand side.
We are not much directly concerned with discretization or the adaptivity of the
discretization to the solution this chapter. However, much of what we pursue alge-
braically is motivated by a desire to go to higher order than the pervasive standard
of no better than first-order in time (when dealing with unsteady phenomena) and
second-order in space.

Because f may be highly nonlinear, even a steady-state numerical analysis is
often made to follow a pseudo-transient continuation until the ball of convergence
for Newton’s method for the steady-state problem is reached. In this case, time
accuracy is not an issue, and 7¢ becomes a parameter to be placed at the service of
the algorithm. Generally, a sequence of problems is solved with 7¢ — 0o as £ — oo,
£ =1,2,.... In this exposition, we lay aside all formal questions of existence and
uniqueness of such steady states, with the recognition that practicing engineers and
scientists are already “solving” such problems and know for which of the (possibly
many) solutions they are looking. For a more careful look at the dangers attendant
to well-posedness of pseudo-transient continuation, see [47].

Whether discretized time accurately or not, we are left at each time step with
a system of nonlinear algebraic equations (2), written abstractly as F*(u) = 0. We
solve these systems in sequence for each set of discretized spatial gridfunctions, u¢,
using an inexact Newton method. (Methods that generalize this lockstep approach
for advancing all the gridfunctions in time, or that possess parallelism spanning
multiple time steps are not uninteresting, but beyond the scope of this chapter.)
The resulting linear systems for the Newton corrections involving the Jacobian of
F! with respect to instantaneous or lagged iterates u*, are solved with a Krylov
method, relying only on Jacobian-vector multiplications. (Here, u®® = u‘~!, and
u* — u’, as k — oo in a Newton iteration loop on inner index k.) The Krylov

TERASCALE IMPLICIT METHODS FOR PDES 5

method needs to be preconditioned for acceptable inner iteration convergence rates,
and the preconditioning is the “make-or-break” aspect of an implicit code. The
other phases possess high concurrency and parallelize well already, if properly load
balanced, being made up of vector updates, inner products, and sparse matrix-
vector products.

The job of the preconditioner is to approximate the action of the Jacobian in-
verse in a way that does not make it the dominant consumer of memory or cycles in
the overall algorithm and (most importantly) does not introduce idleness through
chained data dependencies, as in Gaussian elimination. The true inverse of the
Jacobian is usually dense, reflecting the global Green’s function of the continuous
linearized PDE operator it approximates, and it is not obvious that a good precondi-
tioner approximating this inverse action can avoid extensive global communication.
A good preconditioner saves time and space by permitting fewer iterations in the
Krylov loop and smaller storage for the Krylov subspace than would be required
in its absence. An additive Schwarz preconditioner accomplishes this in a localized
manner, with an approximate solve in each subdomain of a partitioning of the global
PDE domain. Applying any subdomain preconditioner within an additive Schwarz
framework tends to increases floating point rates over the same preconditioner ap-
plied globally, since the smaller subdomain blocks maintain better cache residency.
Combining a Schwarz preconditioner with a Krylov iteration method inside an in-
exact Newton method leads to a synergistic parallelizable nonlinear boundary value
problem solver with a classical name: Newton-Krylov-Schwarz (NKS). In the re-
mainder of this section, we build up NKS from the outside inwards.

2.1. Inexact Newton Methods. We use the term “inexact Newton method”
to denote any nonlinear iterative method for solving F(u) = 0 through a sequence
uf = uf~! + A*6u”, where du® approximately satisfies the true Newton correction
equation

(3) F/(ub~1)sub = —F(u* 1),

in the sense that the linear residual norm ||F/(u®f~1)éuf + F(u*~1)|| is sufficiently
small. Typically the right-hand side of the linear Newton correction equation, which
is the nonlinear residual F(u*~1), is evaluated to full precision, so the inexactness
arises from incomplete convergence employing the true Jacobian, freshly evaluated
at u*~!, or from the employment of an inexact Jacobian for F’(u*~!). Typical
choices would be: (1) an implicitly defined operator whose action on a vector is
constructed from multivariate Taylor expansions of F or from automatic differenti-
ation software; (2) a matrix whose elements are constructed from finite differences
of F; (3) a matrix that is lagged (or some of whose elemental terms are lagged)
from the evaluation at some previous state u*, k¥’ < k — 1; (4) a matrix derived
from a discretization related to, but not the same as, that used for F, itself; or (5)
a matrix that has been simplified by omission of elements that are inconvenient to
a particular storage scheme or approximate parallelizable inversion process.

The first choice arises in the context of Krylov methods and leads to the nomen-
clature “Jacobian-free Newton-Krylov” [82] since the matrix elements themselves
are never formed. The latter four possibilities for economizing on the Jacobian
are common in the construction of a preconditioner for this matrix-free forward
Jacobian action. In other contexts, the third possibility above is referred to as a

6 DAVID E. KEYES

“modified Newton method” [118]. The latter two we regard as so inexact that they
are demoted to “defect correction methods” [77].

In the the first method above, the Jacobian-vector action may be approximated
by two or more function evaluations (including that of F(u*~!), itself) in a discrete
analog of Fréchet derivatives of smooth functions, for example, F'(u)v ~ #[F(u +
hv) — F(u)]. For this first-order approximation, the cost for both the residual and
the Jacobian-vector product is two residual evaluations. The parameter h is chosen
to balance approximation error and subtractive floating point cancellation error.

Another approximate Jacobian-vector product derived from the same multi-
variate Taylor expansion that underlies the finite-difference approximations above,
which is, however, free of subtractive cancellation error, has recently been rediscov-
ered and popularized [133]. It features an imaginary perturbation,

F(u+ihv) = F(u) + ihF (u)v + c20O(h?) 4+ ic30(h%),

about any point u, where F, interpreted as a complex function of a complex-valued
argument, is assumed analytic. Here, u and v are real. When F is real for real
argument — the usual case for physical situations, except when time-harmonicity
has been exploited in reducing the unsteady problem — all quantities except for 4
in the expansion above are also real; therefore, by extracting real and imaginary
parts, we can identify F(u) = Re[F(u + ihv)] + O(h?) and F/(u)v = Im[F(u +
ihv)]/h + O(h?). Special care is needed for discretizations with flux limiters and
any other nondifferentiable features of F(u), but with minor code alterations, both
F(u) and F/(u)v are available without subtraction from a single complex evaluation
of F(u). The cost of complex arithmetic in the residual evaluation is approximately
four times that of real arithmetic. (This assumes an equal number of multiplies and
adds in the evaluation of F(u) and equal cost for each. Complex multiplies require
six real floating operations and adds two.) Implications for evaluation of sensitivity
derivatives by this technique are explored in [101].

Alternatively, using a package such as ADIFOR [13] or ADIC [14], the Jacobian
vector product can be evaluated simultaneously with F at a cost approximately
equal to 2.5 times the cost of the residual, itself. This ratio has been improving
with the sophistication of automatic differentiation (AD) software technology to
the point where AD now provides poses the best trade-off between accuracy and
cost for Jacobian-vector products.

In method (2) above, the approximate Jacobian is explicitly constructed, element-
by-element, from a sequence of finite differences (usually chosen with the aid of
graph coloring on the discrete stencil), each of which supplies one or more columns
of F/(u), for example, [F'(u)];; = g—i?(u) ~ +|Fi(u+ he;) — Fi(u)], where h is a
differencing parameter and e; is the 4" unit vector.

Inexact Newton methods require a strategy for terminating the inner linear
iterations, in effect choosing tolerance 7y, in

(4) [F (1) + F' () (u — uf] < e[F)]
One of the Eisenstat-Walker [50] criteria is

(5) L O B S e
[()] :

TERASCALE IMPLICIT METHODS FOR PDES 7

Ajmani et al. [1] adopt: 7, = logﬁ. Venkatakrishnan & Mavriplis [130] adaptively
choose 1 so that work and storage per Newton step are bounded at some fixed
expenditure.

The first strategy is theoretically elegant and appears to assure the minimum
linear iteration work consistent with a guaranteed asymptotically superlinear con-
vergence. We are satisfied with it in some contexts. However, as 7 contracts with
convergence according to (3) the resulting stringent linear convergence requirements
may be difficult to meet in large, ill-conditioned problems. Moreover, superlinear
nonlinear convergence may be too expensive a goal in practice, where the objective
is to minimize execution time rather than number of inexact Newton steps.

The strategy of bounding work and storage per Newton step seems common
in highly resolved problems whose memory requirements approach the maximum
available, since the size of linear algebra workspaces may grow with k.

Experience shows that a hybrid approach is the often most cost-effective. Such
an approach involves an initially loose convergence criterion (to avoid “oversolving,”
in the sense of [50]) evolving to a tighter criterion, but subject to a linear-work-
per-step bound (in the sense of [130]). For problems sufficiently small and well
conditioned (linearly) to apply (5), overall cost is not as important.

Historical remarks. The pioneering work of Dembo, Eisenstat, & Steihaug [44]
showed that properly tuned inexact Newton methods can save enormous amounts
of work (through approximating the Newton corrections, which can in turn permit
approximation of the Jacobian matrix) over a sequence of Newton iterations, while
still converging quadratically. This theory was revisited to provide inexpensive,
constructive formulae for the sequence of inexact tolerances by Eisenstat & Walker
[60]. Smooke [118] and Schreiber & Keller [115] devised Newton-chord methods
with models for cost-effective frequency of Jacobian reevaluation. The use of vari-
ous approximate Newton methods in computational fluid dynamics (CFD) emerged
independently in various regimes. Vanka [128] implemented Newton solvers in
primitive-variable Navier-Stokes problems. Venkatakrishnan [129], Orkwis [105],
and Whitfield & Taylor [132] established Newton-like methods in difficult transonic
problems. These works employed various direct or stationary iterative methods for
the linear Newton correction equation, and were based on explicit matrix represen-
tations of the Jacobian operator.

2.2. Newton-Krylov Methods. A Newton-Krylov (NK) method uses a Kry-
lov method, such as GMRES [113], to solve (3) for fu’. From a computational point
of view, one of the most important characteristics of a Krylov method for the linear
system Ax = b is that information about the matrix A needs to be accessed only in
the form of matrix-vector products in a relatively small number of carefully chosen
directions. When the matrix A represents the Jacobian of a discretized system of
PDEsS, each of these matrix-vector products is similar in computational and com-
munication cost to a stencil update phase (or “global flux balance”) of an explicit
method applied to the same set of discrete conservation equations or to a single
finest-grid “work unit” in a multigrid method. NK methods are suited for nonlinear
problems in which it is unreasonable to compute or store a true full Jacobian, where
the action of A can be approximated by discrete directional derivatives.

Some Krylov methods for nonsymmetric problems require matrix-vector prod-
ucts with A7 as well as A [112]. It does not seem possible to approximate the
action of AT from finite differences of the original function evaluation, though it is

8 DAVID E. KEYES

possible from the latest versions of automatic differentiation packages, employing
the so-called “reverse mode” [55]. The reverse mode computation of Jacobian-
transpose-vector products is generally more expensive than the forward mode for
the Jacobian-vector product, but is practically affordable in some PDE contexts.
Other nonsymmetric Krylov solvers, such as CGS [120], BiCGSTAB [127], and
TFQMR [53] could be substituted for GMRES and converge about as well in terms
of the total number of matrix-vector products. In our experience with model prob-
lems (see, e.g., [76]), most such methods employ two matrix-vector products per
step and converge in about half as many steps. It should be borne in mind, however,
that their behaviors can differ wildly, and in nonuniformly rankable ways, for spe-
cially chosen problems [100]. Our experience with such solvers in the Jacobian-free
NK context is less favorable than that with GMRES. They have the advantage of
requiring less memory, and the important potential of requiring fewer global reduc-
tions (for inner products), but the disadvantage of nonmonotonic and, in some cases,
wildly oscillating residual norm histories, leading to decreased numerical stability.
Another advantage of GMRES is its use of matrix-vector products with unit-norm
vectors v, which tend to be well suited for finite-difference approximations involving
scale-sensitive perturbations, for example, F(u + hv) [93].

We advocate using NK in a split-discretization formulation, in which econo-
mizations are taken in the left-hand side preconditioner blocks of J relative to the
more accurate, physical discretization-dictated right-hand operator for J. Exam-
ples of such economizations include: sacrificed coupling for process concurrency
[78], segregation of physics into successive phases with simple structure (operator-
splitting) [7], the Jacobian of a lower-order discretization for fewer nonzeros and
fewer colors in a minimal coloring [71], the Jacobian of a related discretization
allowing “fast” solves [20], a Jacobian with lagged values for any terms that are
expensive to compute or small or both, and a Jacobian stored in half precision for
superior (nearly doubled) memory bandwidth, as measured in words per second, in
the bandwidth-limited linear algebra routines of a sparse, unstructured PDE solver
[60].

Historical remarks. The advent of Krylov iterative methods (see, e.g., [112] for
a survey) inside of inexact Newton iterations in a matrix-free context can be traced
to the ODE-oriented papers of Gear & Saad [54], Chan & Jackson [41], and Brown
& Hindmarsh [19] and the PDE-oriented work of Brown & Saad [20]. (The term
“Newton-Krylov” seems first to have been applied to such problems in [20].) The
GMRES [113] method was firmly established in CFD following the work of Wigton,
Yu, & Young [134] and Johann, Hughes, & Shakib [67, 116]. Venkatakrishnan &
Mavriplis showed in [130] that NK methods (preconditioned with a global incom-
plete factorization) were competitive with multigrid methods for large-scale CFD
problems; a similar comparison for the matrix-free form of such methods was given
by Keyes in [77]. Various practical aspects of NK methods in CFD were explored
in [1, 8, 66, 93, 92, 102, 111, 121, 123]. Newton-Krylov has been demonstrated
to be an effective implicit solver for large-scale nonlinear problems derived from
PDEs (see, e.g., P. Brown and collaborators at LLNL [21, 68] and D. Knoll and
collaborators at LANL [88, 94]). It has been applied to problems in aerodynam-
ics, radiation transport, porous media, semiconductors, geophysics, astrophysical

TERASCALE IMPLICIT METHODS FOR PDES 9

MHD, population dynamics, and other fields. It has been implemented in a paral-
lel matrix-free object-oriented framework, including both FD and AD distributed
matvecs, in PETSc software from Argonne [4].

2.3. Newton-Krylov-Schwarz Methods. A Newton-Krylov-Schwarz (NKS)
method combines a Newton-Krylov method, such as nonlinear GMRES [134], with
a Krylov-Schwarz (KS) method, such as restricted additive Schwarz [36]. If the Ja-
cobian A is ill-conditioned, the Krylov method will require an unacceptably large
number of iterations. In order to control the number of Krylov iterations, while
obtaining concurrency proportional to the number of processors, we precondition
them with domain-decomposed additive Schwarz methods [117]. The system can
be transformed into the equivalent form B~'Axz = B~'b through the action of a
preconditioner, B, whose inverse action approximates that of A, but at smaller
cost. It is in the choice of preconditioning that the battle for low computational
cost and scalable parallelism is usually won or lost. In KS methods, the precondi-
tioning is introduced on a subdomain-by-subdomain basis through a conveniently
computable approximation to a local Jacobian. Such Schwarz-type preconditioning
provides good data locality for parallel implementations over a range of parallel
granularities, allowing significant architectural adaptability.

Schwarz methods [23, 48, 117, 136] create concurrency at a desired granular-
ity algorithmically and explicitly through partitioning, without the necessity of any
code dependence analysis or special compiler. Generically, in continuous or discrete
settings, Schwarz partitions a solution space into n subspaces, possibly overlapping,
whose union is the original space, and forms an approximate inverse of the operator
in each subspace. Algebraically, to solve the discrete linear system, Az = f, let
Boolean rectangular matrix R; extract the i*" subset of the elements of z defining
an algebraic subspace: ; = R;x, and let A; = R; ART be invertible within the i*}
subspace. Then the Schwarz approximate inverse, B~1, is defined as i RiTA; LR;.
From the PDE perspective, subspace decomposition is domain decomposition. We
form B~! ~ A~! out of (approximate) local solves on (possibly overlapping) sub-
domains, as in Figure 1. This can be used to iterate in a stationary way, as a
splitting matrix: 2% = (I — B~'A)2*~1 + B~1f. However, since p(I — B~ 'A)
may be greater than unity in general, this additive splitting may not converge as a
stationary iteration. “Multiplicative” Schwarz methods (Gauss-Seidel-like, relative
to the Jacobi-like “additive” above) can be proved convergent when A derives from
an elliptic PDE, under certain partitionings.

In the grid-based context of a PDE, Boolean operators R; and RT,i =1,...,n,
represent gather and scatter (communication) operations, mapping between a global
vector and its i*" subdomain support. When A derives from an elliptic operator and
R; is the characteristic function of unknowns in a subdomain, optimal convergence
(independent of dim(z) and the number of partitions) can be proved, with the
addition of a coarse grid, which is denoted with subscript “0”: B! = ROTAa 'Ro+
Sis0 BTA7'R; [23]. Here, Ry is a conventional geometrically based multilevel
interpolation operator. It is an important freedom in practical implementations
that the coarse grid space need not be related to the fine grid space or to the
subdomain partitioning.

The A; (i > 0) in B~ are often replaced with inexact solves in practice. The
exact forward matrix-vector action of A in B71A is still required, even if inexact
solves are employed in the preconditioner.

10 DAVID E. KEYES

y .
H ¢ 0
...... -Q’IL
Q;
T
EQi i ||'"|E EI___II T jS
! O 0 T e :Qj !
' I 10 o 1| I '
: I 1 oo 1| I .
! | T o 1l | 1
: [T R R TR | N R | :

FiGURE 1. Upper: A domain € partitioned into nine overlapping
subdomains, §2;, extended slightly by overlapping to subdomains
2, showing the scales of the mesh spacing (h), the subdomain over-
lap (6), and the subdomain diameter (H). Lower: Two adjacent
subdomains with common edge I" pulled apart to show overlap re-
gions as separate buffers, which are implemented in the local data
structures of each.

Condition number estimates for B~ A are given in the first column of Table 1.
The two-level Schwarz method with generous overlap has a condition number that
is independent of the fineness of the discretization and the granularity of the de-
composition, which implies perfect algorithmic scalability. However, there is an
increasing implementation overhead in the coarse-grid solution required in the two-
level method that offsets this perfect algorithmic scalability. In practice, a one-level
method is often used, since it is amenable to a perfectly scalable implementation.
Alternatively, a two-level method is used but the coarse level is solved only ap-
proximately, in a trade-off that depends upon the application and the architecture.
These condition number results are extensible to nonself-adjointness, mild indefi-
niteness, and inexact subdomain solvers. The theory requires a “sufficiently fine”
coarse mesh, H, for the first two of these extensions, but computational experience
shows that the theory is often pessimistic.

We use the restricted additive Schwarz Method (RASM), which eliminates in-
terprocess communication during the interpolation phase of the additive Schwarz
technique [36]. In particular, if we decompose a problem into a set of possibly over-
lapping subdomains €;, the conventional additive Schwarz method can be expressed
as

(6) AI;;M = ZRiTAi_lRiv

TERASCALE IMPLICIT METHODS FOR PDES 11

where the three-phase preconditioning process consists of first collecting data from
neighboring subdomains via global-to-local restriction operators R;, then perform-
ing a local linear solve on each subdomain A; ! and finally sending partial solutions
to neighboring subdomains via the local-to-global prolongation operators R;T. The
RASM preconditioner is expressed in operator notation as

(7) M}E}xSM = ZR;TAflRi-

It performs a complete restriction operation but does not use any communication
during the interpolation phase, R;T. This provides the obvious benefit of a 50% re-
duction in nearest-neighbor communication overhead. In addition, experimentally,
it preconditions better than the original additive Schwarz method over a broad class
of problems [36], for reasons that are beginning to be understood [26].

Although the spectral radius, p(I — B~'A), may exceed unity, the spectrum,
o(B71A), is profoundly clustered, so Krylov acceleration methods should work
well on the preconditioned solution of B~'Axz = B~!f. Krylov-Schwarz methods
typically converge in a number of iterations that scales as the square-root of the
condition number of the Schwarz-preconditioned system. For convergence scala-
bility estimates, assume one subdomain per processor in a d-dimensional isotropic
problem, where N = h=% and P = H~?. Then iteration counts may be estimated
as in the last two columns of Table 1.

TABLE 1. Theoretical condition number estimates (B~ !A), for
self-adjoint positive-definite elliptic problems [117] and corre-
sponding iteration count estimates for Krylov-Schwarz based on
an idealized isotropic partitioning of the domain in dimensions 2 or 3.

Preconditioning | w(B7'4) 2D lter. 3D lIter.
Point Jacobi O(h—2?) O(NY/?) O(NY/3)
Domain Jacobi O((hH)™') O((NP)'/*) O(NP)Y%)
I-level Additive Schwarz | O(H?) o(P'/?) O(P'/?)
2-level Additive Schwarz o) o) oO(1)

The proof of these estimates is generally approached via an algebra of projection
operators, P; = RiTA;lRiA. The ratio of upper bound to lower bound of the
spectrum of the sum of the orthogonal projections P; is an estimate of the condition
number for M ~'A = 3. P,. Since ||P|| < 1, the upper bound follows easily from
the geometry of the decomposition and is a generally a constant related to the
number of colors required to color the subdomains. The lower bound depends
crucially upon a good partition of the solution space. Without a coarse subspace to
support the solution at subdomain boundaries, the fine space contributions must
fall rapidly to zero from finite values in the subdomain interiors, resulting in high
H*' “energy” inversely proportional to the overlap distance over which the solutions
must decay.

For simple intuition behind this table consider the following: errors propagate
from the interior to the boundary in steps that are proportional to the largest im-
plicit aggregate in the preconditioner, whether pointwise (in V) or subdomainwise
(in P). The use of overlap in going from Domain Jacobi to Additive Schwarz avoids

12 DAVID E. KEYES

the introduction of high energy at near discontinuities at subdomain boundaries.
The two-level method projects out low-wavenumber errors at the price of solving a
global problem.

Only the two-level method scales perfectly in convergence rate (constant, in-
dependent of N and P), like a traditional multilevel iterative method [17, 18, 62,
125]. However, the two-level method shares with multilevel methods a nonscalable
cost-per-iteration from the necessity of solving a coarse-grid system of size O(P).
Unlike recursive multilevel methods, a two-level Schwarz method may have a rather
fine coarse grid, for example, H = (’)(hl/ 2), which potentially makes it less scalable
overall. Parallelizing the coarse grid solve is necessary. Neither extreme of a fully
distributed or a fully redundant coarse solve is optimal, but rather something in
between. When reuse is possible, storing a parallel inverse can be cost-effective
[126].

When it appears additively in the Schwarz preconditioner, the coarse grid in-
jects some work that potentially spoils the “single-program, multiple data” (SPMD)
parallel programming paradigm, in which each processor runs an identical image
over local data. For instance, the SPMD model would not hold if one subset of pro-
cessors worked on the coarse grid problem concurrently to the others each working
on subdomains. Therefore, in two-level SPMD implementations, other Schwarz
preconditioner polynomials than the purely additive are used in practice. We may
define a preconditioner that solves the fine subdomains concurrently in the stan-
dard way, and then assembles a new residual and solves the coarse grid in a separate
phase. The map in this case is

u<—u+ZA;1(f—Au)
i=1

followed by
u—u+ Ayt (f — Au).
This leads to the method denoted “Hybrid II” in [117]:
n
Bl =At+(I= At A A,
i=1
Of course, the subspace inverses are typically done approximately, as in the purely
additive case.

Readers uncomfortable with the appearance of the Schwarz formula A~ ! ~
> R,-TA; 'R;, implying that the inverse of the sum is well approximated by the
sum of the inverses in subspaces, may benefit from recalling an exact result from
eigenanalysis. Let {r;}?, be a complete set of orthonormal row (left) eigenvec-
tors for an SPD matrix A. Then r;A = a;r;, or a; = r;Ar}, for corresponding
eigenvalues a;. Then, we have the representation of A as a sum over subspaces,

TERASCALE IMPLICIT METHODS FOR PDES 13

This is nothing but the Schwarz formula! In practice, invariant subspaces are far too
expensive to obtain for practical use of the Schwarz formula, and their basis vectors
are general globally dense, resulting in too much storage and communication in
forming restrictions and prolongations. Characteristic subspaces of subdomains, in
contrast, provide locality and sparsity, but are not invariant upon multiplication by
A, since the stencils overlap subdomain boundaries. Choosing good decompositions
is a balance between conditioning and parallel complexity, in practice. It is a
mathematical art that has attracted many great minds, and resulted in many near
optimal algorithms enough to continue to feed an annual conference with 14
volumes to date and a community whose collective homepage can be found at
http://www.ddm.org/.

Historical remarks. The application of domain decomposition-based precondi-
tioners to nonlinearly implicit CFD algorithms has been our focus for over a decade
[80]. Cai’s doctoral dissertation and derivatives [23, 24, 25, 37, 38, 29] extended
overlapping Schwarz theory to the nonselfadjoint operators of convection-diffusion
problems and demonstrated their optimality — even without the benefit of a coarse
grid component — in the parabolic case, and to indefinite operators.

The term “Newton-Krylov-Schwarz” was coined in [31]. NKS methods have
been taken up by Cai and collaborators [27, 28, 30, 34], Knoll and collaborators
[83, 86, 87, 93], Pernice and collaborators [108], and Tidriri [122, 124], among
many others. Schwarz-type domain decomposition methods have been extensively
developed for finite difference/element/volume PDE discretizations over the past
decade, as reported in the annual proceedings of the international conferences on
domain decomposition methods, of which the most recent volume is [43].

One of the main contemporary motivations for domain decomposition meth-
ods is divide-and-conquer concurrency. Scalability studies based on dimensionless
ratios of communication and computation parameters for message-passing aspects
of domain-decomposed iterative methods appeared in [56, 57]. Recently, the mo-
tivation for domain decomposition even on sequential computers with deep mem-
ory hierarchies has become very apparent [131]. Now that Jacobian-explicit and
Jacobian-free flavors of NKS are available in the PETSc [6] and AZTEC [65],
NKSOL [20], NITSOL [109], and KINSOL [64] toolkits, its use is widespread.

2.4. Newton-Krylov-Schur Methods. For subsequent use in the context
of PDE-constrained optimization, we consider an alternative to Schwarz precon-
ditioning, called Schur preconditioning, which derives from partitioned Gaussian
elimination.

In the domain decomposition context, Gaussian elimination can be employed
to construct, by explicit condensation of the degrees of freedom on the interior of
subdomains, lower-dimensional systems for degrees of freedom that act as sepa-
rators between subdomains. In the literature of continuous differential operators,
this is the Poincare-Steklov operator; in linear algebra, it is the Schur complement
or capacitance matrix. Przemieniecki [110] provided an early formalization in me-
chanics, called “substructuring,” and Kron [90] did the same for electrical networks,
coining the term “diakoptics” (meaning “method of tearing”). Przemieniecki was
surprisingly prescient in writing, “From past experiences [...], it is evident that
some form of structural partitioning is usually necessary either because different
methods of analysis are used on different structural components or because of the
limitations imposed by the capacity of digital computers. Even when the next

14 DAVID E. KEYES

generation of faster and larger digital computers becomes a well-established tool
[...], it seems rather doubtful, because of the large number of unknowns, that the
substructure displacement method of analysis would be wholly superseded by an
overall analysis carried out on the complete structure” [110].

An equivalence can be demonstrated between the Schur and Schwarz approaches
in simple cases, in the sense that the Schwarz iterates are produced when the sub-
domain interior solutions are reconstructed from the Schur iterates on the separator
[15, 40]. This equivalence requires exact subdomain solves on each subdomain, a
price which is usually relaxed when Schwarz is used in practice, in the interest of
optimal complexity.

Schur methods are based on a partitioning of the grid that orders the separator
nodes last. Let the degrees of freedom associated with the separators be denoted
up and the unknowns associated with the substructures thus created be denoted
uy. This partition induces a permutation of the discrete system Au = f, as follows:

|:AI AIB:|<UI>:<JCI)
Apr Asp uB fB)’

Ay is block diagonal, with a block for each substructure. Note that because the
separator nodes correspond to a physically lower dimensional operator, the algebraic
dimension of Ap is small in a relative sense. The Schur complement S = A —
Ap IAflA 1B, arises formally from the factorization:

Ar Arm
A = =
®) { Apr Ag }

I 0 Ar 0 I A;'App
e I e
Its significance is that once Sup = fAB = fp— ABIAflfI is solved for u g, the block
diagonal system Aju; = f} = fr — Arpup may be solved for uj.

Because the Schur complement system itself is expensive to construct, though
its action on individual vectors is relatively inexpensive, Krylov iteration (e.g.,
conjugate gradients) is preferred to direct Gaussian elimination, if a good precon-
ditioner can be derived. For the case of domain decomposition on elliptic bound-
ary value problems, considerable theory from the continuous case can be used to
construct optimal preconditioners, in the sense that the condition number of the
preconditioned systems is independent of the discretization parameter for a simple
interface.

For complex interfaces, it is useful to build up a Schwarz preconditioner for
the Schur complement by means of adding together (in appropriate subspaces) the
action of the simple interface preconditioners on overlapping partitions of the com-
posite interface. In analogy with the Boolean restriction operators defined above
for extracting subdomains from the full domain, let us define Boolean restriction
operators for extracting blocks of the interfacial Schur complement corresponding
to (possibly overlapping) subsets of the interface, Q;, and let S; = Q;SQ7. Then,
a preconditioner for the Schur complement in a so-called “Neumann-Neumann”
algorithm can tentatively be written in the Schwarz form

M =>"DQ7S7'QiDi.

TERASCALE IMPLICIT METHODS FOR PDES 15

Here, D; is a diagonal weighting matrix with a diagonal value that is inverse to
the number of times a degree of freedom appears in different overlapping interfacial
subsets. In general, however, the S, ! may be singular, so a coarse space must
be introduced that takes care of components of the vector being multiplied in the
null space. A hybrid multiplicative-additive Schwarz preconditioner for the Schur
complement can thereby be constructed from the expression for M~ above and
a coarse space inversion, one famous symmetrized form of which was named the
“balancing Neumann-Neumann” preconditioner by Mandel [49, 91]. A disadvan-
tage of all methods that work directly with the Schur complement is the need to
perform exact subdomain solves to form its action. In Neumann-Neumann algo-
rithms, two such solves are performed per subdomain per iteration, in addition to
the two coarse solves performed sequentially with respect to the subdomain solves.
However, Neumann-Neumann methods, especially in the form of the Finite Element
Tearing and Interconnection (FETT) algorithm [10] and the Primal-Dual Finite El-
ement Tearing and Interconnection (FETI-DP) algorithm [52], have become the
most important parallel methods in structural analysis today.

In [79], it was shown (for the symmetric, e.g., elliptic, case) that a Krylov
iteration on the reduced Schur complement system, S, preconditioned with a given
M1, is mathematically equivalent to the same Krylov iteration on the full system
A, with M replacing S in the lower right corner of the diagonal matrix in (8), in
the sense that iterates for u g, suitably extended with backsolves for the eliminated
variables uy, are the same iterate-for-iterate as those of the original full system.
This observation was used to motivate building a full system preconditioner from
a good preconditioner for the Schur complement on the subdomain boundaries
and approximate solvers in the subdomains. In this case, the inverse action of Aj
never needs to be formed exactly, as it does when the interior degrees of freedom
are explcitly eliminated. Since this action would otherwise be the term of leading
computational complexity, a new class of preconditioners is created that remains
in the full space but uses subspace components in an approximate block Gaussian
elimination. This observation is at the heart of the methods discussed in Section 4.

A mathematical signature of the data-parallel Schwarz and Schur methods is
a triple product of matrix operators consisting of the inverse of a square opera-
tor in the middle, with “rectangular” operators on either side that map between
spaces of different dimensions. A Schur complement contains such triple products
in which the middle term may be of higher dimension than the terms of the sum,
itself. Roughly speaking, such a term is contributed for each subdomain adjacent
to each separator segment, and the net action of all such terms on a vector defined
over the “wirebasket” that remains after subdomain elimination can be evaluated
with subdomain-scale concurrency. A Schwarz preconditioner contains such triple
products in which the middle term is of lower dimension than the terms of the
sum. Again, the net action of all such terms on a vector defined over the total do-
main can be evaluated with subdomain-scale concurrency. A key aspect of domain
decomposition convergence theory is that, for many problem classes, the number
of iterations required by the Krylov method (essentially, the number of times the
preconditioned action has to be evaluated) depends only weakly on the granularity
of the decomposition into subdomains. This leaves the parallel granularity at the
disposal of architectural considerations.

16 DAVID E. KEYES

2.5. Contrast of NKS with Defect Correction. A typical legacy nonlinear
PDE code may employ a defect correction solver rather than Newton’s method. To
solve the sequence of nonlinear problems (2), a left-hand-side matrix (related to a
Jacobian) is created in whose construction computational short-cuts are employed.
For instance, in the context of convection, it may be stabilized by a degree of first-
order upwinding that would not be acceptable in the discretization of the residual
itself. We denote this generic distinction in the update equation (9) by subscripting
the residual “high” and the left-hand-side matrix “low”:

(9) Jiowdu = _fhigh-

Often, Jj, is based on a low-accuracy residual for f:
Vo 0w

(10) Tiow = — + =52

The inconsistency of the left- and right-hand sides prevents the use of large time
steps, 7. Using Jj,, (or, more typically, some inexpensive approximation thereto,
denoted Jjo) as a preconditioner, we replace (9) with

(11) (Jiow) ™" Tnighdu = —(Jiow) ™ Ehigh,

in which the action of Jp;g5 on a vector is obtained through Fréchet or automatic
differentiation using fy;4,. Note that the operators on both sides of (11) are based
on consistent high-order discretizations; hence, time steps can be advanced to ar-
bitrarily large values, recovering a true Newton method in the limit.

From the viewpoint of linear convergence rate, it would seem ideal to use a
preconditioner based on Jpign in (11), but such a preconditioner can be much
more expensive and memory-consumptive than one based on Jjoy. In (11), we have
merely shifted the inconsistency from the nonlinear to the linear iteration. From the
point of overall execution time, it is not obvious which is better: many inexpensive
nonlinear iterations in which the inner linear problem (9) is preconditioned by Jig,
or fewer more expensive nonlinear iterations containing the inner problem (11). The
answer is strongly affected by the sequence of time steps employed in (10). When
the parameter 7 is small, Jjo,, and Jp,gn are both dominated by the same diagonal
matrix, and the extra costs of working with Jp;en in the preconditioner may be
unjustified.

The potential for (11) to outperform (9) is demonstrated in the CFD context
in [34, 77]. In [58], the deterioration with advancing Courant-Friedrichs-Lewy
(CFL) number of a solver based on approximate factorization of the operator in
(10) is contrasted with an advancing CFL approach based on (11). Dimensionally
split approximate factorization schemes also require low CFL number. In spite
of this disadvantage in their rate of convergence to steady states, dimensionally
split schemes continue to enjoy memory advantages over more implicit schemes,
the fully matrix-free work of Qin, Ludlow, & Shaw [111] being a recent example.
A range of options for Jio, and Jhigs is explored in the context of CFD in [66]. The
combination of choice for obtaining low-residual steady-state solutions (designated
“ALLMUS” therein) corresponds to the use of Jyig, on the left-hand side, as well
as the right, as in (11).

It should be borne in mind that the margin of superiority of (11) over less
nonlinearly implicit schemes is very sensitive to the frequency of reevaluation (and
refactorization) of Jj,, and to the intimate coupling of the optimal reevaluation

TERASCALE IMPLICIT METHODS FOR PDES 17

frequency with CFL advancement strategy and Krylov subspace size. Evaluation
and refactorization of Jj,, are still expensive, comparable in arithmetic cost to the
evaluation of frign and typically more expensive in terms of communication. The
frequency of Jjn, evaluation is a relatively neglected topic in the literature, since
it is so problem dependent. An empirical sequential cost model is outlined in [83].

Other tuning parameters with a strong influence on the performance of (11) are
those that define the difference between Jj,, and Jl:,w. These include parameters
defining incomplete factorization fill (whether position-based or threshold-based);
relaxation or multilevel method parameters if the preconditioning is implemented
by a number of sweeps of an iterative method; and, in the parallel context, the
number of subdomains, subdomain overlap, the use of a coarse grid in the Schwarz
method, and so forth. These algorithmic tuning choices are, in principle, amenable
to systematic optimization with direct search methods [46] and should be explored
before undertaking a series of “production” runs.

2.6. Contrast of Domain Decomposition with Other Decompositions.
Before leaving this section, it is worthwhile to summarize the architectural advan-
tages of Schwarz-type domain decomposition methods vis-d-vis other mathemati-
cally useful decompositions.

Given the operator equation

Lu=fin Q

and a desire for either concurrent or sequential “divide-and-conquer,” one can devise
operator decompositions
L= E L,
J

function-space decompositions
F= Fids u=> u;e;
J J

or domain decompositions
Q=U; Q.
Let us contrast an example of each on the parabolic PDE in two space dimen-
sions

ou
(12) N + Ly + Lylu= f(z,y,t) in Q,
with u = 0 on 99, where £, = —Za,(z,y) 2 + ba(7,y) 2, (az > 0) and with a
corresponding form for £,. Upon implicit time discretization
(&5 + Lo+ Ly = [H]uld +f
/s

we get an elliptic problem at each time step.

The Alternating Direction Implicit (ADI) method is an example of operator de-
composition. Proceeding in half-steps, one each devoted to the - and y-directions,
we write

I I
- (e+1/2) — | = _ (0)
[At/2+£4u [At/Q Ey]u +f

I I
- (e+1) _ | = (6+1/2)
[At/Q—Fﬁy}u [At/2 ﬁm}u + f.

18 DAVID E. KEYES

The iteration matrix,
-1 —1
(PRI NS R 7S

implies four sequential substeps per time step, two sparse matrix-vector multiplies
and two sets of unidirectional bandsolves. If the data is alternately laid out in
unidirectional slabs on the processors, so as to allow each set of unidirectional
bandsolves to be executed independently, then we have perfect parallelism within
substeps, but, global data exchanges between substeps. In other words, computation
and communication each scale with the bulk size of the data of the problem.

A Fourier or spectral method is an example of a function-space decomposition.
We expand

N
u(w,y,t) =Y a;(t)é;(x,y).
j=1
Enforcing Galerkin conditions on (12) with the basis functions ¢;, we get

d
E(%U) = (¢, Lu) + (¢, f), i=1,...,N.

Plugging the expansion into the Galerkin form,
N N

Z(¢la ¢])dditj = Z(¢ia£¢j)aj + (¢27f)52 = 15 ey N.

j=1 j=1
Inverting the mass matrix, M = [(¢;, ¢;)] on both sides, and denoting the stiffness
matrix by K = [(¢;,L¢;)], we get a set of ordinary differential equations for the
expansion coefficients:

a=M'Ka+ M 1g.

If the basis functions are orthogonal and diagonalize the operator, then M and K are
diagonal, and these equations perfectly decouple, creating N-fold concurrency for
the evolution of the spectral components. However, in applications, it is necessary
to frequently reconstitute the physical variable w. This is true for interpreting
or visualizing the model and also for handling possible additional terms of the
PDE in physical space in a “pseudo-spectral” approach, since it is unlikely that
practically arising operators readily lead to orthogonal eigenfunctions for which
there are fast transforms. Transforming back and forth from physical to spectral
space on each iteration leads, again, to an algorithm where the computation and
the communication together scale with the problem size, and there is all-to-all
communication.

An additive Schwarz domain decomposition method for this problem has been
described in subsection 2.3. We define subdomain restriction operators, R;, and
extension operators, R}, for subdomains i = 1,..., N, and replace Au = f, by
B 'Au = B7'f, where B! = 3. RT(A;)"'R; and solve by a Krylov method.
There are several Krylov steps per time step, each requiring a matrix-vector multi-
plies with B~'A. Due to the concurrency implied by the sum, there is parallelism
on each subregion. However the dominant communication is nearest-neighbor data
exchange, whose size scales as the perimeter (resp., surface in three dimensions),
compared to the computation, whose size scales as the area (resp., volume). There-
fore, domain decomposition possesses excellent scalability properties with respect
to implementation on distributed memory computers. There is a need for a small

TERASCALE IMPLICIT METHODS FOR PDES 19

global sparse linear system solve in some problems, to obtain mathematical opti-
mality. (This is not necessary for the parabolic problem considered above.) Though
this small problem requires global communication (either to set up redundant in-
stances, solved concurrently, or to carry out a collaborative solution) and demands
analysis and extreme care to keep subdominant, it escapes the bulk communication
burdens of the other approaches.

3. Extensions to Newton-Krylov-Schwarz

In this section, we consider transformations of various forms of the vanilla NKS
method for the discretized rootfinding problem. Some of these methods create a
sequence of modified problems and others work directly with the original discretiza-
tion, through advanced preconditioning.

The lack of convergence robustness of Newton’s method is frequently bemoaned.
In practice, globalization strategies leading from a convenient initial iterate into the
ball of convergence of Newton’s method around the desired root are required. For
problems arising from differential equations, there are many choices. The issue of
globalization is a much more vexing for steady boundary value problems (BVPs)
than for initial value problems (IVPs), where accurately following the physical tran-
sient often guarantees a good initial guess and a diagonally dominant Jacobian on
each time step. Based on the robustness of IVP solvers, BVPs are often approached
through a false time-stepping.

3.1. Pseudo-transient Continuation. Pseudo-transient continuation solves
the steady-state problem f(u) = 0, for which a solution is presumed to exist,
through a series of problems

-1
(13) Fz(u)z%+f(u):0, (=1,2,...,
which are derived from a method-of-lines model
ou
T —_f
ot (W),

each of which is solved (approximately) for u’. The physical transient is followed
when the time step 7¢ is sufficiently small, and the problems at each time step are
well solved. leading the iterations through a physically feasible sequence of states.
Furthermore, the Jacobians associated with F¢(u) = 0 are well conditioned when
7% is small. See [51] for an analysis of this effect based on the spectrum of the
preconditioned operator in the case of the constant coefficient heat equation.

7¢ is advanced from 7° < 1 to 7 — oo as £ — oo, so that u‘ approaches
the root of f(u) = 0. We emphasize that pseudo-transient continuation does not
require reduction in ||f(u’)|| at each step, as do typical linesearch or trust region
globalization strategies [45]; it can “climb hills.”

Strict Newton iteration applied to (13) yields

(14) ubF =u" ! — (T4 7 (WOF) b () — Y, k=0,1,....

If we take u®® = u’~! (the simplest initial iterate), then the first correction step is
1

(15) ubl =uft - (ﬁl + f/(u=h) T .

In some problems, it may be required to iterate the Newton corrector (14) more

than once [66] or until it converges (limy_,o, u®* = u®), thus leading in the limit

20 DAVID E. KEYES

to following the transient implicitly. However, we generally prefer to advance in
pseudo-time after just one Newton step (15).

A time-stepping scheme is required to complete the algorithm. One choice is
successive evolution-relaxation (SER) [99], which lets the time step grow in inverse
proportion to residual norm progress:

1 [[F?)

LACSliN

Alternatively, a temporal truncation error strategy bounds the maximum temporal
truncation error in each individual component, based on a local estimate for the
leading term of the the error. (The idea is not to control the error, per se, but
to control the stepsize through its relationship to the error.) Another approach
sets target maximum magnitudes for change in each component of the state vector
and adjusts the time step so as to bring the last measured change to the target.
All such devices are “clipped” into a range about the current time step in practice.
Typically, the time step is not allowed to more than double in a favorably converging
situation, or to be reduced by more than a factor of ten in an unfavorable one, unless
feasibility is at stake, in which case the time step may be drastically cut [74].

The globalization theory of [74] employs a three-phase approach, whose phases
in practice may or may not be cleanly demarcated in residual norm convergence
plots. Initially, [[u® — u*|| > 1 and 7Y < 1. During an “induction phase” the
solution is marched in a method-of-lines sense with relatively small time step until
[[lu — u*||/|[u® — u*|| < 1. Success of this phase is governed by stability and
accuracy of the integration scheme (we simply use the backward Euler method)
and by the choice of initial iterate. This theory has been extended to index-1
differential-algebraic systems in [42].

For problems in which a complex feature, such as a shock or a flame front,
must arise from a structure-free initial condition, the induction phase is typically
by far the longest. In a grid-sequenced problem, in which the initial iterate on a
given fine grid is interpolated from a converged solution on a coarser grid, and in
which solution features are correctly located (if not fully resolved), the induction
phase on the finest grid can be relatively brief [119]. During a second “transition
phase” the time step is built up in the neighborhood of the solution. The critical
assumption is existence of a 3 such that ||(I+ 7f'(u))7!| < (1 + Br)~! for all
7 > 0 if |Ju— u*|| <e. Finally comes a “root polishing phase,” during which the
the time steps approach infinity (or some user-imposed upper bound) and iterates
approach the root with asymptotic Newton-like convergence. This phase is treated
by a conventional local analysis, as in [72].

The main result of the theory is that there is either convergence from u® to
u* or an easily detectable (undesirable) contraction of ¢ toward 0, allowing recov-
ery actions before blow-up or floating point faults from infeasible steps. (Robust
recovery is particularly important in parallel applications.) The main hypotheses
of the theory, including smooth differentiability of f(u), are difficult to verify in
practice. They are also rarely respected in practice, since instantaneous analytical
approximations of f’(u) are too expensive in memory and execution time.

When nested within a pseudo-transient continuation scheme to globalize the
Newton method [75], the implicit framework (called YNKS) has four levels:

do 1 =1, n_time
SELECT TIME-STEP

(16) =

TERASCALE IMPLICIT METHODS FOR PDES 21

do k = 1, n_Newton
compute nonlinear residual and Jacobian
do j =1, n_Krylov
do i = 1, n_Precon
solve subdomain problems concurrently
enddo
perform Jacobian-vector product
ENFORCE KRYLOV BASIS CONDITIONS
update optimal coefficients
CHECK LINEAR CONVERGENCE
enddo
perform vector update
CHECK NONLINEAR CONVERGENCE
enddo
enddo

The operations written in uppercase customarily involve global synchronizations,
about which we comment in Subsection 3.4.

Often in such large ill-conditioned problems relatively little progress is made in
a given inner linear iteration, with the consequence that the Newton correction is
effectively underdamped and the steady-state residual norm improves only slightly.
This provides direct feedback limiting the increase of the time step (and possibly
decreasing it), which maintains or improves the linear conditioning of the next step,
rather than letting the conditioning deteriorate with increasing pseudo-time step.
(See [51] for a polyalgorithmic method that exploits the effect of the pseudo-time
step on the linear conditioning.)

Effective use of WNKS in PDEs requires attention to several details. We men-
tion, in particular, the sensitivity of the methodology to the implicitness of the
boundary conditions, the presence of limiters in the discretization, and numeri-
cal properties such as the scaling of the differencing parameter in the matrix-free
application of the Jacobian and the convergence of the inner Krylov iterations.

Historical remarks. The use of pseudo-transience as a means of approaching
steady states (typically in the form of time-parabolization of an elliptic boundary
value problem) has been independently reinvented in contexts far too numerous
to mention. We have been particularly influenced by two forms: the “successive
evolution-relaxation” strategy of Mulder and Van Leer [99] and the temporal trun-
cation error strategy described in [81], both of which smoothly adapt the aggres-
siveness of the timestepping to the progress of the iterations toward steady state,
ultimately leading to Newton-like asymptotic superlinear or quadratic convergence
rates. Some sufficient conditions for globalized convergence for such strategies are
given in [74].

3.2. Other Continuation Methods. Besides pseudo-transient continuation,
there are two other important types of continuation in the literature of numerical
solutions for nonlinear BVPs, namely, continuation in a physical parameter of the
problem, and mesh sequencing, which is continuation in a discretization parameter,
namely the mesh spacing.

Physical parameters often provide “knobs” by which the nonlinearity in a prob-
lem can be varied. Perhaps the most important example is the Reynolds number,
which directly multiplies the convective terms of Navier-Stokes, but there are many

22 DAVID E. KEYES

other examples including body forcings and boundary forcings. The solution of
f(u,7%) = 0, where 7 is such a parameter, can be implicitly defined as u(r").

We suppose that f(u, 7°) = 0 is “easy” to solve; for instance, it may be linear
in u, as when 7 is a Reynolds number and the governing equations reduce to the
Stokes subset. Given u‘~! corresponding to 7¢~1, we can posit a good initial guess
for u‘ at a nearby n‘ from the Taylor expansion

(17) ut0 = u(rt=1) + <g—7‘:>“ (nt — at1).

Implicitly differentiating f(u, 7) = 0 with respect to w gives

(1) () (3) -0

or

o () - () (%)

whence the right-hand side of (17) can be evaluated. This presumes that one
is able to readily solve linear systems with the Jacobian, g—fl; otherwise, poorer
approximations are possible, including the simple “bootstrapping” procedure of
using just u(wt~1), itself, for u®C.

Mesh sequencing, a one-way form of multigrid, is useful when a nonlinear prob-
lem is easier to solve on a coarser grid than the one on which the solution is
ultimately desired, either because the nonlinearity, itself, is milder or because the
linear conditioning of the sequence of nonlinear correction problems is milder. An
initial iterate for the next finer mesh is constructed by interpolation from the so-
lution on the preceding coarser mesh. Asymptotically, under certain assumptions
that are natural when the discretization ultimately becomes fine enough to accu-
rate resolve the continuous statement of the BVP, it can be shown that the initial
interpolant lies in the domain of convergence of Newton’s method [118] on the finer
grid. Unfortunately, it is usually not easy to determine when this asymptotic range
is reached. Consequently, another continuation method, such as pseudo-transience,
may be used to drive the initial interpolant towards the Newton domain on each
mesh step. Such nested continuation methods are often required in practice on
highly nonlinear problems, such as detailed kinetics combustion. Since a decreas-
ing number of inner continuation steps are required on the finer meshes, the nested
approach can be economical.

3.3. Other Robustification Techniques. Whatever the combination of con-
tinuation strategies that may be invoked to prepare for a full Newton iteration on
the ultimate accurately discretized BVP, modified Newton-like systems need to be
solved at each stage. Traditional physics-independent, discretization-independent
algebraic robustification strategies can be employed on these systems and any code
intended for general purpose by non-experts should default to some combination of
the strategies of line search, trust region, and back-tracking, [69, 73] or the more
crude, but often successful “damping on percentage change” [85, 135]. These
highly developed arts are beyond the scope of this chapter; however, it is impor-
tant to keep in mind that they are usually built into the software to complement
the robustification techniques that we consider here that have their origins in the
PDE system, itself.

TERASCALE IMPLICIT METHODS FOR PDES 23

3.4. Nonlinear Preconditioning. The lack of a global convergence theory
for Newton’s method is a severe drawback that has been met in practice with
a variety of inventions. Some, generally those rooted in the physics known to
lie behind particular discrete nonlinear systems, are applied outside of Newton’s
method and exercise their beneficial effect by changing the system or the initial
iterate fed to Newton’s method. Others, generally those rooted in mathematical
assumptions about the behavior of F(u) near a root, are applied inside, and have
their effect by modifying the strict Newton correction before it is accepted. In
this section, we consider a new technique, additive Schwarz preconditioned inexact
Newton (or “ASPIN”), which includes multiple nested applications of Newton’s
method. ASPIN involves a (generally nonlinear) transformation of the original
rootfinding problem for F(u) to a new rootfinding problem, ®(u) = 0, to which
an outer Jacobian-free Newton method is applied. The formation of ®(u) at a
given point u, which is required many times in the course of performing the outer
Jacobian-free Newton-Krylov iteration, in turn involves the solution of possibly
many smaller nonlinear systems by Newton’s method.

Without such a transformation, Newton’s method may stagnate for many it-
erations in problems with imbalanced nonlinearities. We informally refer to such
problems as “nonlinearly stiff.” An example is compressible flow with a shock. The
size of the global Newton step may be limited in such problems by high curvature
in the neglected terms of the multivariate expansion of F(u) coming from just a
few degrees of freedom defined near the shock. Cai and collaborators [32, 33, 35|
have devised ASPIN to concentrate nonlinear work at such strong nonlinearities,
and produce a more balanced global nonlinear problem, on which Newton does not
need as much robustification.

From an algebraic viewpoint, ASPIN is a generic transformation that requires
only the unique solvability of subsystems of the original F(u) in the neighborhood
of the root u, to effect. From a physical viewpoint, ASPIN is a family of meth-
ods in which the subsystems may be chosen by domain decomposition, isolation
of equations arising from different physical phenomena, identification of nonlinear
stiffness, or still other criteria. As with all Schwarz methods, many flavors of non-
linear Schwarz preconditioning are possible — additive, multiplicative, or general
polynomial combination of sub-operators; single-level or multi-level; overlapping
or nonoverlapping. In this section, we discuss the additive, single-level case, with
arbitrary overlap. We illustrate domain and equation partitioning.

Let

S=(1,...,n)
be an index set for the degrees of freedom u; and the corresponding residual com-
ponents F;. Assume that Si,...,Sy is a partition of S in the sense that
N

Jsi =5, and 5, C S.

i=1

The subsets may overlap; if n; be the dimension of .S;, then, in general,

N
E n; > n.
i=1

24 DAVID E. KEYES

Using the partition of S, we introduce subspaces of R™ and the corresponding
restriction and extension matrices. For each S; we define V; C R™ as

Vi={vlv=(v1,....,00)T € R", 0, =0, if k & S;} .

Elements of vectors V; outside of S; are trivial, but we consider what is formally
a full-dimensional subspace, since each component of F formally depends on all
components of u. In a practical application of ASPIN, however, we assume that
there is a dominant association of certain components of F with certain components
of u, and that, in fact, the square subblock of the full Jacobian F’(u) describing this
dominant relationship is invertible near the desired root. This is major restriction
for general nonlinear algebraic systems, but it is completely natural for systems
arising from partial differential equations describing local conservation laws. Just
as in additive Schwarz for linear problems, most of the computing in ASPIN is
carried out within these local blocks.

For each S;, let R™ be the space that contains the nontrivial part of V;, and
let R; be the n; X n Boolean restriction operator from a vector in R™ to a vector
in R™, with the corresponding extension operator defined by the transpose RiT.

Using the restriction operator, define the subdomain nonlinear function as

F; = R,F.

For any given v € R", define T;(v) € V; as the solution of the following subspace
nonlinear system

F;(v—T;(v)) =0,
for all subspaces i = 1,..., N. We now introduce the transformed function

N
(20) @) = YT, (w)

which we refer to as the nonlinearly preconditioned F(u). A single evaluation of
the function ®(v), for a given v, involves the calculation of the T;, which in turn
involves the solution of nonlinear systems involving each F;. If the overlap is zero,
this is a block nonlinear Jacobi preconditioner.

In the linear case, this algorithm reduces to the additive Schwarz algorithm.
Using the usual notation, if

F(u) = Au—b,

then

O(u) = (fj R?A:lRi> (Au—Db),

where A; ! is the inverse of A; = R;ART .

If ®(u) =0 is to be solved using a Newton type algorithm, then the Jacobian
®’(u) is needed in one form or another. Since it is generally dense Jacobian-free
methods are essential. It is shown in [32] that ®’(u) is well approximated at a point
u near a root u, by J(u) = Zf\il RTJ7 ' (w)R;J(u). where J(u) is the Jacobian
of the original nonlinear system, F’(u) and .J;, is the Jacobian of the subdomain
nonlinear system, J;(u) = RT J(u)R;, for i = 1,..., N. If F(u) is sparse nonlinear
function of its arguments, then J is a sparse matrix and so are the J;, so it is
economical to apply J to an arbitrary vector.

From a software engineering viewpoint, it is convenient that the action required
to apply the preconditioned Jacobian to an arbitrary vector is already present in

TERASCALE IMPLICIT METHODS FOR PDES 25

any Newton-Krylov-Schwarz code, since it is the action of the linearly Schwarz-
preconditioned Jacobian of the original nonlinear function. The action of J on
a vector can be approximated by the usual Fréchet derivative in a matrix-free
manner, or with explicit elements. The actions of Jfl on subvectors corresponding
to the nontrivial components in V; can be performed within (possibly overlapping)
partitions. Several techniques are available for computing the J;, for example, by
analytic formula, multi-colored finite differencing, or automatic differentiation. A
triangular factorization of J; may be performed, since the action is needed multiple
times within a single outer Newton step on ®(u) = 0.

Evaluation of ®(u) itself is not a linear process with a priori deterministic
complexity, but involves summation of local corrections that are the result of inner
Newton iterations on F;(u). In a parallel implementation, if a different processor is
used for each partition S;, communication to obtain nontrivial ghost values belong-
ing to and updated in other processors may be necessary. We note, however, that
these ghost values do not change during the solution of the subdomain nonlinear
system. It is known in practice [50] that the linear systems of the main Newton
iteration for ®(u) do not need to be solved well (in fact, often should not be solved
well) in early stages, in the sense that it is only necessary to enforce the norm of
the Newton correction equation residual

17 (0)du + @(u)[|2

to be bounded by some tolerance (called “forcing term” in [50]) that may itself
be a function of ® and other by-products of the computation, approaching zero at
a rate sufficient to guarantee convergence, superlinear convergence, or even qua-
dratic convergence of the outer iteration. This provides some latitude in the degree
of accuracy to which the subdomain nonlinear problems are solved in the early
iterations.

It is shown in [32] that Newton’s method applied to a nonlinearly precondi-
tioned version of the velocity-vorticity driven cavity problem, based on domain de-
composition converges rapidly (e.g., in 5-10 global Newton iterations) at Reynolds
numbers far beyond those at which Newton’s method applied to the original dis-
cretization of the problem hopelessly stagnates.

It is shown in [35] that Newton convergence of the nonlinearly transformed
version of the problem of shocked flow in a variable cross-section duct is much less
sensitive to mesh refinement than the original discretization.

The driven cavity problem can be ameliorated by continuation in Reynolds
number and the shocked flow problem through mesh sequencing in other contexts.
Nevertheless, it is interesting to see that a purely algebraic method, ASPIN, is
effective at rebalancing nonlinearities so that Newton converges easily. We expect
that it will have wide applicability in problems with complex nonlinearities as a
means of increasing nonlinear robustness.

Unfortunately, it is difficult to obtain direct approximations to the dense Ja-
cobian of the transformed system, 7, so as to improve the linear conditioning of
the resulting Newton correction problems. Therefore, these problems are subject
to linear ill-conditioning as mesh resolution increases. To conquer this linear ill-
conditioning, multilevel methods of ASPIN have been devised. The straightforward
FAS multigrid approach on ®(u) may not be practical since the nonlinear correction
to be computed at each coarse level requires an evaluation of the fine-grid residual,
which is subsequently restricted to compute the coarse-grid defect that drives the

26 DAVID E. KEYES

correction. Since each fine-grid residual involves a host of fine-grid nonlinear sub-
problems, this is expensive. An alternative multi-level method is investigated, with
promising results, in [33].

A case of special interest in ASPIN is the case of relatively few subspaces,
e.g., partitioning by equation type in a multicomponent problem, as opposed to
by subdomain in a problem of millions of gridcells. In this case, it is natural to
take the overlap to be zero; then the diagonal blocks of ZZ]\LI RTJ s, LR, J are all
identities, and do not involve any computations when multiplied with vectors. For

two subdomains,
Jin Ji2
J =
(Jo1 Ja2)

2 —1
T71-1p 7 _ I J11 J12
;:1 RITJTIRJ = (T I :

For example, partition “1” could represent the fluid degrees of freedom, and parti-
tion “2” the structural degrees of freedom in a nonlinear fluid-structure interaction.
The Jacobians of each need to be inverted only on the portion of each partition
that couples directly to the other.

ASPIN has been motivated above primarily as a nonlinear robustification tech-
nique. However, in the long run of terascale simulation of PDEs its most impor-
tant virtue may come to be understood as deferring synchonization from the outer
Jacobian-free Newton-Krylov loop to the multiple inner Newton-Krylov loops that
form the corrections that are summed to evaluate each ®. The synchronizations,
whether inner or outer, occur over all of the degrees of freedom in the respective
Krylov spaces. The outer Newton-Krylov loop may have billions of degrees of free-
dom distributed over thousands of processors; hence each outer synchronization
has an exhorbitant communication cost. In contrast, the inner synchronizations
are over subsets of variables, which can be hosted naturally by subsets of proces-
sors. Eliminating some outer synchronizations in favor of some extra inner work is
therefore a beneficial algorithmic adaptation to terascale architecture.

SO

3.5. Physics-based Preconditioning. An important class of precondition-
ers for the Jacobian-free Newton-Krylov method is physics-based operator splitting.
The operator notation for the right-preconditioned, matrix-free form of the method
is:

Fruu+eBl v)—F u
(21) quu(u)B;p%itvz puu(splitV) futt()_
€

Here, subscript “full” refers to the full nonlinear function, and “split” denotes a
preconditioning process handled in an operator-split manner. Many operator-split
time integration methods have been developed based on insight from the physics of
the underlying system [16, 63, 104, 106]. Since these methods can be utilized as
preconditioners, we refer to this approach as “physics-based preconditioning.” It is
well understood that operator-split methods have limitations as solvers, thus they
most likely also have limitations as preconditioners. However, they still provide an
interesting class of preconditioners for the Jacobian-free Newton-Krylov method.
Following Mousseau et al. [96], we illustrate the construction of an operator-
split preconditioner for a stiff wave system, specifically, the one-dimensional shallow

TERASCALE IMPLICIT METHODS FOR PDES 27

water wave equations with a stiff gravity wave:

Oh Ouh
22 AL
(22) ot o
Ouh Oulh Oh

Here u is the fluid velocity, h is the hydrostatic pressure, x is the spatial coordinate,
t is time, g is gravity, and y/gh is the fast wave speed. This is the time scale we
wish to “step over” in evolving the mesoscale dynamics of interest, since typically
Vgh > u. A semi-implicit method is constructed by linearizing and implicitly
discretizing only those terms that contribute to the stiff gravity wave. Thus, some
insight from the physics is required to produce the implicit system. With ¢ as the
current time and £ — 1 as the previous time, and spatial discretization suppressed,
we have

Wt —htt 9(ub)!
+ p—

24 =
(24) At oz 0,

0 -1 27\0—1 ¢
(uh)' ()t OGN 0n

At oz oz

Note that the nonlinear term in & on the right-hand side of (23) has been linearized

by evaluating the square of the wave speed (gh) at the previous time. We evaluate

8(5—?) at the previous time since it does not contribute to the linearized gravity

wave.

The momentum equation (25) is rearranged as
oht

B B B B B(UZh)Z—l
e _ _ -1 -1 (gt—1 — -1 _
(26) (uh)" = —Atgh o +5 (87" = (uh) At p).

Equation (26) is then substituted into (24) to give the following parabolic equation:

ht —nt=t 9 1_10(h)* 2981
(27) _—— (Atgh o) = o

(25)

At ox

Equation (27) is solved for A, and then one can backsolve for (uh)® using (26).
Using classical operator splitting, a system of two hyperbolic PDEs has been trans-
formed into a single parabolic PDE and an explicit update. The price is temporal
splitting error. For this simple problem, the source of the nonlinear inconsistency is
the linearized wave speed (a time discretization error) and the fact that advection
in (25) is at a different time level. This will be an issue when advection and wave
propagation happen on the same time scale. The innovation of physics-based pre-
conditioning is realizing that the nonlinear inconsistent solution of (26) and (27) can
be used as the preconditioner to a nonlinearly consistent Newton-Krylov solution
of (22)—(23).

The essential insight of [96] is that the function of a preconditioner in a Newton-
Krylov method for the shallow water system is to map [resp,res,n] to [0h, duh].
Using the semi-implicit method in delta form (suppressing spatial discretization)
the linearized equations are:

5_h 00 (uh)
At ox

(28) = —resy,

28 DAVID E. KEYES
5(uh) @
At ox

Following the classical approach by substituting (29) into (28), and eliminating
d(uh), produces

(29) + gh*™!

= —TeSyh-

oh 9] déh 0
30 — + —(Atgh"—) = — — (At resyp)-
(80) At +gg MO Gy) = Tresn g (At resun)
This parabolic equation can be approximately solved for dh. Then §(uh) can be

evaluated:
oh
(31) d(uh) = —Atgh”aa—x — TeSyh-

Thus, using the semi-implicit method, [resy, res,] has been mapped to [§h, duh]
at the cost of just one approximate parabolic solve. The effectiveness of this pre-
conditioning approach has been demonstrated in one dimension in [95], and more
recently the concept has been extended to the two-dimensionsal shallow water equa-
tions including the Coriolis force [96].

The use of operator-split solvers as preconditioners for Jacobian-free Newton-
Krylov appears not to have a long history, but is rapidly developing. See instances
for time-independent reaction diffusion equations [97], time-dependent MHD equa-
tions [39], steady state incompressible Navier-Stokes equations [84, 107], and
time-dependent incompressible Navier-Stokes equations [89, 107]. Also in [89], a
standard approximate linearization method used for phase-change heat conduction
problems, has been employed as a preconditioner for a JFNK solution of phase-
change heat conduction problems.

4. PDE-constrained Optimization

As exemplified in Sections 2 and 3, years of two-sided (from architecture up,
from applications down) algorithms research has made it possible to solve partial
differential equation (PDE) problems implicitly with reasonable scalability. PDEs
are equality constraints on the state variables in many optimization problems.
Hardly auxiliary, the PDE system may contain millions of degrees of freedom. In
problems of shape optimization and control, the number of optimization parameters
is typically much smaller than the number of state variables. In problems of param-
eter identification, the number of parameters to be optimized may be comparable
to the number of state variables, but few general-purpose optimization frameworks
have been demonstrated at the scale required for three-dimensional problems. Since
the PDE analysis generally dominates the computation, we propose that large-scale
PDE-constrained optimization codes be constructed around the data structures and
functional capabilities of the PDE solver.

Optimization is easily incorporated through the Lagrange saddle-point formula-
tion into a Newton-like parallel PDE framework that accommodates Schur-type al-
gebraic substructuring. Newton’s method is a common element in the most rapidly
convergent solvers and optimizers. Furthermore, a PDE solver that is not part of
an optimization framework is probably short of what the client really wants. Hence,
for both algorithmic and teleological reasons, analysis and optimization belong to-
gether.

TERASCALE IMPLICIT METHODS FOR PDES 29

4.1. Implications of NKS for Optimization. Equality constrained opti-
mization leads, through the Lagrangian formulation, to a multivariate nonlinear
rootfinding problem for the gradient (the first-order necessary conditions), which
is amenable to treatment by Newton’s method. To establish notation, consider
the following canonical framework, in which we enforce equality constraints on the
state variables only. (Design variable constraints require additional notation, and
inequality constraints require additional algorithmics, but these generalizations are
well understood.) Choose m design variables « to minimize the objective func-
tion, ¢(u,a), subject to n state constraints, h(u,a) = 0, where u is the vector of
state variables. In the Lagrange framework, a stationary point of the Lagrangian
function

L(u,a,\) = dp(u, @) + ATh(u, o)

is sought. When Newton’s method is applied to the first-order optimality condi-
tions, a linear system known as the Karush-Kuhn-Tucker (KKT) system arises at
each step. There is a natural “outer” partitioning: the vector of parameters is often
of lower dimension than the vectors of states and multipliers. This suggests a Schur
complement-like block elimination process at the outer level, not for concurrency,
but for numerical robustness and conceptual clarity. Within the state-variable
subproblem, which must be solved repeatedly in the Schur complement reduction,
Schwarz provides a natural “inner” partitioning for concurrency.

A major choice to be made in the Newton approach to constrained optimization
is between exact elimination of the states and multipliers by satisfying constraint
feasibility at every step (reduced system), and progress in all variables simulta-
neously, possibly violating constraints on intermediate iterates (full system). An
advantage of the former is the existence of high-quality, robust black box software
for this reduced sequential quadratic programming (RSQP) [103] approach. The
advantages of the latter are in reuse of high-quality parallel PDE software, the free-
dom to use inexact solves (since finely resolved PDE discretizations in 3D militate
against exact elimination), and the ease of application of automatic differentiation
software, without having to differentiate through the nonlinear subiterations that
would be implied by repeated projection to the constraint manifold in RSQP.

We mention three classes of PDE-constrained optimization:

e Design optimization (especially shape optimization): « parametrizes
the domain of the PDE (e.g., a lifting surface) and ¢ is a cost-to-benefit
ratio of forces, energy expenditures, etc. Typically, m is small compared
with n and does not scale directly with it. However, m may still be
hundreds or thousands in industrial applications.

e Optimal control: « parametrizes a continuous control function acting
in part of or on the boundary of the domain, and ¢ is the norm of the dif-
ference between desired and actual responses of the system. For boundary
control, m o n?/3; for control by body forces, m o n.

e Parameter identification/data assimilation: « parametrizes an un-
known continuous constitutive function defined throughout the domain,
and ¢ is the norm of the difference between measurements and simulation
results. Typically, m o n.

30 DAVID E. KEYES

Written out in partial detail, the optimality conditions are

OL _ 99 g Oh

2 —=—42A
(32) ou Ou + ou 0,
oL 0¢ T Oh
— =4\ — =
(33) da Oa + O 0
oL
34 —=h=0.
(34) Y
Newton’s method iteratively seeks a correction,
ou U
da to the iterate «
oA A

With subscript notation for the partial derivatives, the Newton correction (KKT)
equations are

(Guu + A hwa) (e + AT hiua) B, Su b+ NThy
(¢,au +)\Th,au) (¢,ao¢ +)\Th,aa) h?(; da = ¢,o¢ +)\Th,a)
ho B 0 S h
or
Wyu WZL, JT ou Gu
(35) Wou Waa JE b | == g9a |.
Jo Ja O Ay h

where Wy, = é?;gb +)\T%, Jo = %, and g, = %, for a,b € {u,a}, and where
A = A+ 0N

4.2. Newton Reduced SQP. The RSQP method [103] consists of a three-
stage iteration. We follow the language and practice of [11, 12] in this and the
next subsection.

e Design Step (Schur complement for middle blockrow):
Héa=f,
where H and f are the reduced Hessian and gradient, respectively:
H=Waa —JET, "W 4+ (2T, "Wau — Wau) Iy M a
=90+ 00 gu— (LI Was = Wau) J; b

e State Step (last blockrow):
Ju ou=—h—J, da.
e Adjoint Step (first blockrow):
JE N, = =gy — Wy Su—WT ba.

In each overall iteration, we must form and solve with the reduced Hessian
matrix H, and we must solve separately with .J, and JI. The latter two solves are
almost negligible compared with the cost of forming H, which is dominated by the
cost of forming the sensitivity matrix J,, 1J,. Because of the quadratic convergence
of Newton, the number of overall iterations is few (asymptotically independent of

TERASCALE IMPLICIT METHODS FOR PDES 31

m). However, the cost of forming H at each design iteration is m solutions with J,,.
These are potentially concurrent over independent columns of J,, but prohibitive.

In order to avoid computing any Hessian blocks, the design step may be ap-
proached in a quasi-Newton (e.g., BFGS) manner [103]. Hessian terms are dropped
from the adjoint step right-hand side.

e Design Step (severe approximation to middle blockrow):
Q da = _ga+JZJu_Tgu ’

where @ is a quasi-Newton approximation to the reduced Hessian.
e State Step (last blockrow):

Ju ou=—h—J, da.
e Adjoint Step (approximate first blockrow):
JE A+ = —Ju-

In each overall iteration of quasi-Newton RSQP, we must perform a low-rank
update on () or its inverse, and we must solve with J,, and JI. This strategy vastly
reduces the cost of an iteration; however, it is no longer a Newton method. The
number of overall iterations is many. Since BFGS is equivalent to unpreconditioned
CG for quadratic objective functions, O(m?) sequential cycles (p > 0, p ~ 1) may
be anticipated. Hence, quasi-Newton RSQP is not scalable in the number of design
variables, and no ready form of parallelism can address this convergence-related
defect.

To summarize, conventional RSQP methods apply a (quasi-)Newton method
to the optimality conditions: solving an approximate m X m system to update «,
updating u and A consistently (to eliminate them), and iterating. The unpalatable
expense arises from the exact linearized analyses for updates to u and A that appear
in the inner loop. We therefore consider replacing the exact elimination steps
of RSQP with preconditioning steps in an outer loop, as described in the next
subsection.

4.3. Full Space Lagrange-NKS Method. The new philosophy is to apply
a Krylov-Schwarz method directly to the (2n+m) x (2n+m) KKT system (35). For
this purpose, we require the action of the full matrix on the full-space vector and
a good full-system preconditioner, for algorithmic scalability. One Newton SQP
iteration is a perfect preconditioner—a block factored solver, based on forming the
reduced Hessian of the Lagrangian H—but, of course, far too expensive. Backing
off wherever storage or computational expense becomes impractical for large-scale
PDEs generates a family of attractive methods.

To precondition the full system, we need approximate inverses to the three
left-hand side matrices in the first algorithm of §4.2, namely, H, J, and JT. If
a preconditioner is available for H, and exact solves are available for .J, and J7T,
then it may be shown that conjugate gradient Krylov iteration on the (assumed
symmetrizable) reduced system and conjugate gradient iteration on the full system
yield the same sequence of iterates. The iterates are identical in the sense that if
one were to use the values of a arising from the iteration on the reduced system
in the right-hand side of the block rows for u and A, one would reconstruct the
iterates of the full system, when the same preconditioner used for H in the reduced
system is used for the Wy, block in the full system. Moreover, the spectrum of

32 DAVID E. KEYES

the full system is simply the spectrum of the reduced system supplemented with a
large multiplicity of unit eigenvalues. If one retreats from exact solves with J and
JT . the equivalence no longer holds; however, if good preconditioners are used for
these Jacobian blocks, then the cloud of eigenvalues around unity is still readily
shepherded by a Krylov method, and convergence should be nearly as rapid as in
the case of exact solves.

This Schur-complement-based preconditioning of the full system was proposed
in this equality-constrained optimization context by Biros and Ghattas in 1998 [11]
and earlier in a related context by Batterman and Heinkenschloss [9]. From a purely
algebraic point of view, the same Schur-complement-based preconditioning was
advocated by Keyes and Gropp [79] in the context of domain decomposition. There,
the reduced system was a set of unknowns on the interface between subdomains,
and the savings from the approximate solves on the subdomain interiors more than
paid for the modest degradation in convergence rate relative to interface iteration
on the Schur complement. The main advantage of the full system problem is that
the Schur complement never needs to be formed. Its exact action is felt on the
design variable block through the operations carried out on the full system.

Biros and Ghattas have demonstrated the large-scale parallel effectiveness of
the full system algorithm on a 3D Navier-Stokes flow boundary control problem,
where the objective is dissipation minimization of flow over a cylinder using suction
and blowing over the back portion of the cylinder as the control variables [12]. They
performed this optimization with domain-decomposed parallelism on 128 processors
of a T3E, using an original optimization toolkit add-on to the PETSc [4] toolkit.
To quote one result from [12], for 6 x 105 state constraints and 9 x 103 controls,
full-space LNKS with approximate subdomain solves beat quasi-Newton RSQP by
an order of magnitude (4.1 hours versus 53.1 hours).

Two names have evolved for the new algorithm: Lagrange-Newton-Krylov-
Schwarz was proposed by Keyes at the 1999 STAM Conference on Optimization,
and Lagrange-Newton-Krylov-Schur by Biros and Ghattas in [12]. The former em-
phasizes the use of NKS to precondition the large Jacobian blocks, the latter the
use of Schur complements to precondition the overall KKT matrix. Both precondi-
tioner suffixes are appropriate in a nested fashion, so we propose Lagrange-Newton-
Krylov-Schur-Schwarz (LNKSS) when both preconditioners are used.

Automatic differentiation has two potential roles in the new algorithm: forma-
tion of the action on a Krylov vector of the full KKT matrix, including the full
second-order Hessian blocks, and supply of approximations to the elements of J
(and JT) for the preconditioner.

4.4. Example of LNKS Parameter Identification. We illustrate Schur
preconditioning and automatic differentiation in an elementary parameter identifi-
cation context. The governing constraint is the steady state version of the nonlinear
conduction equation for material temperature:

(36) V- (B(2)T* VT) =0,

subject to inhomogeneous Dirichlet conditions on opposite faces of a slab, with
homogeneous (insulating) Neumann conditions on the transverse surfaces. The
resulting BVP is discretized with centered finite differences. The state variables
are the discrete temperatures at the mesh nodes, and the design variable is the
parameter o.. The cost function is temperature matching, ¢(o,T) = ||T(z) —

TERASCALE IMPLICIT METHODS FOR PDES 33

T(z)||?, where T is synthetic data based on a given a-profile. This parameter is
specified for the computation of T'(z), and then “withheld,” to be determined by
the optimizer. More generally, T'(z) would be a desired or experimentally measured
profile, and the phenomenological law and material specification represented by «
would be determined to fit. The Brisk-Spitzer form of the nonlinear dependence
of the diffusivity on the temperature in optically thick radiation transport is a =
2.5, and that is what we employ here. Very ideal quadratic convergence of «,
characteristic of Newton’s method for the overall full system residual norm, is seen
in the case on the left, whereas on the right convergence slows. This example must
be regarded as preliminary at the time of writing and this behavior is under further
investigation.

10" 10"

log(|Parameter Error|) log(|Parameter Error|)

10° 10° b
107 107
107 107
10° 107
0 2 4 6 8 10 0 2 4 6 8 10

FIGURE 2. Newton convergence for the o parameter (vertical axis
is log|a — 2.5|. Left: coarsely resolved 2D problem Right: finely
resolved 1D problem

Our implementation of LNKS is in the software framework of PETSc [4] and
ADIC [14].

4.5. Complexity of AD-based LNKS. Although our demonstration exam-
ple is trivially low dimensional, LNKS will generally be applied to large problems
of n state variables and m parameters. Upon surveying existing AD tools, we con-
clude that the preconditioned matrix-vector product can be formed in time linear
in n and m. The shopping list of matrix actions in forming the preconditioned
Jacobian-vector product of LNKS is Wi, Waa, Wau, WE,, Jo, JX, J71, J7T, and
H1L

The first six are needed in the full-system matrix-vector multiplication. For
this multiplication we require “working accuracy” comparable to the state of the
art in numerical differentiation.

Accurate action of the last three is required in RSQP but not in the full sys-
tem preconditioner. We recommend approximate factorizations of lower-quality
approximations, including possibly just W, for H, or a traditional quasi-Newton
rank-updated approximation to the inverse.

We estimate the complexity of applying each block of the KKT Jacobian, as-
suming only that h(u,) is available in subroutine call form and that all differenti-
ated blocks are from AD tools, such as the ADIC [14] tool we are using in a parallel
implementation of LNKSS. We assume that J, is needed element by element, in
order to factor it; hence, JI is also available. Since these are just preconditioner
blocks, we generally derive these elements from a different (cheaper) function call

34 DAVID E. KEYES

TABLE 2. Complexity of formation of matrix objects or matrix-
vector actions using forward or hybrid modes of modern automatic
differentiation software. The asterisk signifies that the reverse
mode consumes memory, in a carefully drawn time-space trade-
off, so r is implementation-dependent.

Object Cost: Forward Mode Cost: Fastest (Hybrid) Mode
Ju7 J'lf puch puch
Jav 2CH 2CH
JIv PaCh rCy*
Wuuva Wguv puCh + qC¢ T(Ch + C¢)*
Weaat, Wauv PaCh + qCy r(Ch +Cy)"

for the gradient of the Lagrangian than that used for the matvec. Define C}, the
cost of evaluating h; p,, 1 4+ the chromatic number of J, = h,,; and p,, 1 + the
chromatic number of J, = h,,. Then the costs of the Jacobian objects are shown
in the first three rows of Table 2.

For the Hessian arithmetic complexity, we estimate the cost of applying each
forward block to a vector. Assume that h(u,) and ¢(u,) are available and that
all differentiated blocks are results of AD tools. Define Cy, the cost of evaluating
¢; q, 1 + number of nonzero rows in ¢”; and r, an implementation-dependent
“constant,” typically ranging from 3 to 100. Then the cost of the Hessian-vector
products can be estimated from the last two rows of Table 2.

For the inverse blocks, we need only low-quality approximations or limited-
memory updates [22] of the square systems J; !, J- T, and H~!.

The complexities for all operations required to apply the full-system matrix-
vector product and its preconditioner are at worst linear in n or m, with coefficients
that depend upon chromatic numbers (affected by stencil connectivity and inter-
component coupling of the PDE, and by separability structure of the objective
function) and the implementation efficiency of AD tools.

4.6. Summary and Future Plans. As in domain decomposition algorithms
for PDE analysis, partitioning in PDE-equality constrained optimization may be
used to improve some combination of robustness, conditioning, and concurrency.
Orders of magnitude of savings may be available by converging the state variables
and the design variables within the same outer iterative process, rather than a
conventional SQP process that exactly satisfies the auxiliary state constraints.

As with any Newton method, globalization strategies are important. These
include parameter continuation (physical and algorithmic), mesh sequencing and
multilevel iteration (for the PDE subsystem, at least; probably for controls, too),
discretization order progression, and model fidelity progression. The KKT system
appears to be a preconditioning challenge, but an exact factored preconditioner is
known, and departures of preconditioned eigenvalues from unity can be quantified
by comparisons of original blocks with blockwise substitutions in inexact models
and solves. (For the full system, the preconditioned KKT matrix will be nonnormal,
so its spectrum does not tell all.)

With the extra, but automatable, work of forming Jacobian transposes and Hes-
sian blocks, but no extra work in Jacobian preconditioning, any parallel analysis

TERASCALE IMPLICIT METHODS FOR PDES 35

code may be converted into a parallel optimization code—and automatic differen-
tiation tools make this relatively painless.

The gamut of PDE solvers based on partitioning should be mined for applica-
tion to the KKT necessary conditions of constrained optimization and for direct
use in inverting the state Jacobian blocks inside the optimizer.

5. Parallel Implementation of NKS Using PETSc

To implement NKS methods on distributed memory parallel computers, we em-
ploy the “Portable, Extensible Toolkit for Scientific Computing” (PETSc) [5, 6],
a library that attempts to handle through a uniform interface, in a highly efficient
way, the low-level details of the distributed memory hierarchy. Examples of such
details include striking the right balance between buffering messages and minimiz-
ing buffer copies, overlapping communication and computation, organizing node
code for strong cache locality, preallocating memory in sizable chunks rather than
incrementally, and separating tasks into one-time and every-time subtasks using the
inspector/executor paradigm. The benefits to be gained from these and from other
numerically neutral but architecturally sensitive techniques are so significant that
it is efficient in both the programmer-time and execution-time senses to express
them in general purpose code.

PETSc is a large and versatile package integrating distributed vectors, dis-
tributed matrices in several sparse storage formats, Krylov subspace methods, pre-
conditioners, and Newton-like nonlinear methods with built-in trust region or line-
search strategies and continuation for robustness. It has been designed to provide
the numerical infrastructure for application codes involving the implicit numerical
solution of PDEs, and it sits atop MPI for portability to most parallel machines.
The PETSc library is written in C, but may be accessed from user codes written
in C, FORTRAN, and C++. PETSc version 2, first released in June 1995, has been
downloaded thousands of times by users worldwide. PETSc has many features
relevant to PDE analysis, including matrix-free Krylov methods, blocked forms of
parallel preconditioners, and various types of time-stepping.

A diagram of the calling tree of a typical NKS application appears in Figure 4.
The arrows represent calls that cross the boundary between application-specific
code and PETSc library code; all internal details of both are suppressed. The top-
level user routines perform I/0O related to initialization, restart, and post-processing
and calls PETSc subroutines to create data structures for vectors and matrices and
to initiate the nonlinear solver. PETSc calls user routines for function evaluations
f(u) and (approximate) Jacobian evaluations f’(u) at given vectors u representing
the discrete state of the flow. Auxiliary information required for the evaluation
of f and f’(u) that is not carried as part of u is communicated through PETSc
via a user-defined “context” that encapsulates application-specific data. (Such
information typically includes dimensioning data, grid data, physical parameters,
and quantities that could be derived from the state u, but are most conveniently
stored instead of recalculated, such as constitutive quantities.)

When well tuned, large-scale PDE codes spend almost all of their time in two
phases: flux computations to evaluate conservation law residuals, called “func-
tion evaluations” in Figure 4, where one aims to have such codes spent almost all
their time, and sparse linear algebraic kernels, which are a fact of life in implicit

36 DAVID E. KEYES

Main Routine
Nonlinear Solver (SNES) Matnx Vector
[Linear Solver (SLES) J PETSc
o ke
Application Post-

Initialization Evaluation EvaI uation Processing

‘ Function Jacobian

FIGURE 3. Coarsened calling tree of the FUN3D-PETSc code,
showing Coarsened calling tree of the FUN3D-PETSc code, show-
ing the user-supplied main program and callback routines for pro-
viding the initial nonlinear iterate, computing the nonlinear resid-
ual vector at a PETSc-requested state, and evaluating the Jacobian
(preconditioner) matrix.

methods. Altogether, four basic groups of tasks can be identified based on the
criteria of arithmetic concurrency, communication patterns, and the ratio of oper-
ation complexity to data size within the task. These four distinct phases, present
in most implicit codes, are vertex-based loops, edge-based loops, recurrences, and
global reductions. Each of these groups of tasks stresses a different subsystem of
contemporary high-performance computers. Analysis of our demonstration code
shows that, after tuning, the linear algebraic kernels run at close to the aggregate
memory bandwidth limit on performance, the flux computations are bounded ei-
ther by memory bandwidth or instruction scheduling (depending upon the ratio
of load/store units to floating-point units in the CPU), and parallel efficiency is
bounded primarily by slight load imbalances at synchronization points.

5.1. PDE Complexity Analysis. As mentioned above, there are four groups
of tasks in a typical PDE solver, each with a distinct proportion of work to datasize
to communication requirements. In the language of a vertex-centered code, in which
the data is stored at cell vertices, these tasks are as follows:

e Vertex-based loops
— state vector and auxiliary vector updates
e Edge-based “stencil op” loops
— residual evaluation, Jacobian evaluation
— Jacobian-vector product (often replaced with matrix-free form, in-
volving residual evaluation)
— interpolation between grid levels
e Sparse, narrow-band recurrences
— (approximate) factorization, back substitution, relaxation/smoothing

TERASCALE IMPLICIT METHODS FOR PDES 37

e vector inner products and norms
— orthogonalization/conjugation
— convergence progress checks and stability heuristics

Vertex-based loops are characterized by work closely proportional to datasize,
pointwise concurrency, and no communication.

Edge-based “stencil op” loops have a large ratio of work to datasize, since each
vertex is used in many discrete stencil operations, and each degree of freedom at
a point (momenta, energy, density, species concentration) generally interacts with
all others in the conservation laws through constitutive and state relationships or
directly. There is concurrency at the level of the number of edges between vertices
(or, at worst, the number of edges of a given “color” when write consistency needs
to be protected through mesh coloring). There is local communication between
processors sharing ownership of the vertices in a stencil.

Sparse, narrow-band recurrences involve work closely proportional to data size,
the matrix being the largest data object and each of its elements typically being
used once. Concurrency is at the level of the number of fronts in the recurrence,
which may vary with the level of exactness of the recurrence. In a preconditioned
iterative method, the recurrences are typically broken to deliver a prescribed process
concurrency; only the quality of the preconditioning is thereby affected, not the
final result. Depending upon whether one uses a pure decomposed Schwarz-type
preconditioner, a truncated incomplete solve, or an exact solve, there may be no,
local only, or global communication in this task.

Vector inner products and norms involve work closely proportional to data size,
mostly pointwise concurrency, and global communication. Unfortunately, inner
products and norms occur rather frequently in stable, robust linear and nonlinear
methods (recall the pseudo-code example in Subsection 3.1).

Based on these characteristics, one anticipates that vertex-based loops, recur-
rences, and inner products will be memory bandwidth-limited, whereas edge-based
loops are likely to be only load/store-limited. However, edge-based loops are vul-
nerable to internode bandwidth if the latter does not scale. Inner products are
vulnerable to internode latency and network diameter. Recurrences can resemble
some combination of edge-based loops and inner products in their communication
characteristics if preconditioning fancier than simple Schwarz is employed. For in-
stance, if incomplete factorization is employed globally or a coarse grid is used in a
multilevel preconditioner, global recurrences ensue.

5.2. Test Problem. Our demonstration application code, FUN3D, is a tetra-
hedral, vertex-centered unstructured mesh code originally developed by W. K. An-
derson of the NASA Langley Research Center for compressible and incompressible
Euler and Navier-Stokes equations [2, 3]. FUN3D uses a control volume discretiza-
tion with a variable-order Roe scheme for approximating the convective fluxes and
a Galerkin discretization for the viscous terms. FUN3D has been used for de-
sign optimization of airplanes, automobiles, and submarines, with irregular meshes
comprising several million mesh points. The optimization involves many analyses,
typically sequential. Thus, reaching the steady-state solution in each analysis cycle
in a reasonable amount of time is crucial to conducting the design optimization.
We test the code on the ONERA M6 wing, a standard three-dimensional test case,
for which extensive experimental data is given in [114]. A frequently studied pa-
rameter combination combines a freestream Mach number of 0.84 with an angle of

38 DAVID E. KEYES

attack of 3.06°. This transonic case gives rise to a characteristic A-shock. Our best
achievement to date for multimillion meshpoint simulations is about 15 usec per
degree of freedom for satisfaction of residuals close to machine precision.

We have ported FUN3D into the PETSc [4] framework using the single pro-
gram multiple data (SPMD) message-passing programming model, supplemented
by multithreading at the physically shared memory level. Thus far, our large-scale
parallel experience with PETSc-FUN3D is with compressible or incompressible Eu-
ler flows, but nothing in the solution algorithms or software changes when additional
physical phenomenology present in the original FUN3D is included. Of course, the
convergence rate varies with conditioning, as determined by Mach and Reynolds
numbers and the correspondingly induced mesh adaptivity. Robustness becomes an
issue in problems that admit shocks or employ turbulence models. When nonlinear
robustness is restored in the usual manner, through pseudo-transient continuation,
the conditioning of the linear inner iterations is enhanced, and parallel scalability
may be improved. In some sense, the subsonic Euler examples on which we concen-
trate, with their smaller number of flops per point per iteration and their aggressive
pseudotransient buildup toward the steady-state limit, may be a more severe test
of parallel performance than more physically complex cases.

Achieving high sustained performance, in terms of solutions per second, requires
attention to three factors. The first is a scalable implementation, in the sense that
time per iteration is reduced in inverse proportion to the number of processors, or
that time per iteration is constant as problem size and processor number are scaled
proportionally. The second is good per-processor performance on contemporary
cache-based microprocessors. The third is algorithmic scalability, in the sense that
the number of iterations to convergence does not grow with increased numbers of
processors. This factor arises because the requirement of a scalable implementation
generally forces parameterized changes in the algorithm as the number of processors
grows. If the convergence is allowed to degrade, however, the overall execution is not
scalable, and this must be countered algorithmically. These factors in the overall
performance are considered in [60], from which some performance results are cited
here.

PETSc features distributed data structures—index sets, vectors, and matrices—
as fundamental objects. Iterative linear and nonlinear solvers are implemented
within PETSc in a data structure-neutral manner, providing a uniform application
programmer interf ace. We use MeTiS [70] to partition the unstructured mesh.
The basic philosophy of any efficient parallel computation is “owner computes,”
with message merging and overlap of communication with computation where pos-
sible via split transactions. Each processor “ghosts” its stencil dependencies on
its neighbors’ data. Grid functions are mapped from a global (user) ordering into
contiguous local orderings (which, in unstructured cases, are designed to maximize
spatial locality for cache line reuse). Scatter/gather operations are created between
local sequential vectors and global distributed vectors, based on runtime-deduced
connectivity patterns.

5.3. Implementation Scalability. Domain-decomposed parallelism for PDEs
is a natural means of overcoming Amdahl’s law in the limit of fixed problem size
per processor. As noted in Subsection 2.6, computational work on each evaluation
of the conservation residuals scales as the volume of the (equal-sized) subdomains,
whereas communication overhead scales only as the surface. This ratio is fixed when

TERASCALE IMPLICIT METHODS FOR PDES 39

TABLE 3. Scalability bottlenecks on ASCI Red for a fixed-size
2.8M vertex mesh. The preconditioner used in these results is
block Jacobi with ILU(1) in each subdomain. We observe that the
principal nonscaling factor is the implicit synchronization.

Percentage of Time

Global | Implicit Ghost
Number of || Reduc- | Synchro- Point
Processors tions nizations | Scatters
128 5 4 3
512 3 7 5
3072 5 14 10

problem size and processors are scaled in proportion, leaving only global reduction
operations over all processors as an impediment to perfect performance scaling.

In [78], it is shown that on contemporary tightly coupled parallel architectures
in which the number of connections between processors grows in proportion to the
number of processors, such as meshes and tori, aggregate internode bandwidth is
more than sufficient, and limits to scalability may be determined by a balance of
work per node to synchronization frequency. On the other hand, if there is nearest-
neighbor communication contention, as when a fixed resource like an ethernet switch
is divided among all processors, the number of processors is allowed to grow only
as the one-fourth power of the problem size (in three dimensions). This is a curse
of typical Beowulf-type clusters with inexpensive networks; we do not discuss the
problem here, although it is an important practical limitation.

When the load is perfectly balanced (which is easy to achieve for static meshes)
and local communication is not an issue because the network is scalable, the op-
timal number of processors is related to the network diameter. For logarithmic
networks, like a hypercube, the optimal number of processors, P, grows directly in
proportion to the problem size, N. For a d-dimensional torus network, P oc N%/d+1,
The proportionality constant is a ratio of work per subdomain to the product of
synchronization frequency and internode communication latency. In Table 3, we
present a closer look at the relative cost of computation for PETSc-FUN3D for a
fixed-size problem of 2.8 million vertices on the ASCI Red machine, from 128 to
3072 nodes. The intent here is to identify the factors that retard the scalability. The
overall parallel efficiency (denoted by 7overair) is broken into two factors: 74,4 mea-
sures the degradation in the parallel efficiency due to the increased iteration count
of this (non-coarse-grid-enhanced) NKS algorithm as the number of subdomains
increases, while 7, measures the degradation coming from all other nonscalable
factors such as global reductions, load imbalance (implicit synchronizations), and
hardware limitations.

From Table 3, we observe that the buffer-to-buffer time for global reductions
for these runs is relatively small and does not grow on this excellent network. The
primary factors responsible for the increased overhead of communication are the
implicit synchronizations and the ghost point updates (interprocessor data scat-
ters).

Interestingly, the increase in the percentage of time (3% to 10%) for the scatters
results more from algorithmic issues than from hardware/software limitations. With

40 DAVID E. KEYES

an increase in the number of subdomains, the percentage of grid point data that
must be communicated also rises. For example, the total amount of nearest neighbor
data that must be communicated per iteration for 128 subdomains is 2 gigabytes,
while for 3072 subdomains it is 8 gigabytes. Although more network wires are
available when more processors are employed, scatter time increases. If problem
size and processor count are scaled together, we would expect scatter times to
occupy a fixed percentage of the total and load imbalance to be reduced at high
granularity.

Mesh partitioning has a dominant effect on parallel scalability for problems
characterized by (almost) constant work per point. As shown above, poor load
balance causes idleness at synchronization points, which are frequent in implicit
methods (e.g., at every conjugation step in a Krylov solver). With NKS methods,
then, it is natural to strive for a very well balanced load. The p-MeTiS algorithm in
the MeTiS package [70], for example, provides almost perfect balancing of the num-
ber of mesh points per processor. However, balancing work alone is not sufficient.
Communication must be balanced as well, and these objectives are not entirely
compatible. Figure 4 shows the effect of data partitioning using p-MeTiS, which
tries to balance the number of nodes and edges on each partition, and k-MeTiS,
which tries to reduce the number of noncontiguous subdomains and connectivity
of the subdomains. Better overall scalability is observed with k-MeTiS, despite the
better load balance for the p-MeTiS partitions. This is due to the slightly poorer
numerical convergence rate of the iterative NKS algorithm with the p-MeTiS parti-
tions. The poorer convergence rate can be explained by the fact that the p-MeTiS
partitioner generates disconnected pieces within a single “subdomain,” effectively
increasing the number of blocks in the block Jacobi or additive Schwarz algorithm
and increasing the size of the interface. The convergence rates for one-level block
iterative methods degrade with increasing number of blocks, as discussed in con-
junction with Table 1.

5.4. Algorithmic Tuning for VNKS Solver. The following is an incom-
plete list of parameters that need to be tuned in various phases of a pseudo-transient
Newton-Krylov-Schwarz algorithm.

e Nonlinear robustness continuation parameters: discretization order, initial
time step, pseudo-time step evolution law

e Newton parameters: convergence tolerance on each time step, globaliza-
tion strategy (line search or trust region parameters), refresh frequency
for Jacobian preconditioner

e Krylov parameters: convergence tolerance for each Newton correction,
restart dimension of Krylov subspace, overall Krylov iteration limit, or-
thogonalization mechanism

e Schwarz parameters: subdomain number, quality of subdomain solver (fill
level, number of sweeps), amount of subdomain overlap, coarse grid usage

e Subproblem parameters: fill level, number of sweeps

5.4.1. Parameters for Pseudo-Transient Continuation. Although asymptotically
superlinear, solution strategies based on Newton’s method must often be approached
through pseudo-time stepping. For robustness, pseudo-time stepping is often ini-
tiated with very small time steps and accelerated subsequently. However, this

TERASCALE IMPLICIT METHODS FOR PDES 41

[o s e e e e B s

= =

— ~

= pmetis // 3

= — — — — kmetis ~ E
5F - =
— -~ .

o - 3

o —~ 3

= _ =

o — e 3
= 4F Z =
-g — 7z 3
(% o z 3
o y 3

< o 7 .
o 7 m
E%s,— y =
[a N - / 3
- VA .

- Vi .

= V7 .
2 7 =
— / 3

- 7 E

- 7 3

2 3

NIRRT EEENENITIS SNETETI SRR ST SN S
:![.28 256 384 512 640 768 896 1024
Processors

FIGURE 4. Parallel speedup relative to 128 processors on a 600
MHz Cray T3E for a 2.8M vertex case, showing the effect of par-
titioning algorithms k-MeTiS, and p-MeTiS.

conventional approach can lead to long “induction” periods that may be bypassed
by a more aggressive strategy, especially for the smooth flow fields.

The time step is advanced toward infinity by a power-law variation of the
switched evolution/relaxation (SER) heuristic of Van Leer and Mulder [98]. To be
specific, within each residual reduction phase of computation, we adjust the time
step according to

fu® P
Vers = Mo (i)

where p is a tunable exponent close to unity. Figure 5 shows the surprisingly sen-
sitive effect of initial CFL number (a dimensionless measure of the time step size),
N1, on the convergence rate. In general, the best choice of initial CFL number is
dependent on the grid size and Mach number. A small CFL adds nonlinear stability
far from the solution but retards the approach to the domain of superlinear con-
vergence of the steady state. For flows with near discontinuities, it is usually safer
to start with small CFL numbers; however, this figure shows that such a strategy
may not lead to the best execution time.

In flows with shocks, high-order (second or higher) discretization for the con-
vection terms should be activated only after the shock position has settled down.
We begin such simulations with a first-order upwind scheme and switch to second-
order after a certain residual reduction. The exponent (p) in the power law above is
damped to 0.75 for robustness when shocks are expected to appear in second-order
discretizations. For first-order discretizations, this exponent may be as large as
1.5. A reasonable switchover point of the residual norm between first-order and
second-order discretization phases has been determined empirically. In shock-free

42 DAVID E. KEYES

[
(=]
°

—— Initial CFL = 10
— — — — Initial CFL =50

— —

= = =
S o o
& S t
I I I
_

1 1

Residual Norm
5
1
1

10710 L —
107" = \ —
. P

1 1
50] 100 150
Pseudo-time Iterations

101 .
0

FI1GURE 5. Residual norm versus iteration count for a 2.8M-vertex
case, showing the effect of initial CFL number on convergence rate.
The convergence tuning of nonlinear problems is notoriously case
specific.

simulations we use second-order accuracy throughout. Otherwise, we normally re-
duce the first two to four orders of residual norm with the first-order discretization,
then switch to second. This order of accuracy applies to the flux calculation. The
preconditioner matrix is always built out of a first-order analytical Jacobian matrix.
5.4.2. Parameters for Krylov Solver. We use an inexact Newton method on
each time step; that is, the linear system within each Newton iteration is solved
only approximately. Especially in the beginning of the solution process, this saves
a significant amount of execution time. We have considered the following three
parameters in this phase of computation: convergence tolerance, the number of
simultaneously storable Krylov vectors, and the total number of Krylov iterations.
The typical range of variation for the inner convergence tolerance is 0.001-0.01.
We have experimented with progressively tighter tolerances near convergence, and
saved Newton iterations thereby, but did not save time relative to cases with loose
and constant tolerance. The Krylov subspace dimension depends largely on the
problem size and the available memory. We have used values in the range of 10—
30 for most of the problems. The total number of linear iterations (within each
nonlinear solve) has been varied from 10 for the smallest problem to 80 for the
largest one. A typical number of fine-grid flux evaluations for achieving 10710
residual reduction on a million-vertex Euler problem is a couple of thousand.
5.4.3. Additive Schwarz Preconditioner. Table 4 explores two quality parame-
ters for the additive Schwarz preconditioner: subdomain overlap and quality of the
subdomain solve using incomplete factorization. We exhibit execution time and
iteration count data from runs of PETSc-FUN3D on the ASCI Red machine for
a fixed-size problem with 357,900 grid points and 1,789,500 degrees of freedom.

TERASCALE IMPLICIT METHODS FOR PDES 43

These calculations were performed using GMRES(20), one subdomain per proces-
sor (without overlap for block Jacobi and with overlap for ASM), and ILU(k) where
k varies from 0 to 2, and with the natural ordering in each subdomain block. The
use of ILU(0) with natural ordering on the first-order Jacobian, while applying a
second-order operator, allows the factorization to be done in place, with or without
overlap. However, the overlap case does require forming an additional data struc-
ture on each processor to store matrix elements corresponding to the overlapped
regions.

From Table 4, we see that larger overlap and more fill help in reducing the
total number of linear iterations as the number of processors increases, as theory
and intuition predict. However, both increases consume more memory, and both
result in more work per iteration, ultimately driving up execution times in spite
of faster convergence. Best execution times are obtained for any given number of
processors for ILU(1), as the number of processors becomes large (subdomain size
small), for zero overlap.

The additional computation/communication costs for additive Schwarz (as com-
pared with block Jacobi) are the following:

(1) Calculation of the matrix couplings among processors. For block Jacobi,
these need not be calculated.

(2) Communication of the “overlapped” matrix elements to the relevant pro-
Cessors.

(3) Factorization of the larger local submatrices.

(4) Communication of the ghost points in the application of the ASM precon-
ditioner. We use restricted additive Schwarz method (RASM) [36], which
communicates only when setting up the overlapped subdomain problems
and ignores the updates coming from the overlapped regions. This saves
a factor of two in local communication relative to standard ASM.

(5) Inversion of larger triangular factors in each iteration.

The execution times reported in Table 4 are highly dependent on the machine
used, since each of the additional computation/communication costs listed above
may shift the computation past a knee in the performance curve for memory band-
width, communication network, and so on.

5.4.4. Other Algorithmic Tuning Parameters. In [59] we highlight some addi-
tional tunings that have yielded good results in our context. Some subsets of these
parameters are not orthogonal but interact strongly with each other. In addition,
optimal values of some of these parameters depend on the grid resolution.

We emphasize that the discussion in this section does not pertain to discretiza-
tion parameters, which constitute another area of investigation — one that ulti-
mately impacts performance at a higher level. The algorithmic parameters dis-
cussed in this section do not affect the accuracy of the discrete solution, but only
the rate at which the solution is attained. In all of our experiments, the goal has
been to minimize the overall execution time, not to maximize the floating-point
operations per second. There are many tradeoffs that enhance Mflop/s rates but
retard execution completion.

5.5. Large-Scale Demonstration Runs. We use PETSc’s profiling and log-
ging features to measure the parallel performance. PETSc logs many different types
of events and provides valuable information about time spent, communications, load

44 DAVID E. KEYES

TABLE 4. Execution times and linear iteration counts on the 333
MHz Pentium Pro ASCI Red machine for a 357,900-vertex case,
showing the effect of subdomain overlap and incomplete factoriza-
tion fill level in the additive Schwarz preconditioner. The best
execution times for each ILU fill level and number of pro-
cessors are in boldface in each row.

ILU(0) in Each Subdomain

Number Overlap
of 0 1 2
Processors || Time | Linear Its || Time | Linear Its || Time [Linear Tts
32 688s 930 661s 816 696s 813
64 371s 993 374s 876 418s 887
128 210s 1052 230s 988 222s 872
ILU(1) in Each Subdomain
Number Overlap
of 0 1 2
Processors || Time | Linear Its || Time | Linear Its || Time | Linear Tts
32 598s 674 564s 549 617s 532
64 334s 746 335s 617 359s 551
128 177s 807 178s 630 200s 555
ILU(2) in Each Subdomain
Number Overlap
of 0 1 2
Processors || Time | Linear Tts || Time | Linear Its || Time | Linear Tts
32 688s 527 786s 441 — —
64 386s 608 441s 488 531s 448
128 193s 631 272s 540 313s 472

balance, and so forth for each logged event. PETSc uses manual counting of flops,
which are afterwards aggregated over all the processors for parallel performance
statistics. We have observed that the flops reported by PETSc are close to (within
10% of) the values statistically measured by hardware counters on the R10000
processor.

PETSc uses the best timers available at the user level in each processing envi-
ronment. In our rate computations, we exclude the initialization time devoted to
I/0O and data partitioning. To suppress timing variations caused by paging in the
executable from disk, we preload the code into memory with one nonlinear iteration,
then flush, reload the initial iterate, and begin performance measurements.

Since we are solving large fixed-size problems on distributed-memory machines,
it is not reasonable to base parallel scalability on a uniprocessor run, which would
thrash the paging system on a single node, inflating the parallel efficiency of mul-
tiprocessor runs. Our base processor number is such that the problem has just fit
into the local memory.

The same fixed-size problem is run on large ASCI Red configurations with sam-
ple scaling results shown in Figure 6. The implementation efficiency is 91% in going
from 256 to 3072 nodes. For the data in Figure 6, we employed the -procs 2 run-
time option on ASCI Red. This option enables 2-processor-per-node multithreading
during threadsafe, communication-free portions of the code. We have activated this

TERASCALE IMPLICIT METHODS FOR PDES

1500

12000

Avg. Vertices per Node

10000

4 1000r

8000

6000+

500

4000+

2000+

0 0
256 512 1024 1536 2048 2560 3072 256 512

Execution Time (sec)

1024

1536 2048 2560 3072

12— . 50

Implementation Efficiency

451

1 4of

351

30F

251

201

151

101

0 0
256 512 1024 1536 2048 2560 3072 256 512

Nonlinear lterations

1024

1536 2048 2560 3072

100

T T T T T 250
o0l Mflop/s per Node

0 0
256 512 256 512

1024 1536 2048 2560 3072

Aggregate Gflop/s

1024 1536 2048 2560 3072

FiGURE 6. Parallel performance for a fixed size mesh of 2.8M ver-
tices run on up to 3072 ASCI Red 333 MHz Pentium Pro proces-

SOTS.

45

feature for the floating-point-intensive flux computation subroutine alone. On 3072
nodes, the largest run we have been able to make on the unclassified side of the ma-

chine to date, the resulting Gflop/s rate is 227. Undoubtedly, further improvements

to the algebraic solver portion of the code are also possible through multithreading,
but the additional coding work does not seem justified at present.
Figure 8 shows aggregate flop/s performance and a log-log plot showing exe-

cution time for our largest case on the three most capable machines to which we

have thus far had access. In both plots of this figure, the dashed lines indicate
ideal behavior. Note that although the ASCI Red flop/s rate scales nearly linearly,
a higher fraction of the work is redundant at higher parallel granularities, so the

46 DAVID E. KEYES

300

Aggregate Gflop/s

Asci Red
2001

150

1001

0 500 1000 1500 2000 2500 3000 3500 4000

10 ‘
Execution Time (s)
10°} :
Asci Red
107
10> 10° 10"

FIGURE 7. Gigaflop/s ratings and execution times on ASCI Red
(up to 3072 2-processor nodes), ASCI Pacific Blue (up to 768 pro-
cessors), and a Cray T3E (up to 1024 processors) for a 2.8M-vertex
case, along with dashed lines indicating “perfect” scalings.

execution time does not drop in exact proportion to the increase in flop/s. The
number of vertices per processor ranges from about 22,000 to fewer than 1,000 over
the range shown. We point out that for just 1,000 vertices in a three-dimensional
domain, about half are on the interface (e.g., 488 interface vertices on a 10 x 10 x 10
cube).

6. Terascale Optimal PDE Simulations (TOPS)

In PDE simulations, infinite-dimensional continuous models are approximated
with finite-dimensional models. To obtain the required accuracy and resolve the
multiple scales of the underlying physics, the finite-dimensional models must often
be extremely large, thus requiring terascale computers. Fortunately, continuous

TERASCALE IMPLICIT METHODS FOR PDES 47

problems provide a natural way to generate a hierarchy of approximate models,
through which the required solution may be obtained efficiently by various forms of
“bootstrapping.” The most dramatic examples are multigrid methods, but other
hierarchical representations are also exploitable.

Under the Scientific Discovery through Advanced Computing (SciDAC) ini-
tiative of the U.S. Department of Energy, a nine-institution team is building an
integrated software infrastructure center (ISIC) that focuses on developing, imple-
menting, and supporting optimal or near optimal schemes for PDE simulations
and closely related tasks, including optimization of PDE-constrained systems, eige-
nanalysis, and adaptive time integration, as well as implicit linear and nonlinear
solvers. The Terascale Optimal PDE Simulations (TOPS) Center is researching
and developing and will deploy a toolkit of open source solvers for the nonlinear
partial differential equations that arise in many application areas, including fusion,
accelerator design, global climate change, and the collapse of supernovae. These
algorithms — primarily multilevel methods — aim to reduce computational bottle-
necks by one or more orders of magnitude on terascale computers, enabling scientific
simulation on a scale heretofore impossible.

Along with usability, robustness, and algorithmic efficiency, an important goal
of this ISIC is to attain the highest possible computational performance in its imple-
mentations by accommodating to the memory bandwidth limitations of hierarchical
memory architectures.

PDE simulation codes require implicit solvers for multiscale, multiphase, mul-
tiphysics phenomena from hydrodynamics, electromagnetism, radiation transport,
chemical kinetics, and quantum chemistry. Problem sizes are typically now in the
millions of unknowns; and with emerging large-scale computing systems and inex-
pensive clusters, we expect this size to increase by a factor of a thousand over the
next five years. Moreover, these simulations are increasingly used for design op-
timization, parameter identification, and process control applications that require
many repeated, related simulations.

Unfortunately, the implicit solution algorithms currently used in many contem-
porary codes have far from optimal computational complexities and are invariably
bottlenecks that limit the scalability of the entire application, independent of the
quality of the implementation. For example, for an algorithm with a 3/2 exponent
in the complexity an increase in problem size of a factor of 100 can easily result
in an increase in work requirements of 1000. When such a simulation is run on
a system with 100 times as many processors (to scale the problem size with the
available memory), it requires at least ten times longer to run. In comparison,
optimal complexity algorithms have work (and memory) requirements that grow
only linearly or logarithmically with problem size. (Technically, there is at least a
logarithm that comes into the per-iteration time for any application that performs
global reductions, but the number of iterations should be constant.) Multilevel (or
multigrid) methods make up a class of optimal complexity algorithms that have
produced spectacular improvements in overall simulation time. However, current
multilevel software tends to be problem-specific and is mature only for scalar (as op-
posed to multicomponent) PDEs. Because of the potential payoff, the TOPS ISIC
will expend much of its effort on developing practical, usable multilevel methods
for comprehensive aspects of PDE simulations.

48 DAVID E. KEYES

The TOPS ISIC is concerned with five PDE simulation capabilities: adaptive
time integrators for stiff systems, nonlinear implicit solvers, optimization, linear
solvers, and eigenanalysis. The relationship between these areas is depicted in
Figure 9. In addition, the ISIC will contain two cross-cutting topics: software
integration (or interoperability) and high-performance coding techniques for PDE
applications.

Optimization

=

‘ Timeintegration ‘

Common Framework

‘ Nonlinear solvers ‘ ‘ Eigenanalysis

T ~

‘ Linear solvers ‘

—> Indicates usage

FIGURE 8. An arrow from A to B indicates that A typically uses
B. Optimization of systems governed by PDFEs requires repeated
access to a PDE solver. The PDE system may be steady-state or
time-dependent. Time-dependent PDFEs are typically solved with
implicit temporal differencing. After choice of the time-integration
scheme, they, in turn, require the same types of nonlinear solvers
that are used to solve steady-state PDFEs. Many algorithms for
nonlinear problems of high dimension generate a sequence of linear
problems, so linear solver capability is at the core. FEigenanalysis
arises inside of or independently of optimization. Like direct PDE
analysis, eigenanalysis generally depends upon solving a sequence
of linear problems. All of these five classes of problems, in a PDE
context, share grid-based data structures and considerable parallel
software infrastructure. Therefore, it is compelling to undertake
them together.

Optimal (and nearly optimal) complexity numerical algorithms almost invari-
ably depend upon a hierarchy of approximations to “bootstrap” to the required
highly accurate final solution. Generally, an underlying continuum (infinite di-
mensional) high fidelity mathematical model of the physics is discretized to “high”
order on a “fine” mesh to define the top level of the hierarchy of approximations.
The representations of the problem at lower levels of the hierarchy may employ
other models (possibly of lower physical fidelity), coarser meshes, lower order dis-
cretization schemes, inexact linearizations, and even lower floating-point precisions.
The philosophy that underlies our algorithmics and software is the same as that
of this chapter — to make the majority of progress towards the highly resolved
result through possibly low-resolution stages that run well on high-end distributed
hierarchical memory computers.

TERASCALE IMPLICIT METHODS FOR PDES 49

The ingredients for constructing hierarchy-of-approximations-based methods
are remarkably similar, be it for solving linear systems, nonlinear problems, eigen-
value problems, or optimization problems, namely:

(1) A method for generating several discrete problems at different resolutions
(for example on several grids),

(2) An inexpensive (requiring few floating point operations, loads, and stores
per degree of freedom) method for iteratively improving an approximate
solution at a particular resolution,

(3) A means of interpolating (discrete) functions at a particular resolution to
the next finer resolution,

(4) A means of transferring (discrete) functions at a particular resolution to
the next coarser resolution (often obtained trivially from interpolation).

Software should reflect the simplicity and uniformity of these ingredients over
the five problem classes and over a wide range of applications. With experience we
expect to achieve a reduction in the number of lines of code that need to be written
and maintained, because the same code can be reused in many circumstances.

Algorithms and software for the solution of linear and nonlinear systems of
equations, especially those arising from PDEs, have been principal emphases of
the Department of Energy research portfolio for decades. This points both to the
central importance of this project, and also to the historical difficulty of reconcil-
ing the conflicting objectives of solver software technology. Solvers are supposed
to be of general purpose, since a great diversity of applications require them, but
they are also supposed to be highly performant, since they are often the inner loops
of such applications. However, high performance usually requires exploitation of
special structure (e.g., symmetry, dense blocking, geometrical or coefficient regular-
ity), which may be different in different applications. Then, too, solvers for PDEs
are supposed to be robust across all regimes of use, since scientists trained in the
application domain cannot also be required to be expert in tuning solvers, but they
are also supposed to have optimal complexity, since desired discrete problem size
is limited only by the validity of the continuum model. Once again, algorithmic
optimality (work and memory requirements a small multiple of their information-
theoretic minima) is generally achieved by exploitation of special structure that
cannot be assumed in a robust code.

These conflicting objectives do not describe a hopeless situation, however. The
opportunity for 21st century solver developers is to exploit advances in object-
oriented programming to construct highly versatile and adaptive software that finds,
creates, and exploits structure wherever possible, while automatically “falling back”
to conservative approaches in the remaining (hopefully lower-dimensional) parts of a
problem. The solver toolkit of the future will be a collection of objects with rich and
recursive interconnections, rather than a collection of subroutines through which
a relatively small number of calling sequences are predefined. Algorithmic theory,
scientific software engineering, and understanding of architecturally-motivated per-
formance optimizations have all advanced significantly since the last time many
applications communities “fastened onto” their canonical solver technology. Ad-
vances along these three fronts must be packaged, refined, freshly promoted, and
supported for the benefit of the user community.

50 DAVID E. KEYES

The efforts defined for TOPS, the co-PlIs joining to undertake them, and the
alliances proposed with other groups have been chosen to exploit the present oppor-
tunity to revolutionize large-scale solver infrastructure, and lift the capabilities of
dozens of DOE’s computational science groups as an outcome. The co-PIs’ current
software (e.g., Hypre, PETSc, ScaLAPACK, SuperLU), though not algorithmically
optimal in many cases, and not yet as interoperable as required, is in the hands
of thousands of users, and has created a valuable experience base. Just as we
expect the user community to drive research and development, we expect to signifi-
cantly impact the scientific priorities of users by emphasizing optimization (inverse
problems, optimal control, optimal design) and eigenanalysis as part of the solver
toolkit.

Optimization subject to PDE-constraints is a particularly active subfield of
optimization because the traditional means of handling constraints in black-box
optimization codes — with a call to a PDE solver in the inner loop — is too expen-
sive. We are emphasizing “simultaneous analysis and design” methods in which the
cost of doing the optimization is a small multiple of doing the simulation and the
simulation data structures are actually part of the optimization data structures.

Likewise, we expect that a convenient software path from PDE analysis to
eigenanalysis will impact the scientific approach of users with complex applications.
For instance, a PDE analysis can be pipelined into the scientific added-value tasks of
stability analysis for small perturbations about a solution and reduced dimension
representations (model reduction), with reuse of distributed data structures and
solver components.

Our motivating belief is that most PDE simulation is ultimately a part of
some larger scientific process that can be hosted by the same data structures and
carried out with many of the same optimized kernels as the simulation, itself. We
intend to make the connection to such processes explicit and inviting to users, and
this will be a prime metric of our success. The organization of the effort flows
directly from this program of “holistic simulation”: Terascale software for PDEs
should extend from the analysis to the scientifically important auxiliary processes of
sensitivity analysis, modal analysis and the ultimate “prize” of optimization subject
to conservation laws embodied by the PDE system.

7. Conclusions

The emergence of the nonlinearly implicit Jacobian-free Newton-Krylov-Schwarz
family of methods has provided a pathway towards terascale simulation of PDE-
based systems.

Large-scale implicit computations have matured to a point of practical use on
distributed /shared memory architectures for static-grid problems. More sophisti-
cated algorithms, including solution adaptivity, inherit the same features within
static-grid phases, of course, but require extensive additional infrastructure for
dynamic parallel adaptivity, rebalancing, and maintenance of efficient, consistent
distributed data structures.

While mathematical theory has been crucial in the development of NKS meth-
ods, their most successful application also depends upon a more-than-superficial
understanding of the underlying architecture and of the physics being modeled.
In the future, as we head towards petascale simulation and greater integration of

TERASCALE IMPLICIT METHODS FOR PDES 51

complex physics codes in full system analysis and optimization, we expect that this
interdisciplinary interdependence will only increase.

Acknowledgements

The author thanks Xiao-Chuan Cai, Omar Ghattas, Bill Gropp, Dana Knoll, and

Barry Smith for long-term collaborations on parallel algorithms, and Satish Balay, Paul
Hovland, Dinesh Kaushik, and Lois McInnes from the PETSc team at Argonne National
Laboratory (along with Gropp and Smith and others) for their wizardry in implementation
and making the applications described in this paper possible, and to Widodo Samyono for
nascent collaborations on the LNKS algorithm.

=

10.

11.

12.

13.

14.

15.

16.

17.

18.

References

. K. Ajmani, W.-F. Ng, and M.-S. Liou, Preconditioned conjugate gradient methods for the
Navier-Stokes equations, J. Comp. Phys. 110 (1994), 68-81.

. W. K. Anderson and D. L. Bonhaus, An implicit upwind algorithm for computing turbulent
flows on unstructured grids, Comp. Fluids 23 (1994), 1-21.

. W. K. Anderson, R. D. Rausch, and D. L. Bonhaus, Implicit/multigrid algorithms for in-
compressible turbulent flows on unstructured grids, J. Comput. Phys. 128 (1996), 391-408.

. S. Balay, W. D. Gropp, L. C. Mclnnes, and B. F. Smith, PETSc 2.0 users manual, Tech.
Report ANL-95/11, Mathematics and Computer Science Division, Argonne National Labo-
ratory, 1995, (see http://www.mcs.anl.gov/petsc/).

, Efficient management of parallelism in object-oriented numerical software libraries,

Modern Software Tools in Scientific Computing, Birkhauser, 1997, pp. 163—201.

, The Portable, Extensible Toolkit for Scientific Computing, version 2.3.1,
http://www.mcs.anl.gov/petsc/, 2002.

. R.E. Bank, T.F. Chan, W.M. Coughran, and R.K. Smith, The alternate block factorization
procedure for systems of partial differential equations, BIT 29 (1989), 938-954.

. T. J. Barth and S. W. Linton, An unstructured mesh Newton solver for fluid flow and its
parallel implementation, Tech. Report 95-0221, ATAA, 1995.

. A. Battermann and M. Heinkenschloss, Preconditioners for Karush-Kuhn-Tucker matrices

arising in optimal control of distributed systems, Tech. Report TR96-34, Dept. of Computa-

tional and Applied Mathematics, Rice University, 1996.

M. Bhardwaj, D. Day, C. Farhat, M. Lesoinne, K. Pierson, and D. Rixen, Application of

the FETI method to ASCI problems: Scalability results on one thousand processors and

discussion of highly heterogeneous problems, Int. J. Numer. Meths. Engineering 47 (2000),

513-536.

G. Biros and O. Ghattas, Parallel Newton-Krylov methods for PDE-constrained optimiza-

tion, Proceedings of SC99, IEEE Computer Society, 1999.

, A Lagrange-Newton-Krylov-Schur method for PDE-constrained optimization,

SIAG/OPT Views-and-News 11 (2000), no. 2, 1-6.

C. Bischof, A. Carle, G. Corliss, A. Griewank, and P. Hovland, ADIFOR - generating deriv-

ative codes from Fortran programs, Scientific Programming 1 (1992), 1-29.

C. Bischof, L. Roh, and A. Mauer, ADIC — An extensible automatic differentiation tool for

ANSI-C, Software Practice and Experience 27 (1997), 1427 1456.

P. E. Bjorstad and O. B. Widlund, To overlap or not to overlap: A note on a domain

decomposition method for elliptic problems, SIAM J. Sci. Stat. Comput. 10 (1989), 1053~

1061.

R. L. Bowers and J. R. Wilson, Numerical Modeling in Applied Physics and Astrophysics,

Jones and Bartlett, 1991.

A. Brandt, Multi-level adaptive solutions to boundary wvalue problems, Math. Comp. 31

(1977), 333.

, Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics, Tech.
report, von Karman Institute, 1984.

. P. N. Brown and A. C. Hindmarsh, Matriz-free methods for stiff systems of ODE’s, SIAM
J. Numer. Anal. 23 (1986), 610-638.

52

20.

21

22,

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

DAVID E. KEYES

P. N. Brown and Y. Saad, Hybrid Krylov methods for nonlinear systems of equations, SIAM
J. Sci. Stat. Comput. 11 (1990), 450-481.

P. N. Brown and C. S. Woodward, Preconditioning strategies for fully implicit radiation
diffusion with material-energy transfer, Tech. Report UCRL-JC-139087, Lawrence Livermore
National Laboratory, 2000.

R. H. Byrd, J. Nocedal, and R. B. Schnabel, Representations of quasi-Newton matrices and
their use in limited-memory methods, Math. Prog., Ser. A 63 (1994), 129-156.

X.-C. Cai, Some domain decomposition algorithms for nonselfadjoint elliptic and parabolic
partial differential equations, Technical Report 461, Courant Institute, 1989.

, An optimal two-level overlapping domain decomposition method for elliptic problems
in two and three dimensions, SIAM J. Sci. Comput. 14 (1993), 239-247.

, Multiplicative schwarz methods for parabolic problems, SIAM J. Sci. Comput. 15
(1994), 587-603.

X.-C. Cai, M. Dryja, and M. Sarkis, RASHO: A restricted additive Schwarz preconditioner
with harmonic overlap, Proceedings of the 13th International Conference on Domain Decom-
position Methods, Domain Decomposition Press, 2002.

X.-C. Cai, C. Farhat, and M. Sarkis, Schwarz methods for the unsteady compressible Navier-
Stokes equations on unstructured meshes, Proceedings of the Eighth International Conference
on Domain Decomposition Methods, Wiley, 1997, pp. 453—460.

, A minimum overlap restricted additive Schwarz preconditioner and applications in
3D flow simulations, Proceedings of the Tenth International Conference on Domain Decom-
position Methods, AMS, 1998, pp. 238-244.

X.-C. Cai, W. D. Gropp, and D. E. Keyes, An comparison of some domain decomposition
and ilu preconditioned iterative methods for nonsymmetric elliptic problems, Numer. Lin.
Alg. Applics. 1 (1994), 477-504.

X.-C. Cai, W. D. Gropp, D. E. Keyes, R. G. Melvin, and D. P. Young, Parallel Newton-
Krylov-Schwarz algorithms for the transonic full potential equation, STAM J. Sci. Comput.
19 (1998), 246 265.

X.-C. Cai, W. D. Gropp, D. E. Keyes, and M. D. Tidriri, Newton-Krylov-Schwarz methods
in CFD, Proceedings of the International Workshop on Numerical Methods for the Navier-
Stokes Equations, Vieweg, 1995, pp. 17-30.

X.-C. Cai and D. E. Keyes, Nonlinearly preconditioned inexact Newton algorithms, to appear
in STAM J. Sci. Comput., 2002.

X.-C. Cai, D. E. Keyes, and L. Marcinkowski, Nonlinear additive schwarz preconditioners
and applications in computational fluid dynamics, (to appear in Int. J. of Numerical Methods
in Fluids), 2002.

X.-C. Cai, D. E. Keyes, and V. Venkatakrishnan, Newton-Krylov-Schwarz: An implicit solver
for CFD, Proceedings of the Eighth International Conference on Domain Decomposition
Methods, Wiley, 1997, pp. 387—400.

X.-C. Cai, D. E. Keyes, and D. P. Young, A nonlinearly additive Schwarz preconditioned in-
exact newton method for shocked duct flow, Proceedings of the 13th International Conference
on Domain Decomposition Methods, Domain Decomposition Press, 2002.

X.-C. Cai and M. Sarkis, A restricted additive Schwarz preconditioner for general sparse
linear systems, SIAM J. Sci. Comput. 21 (1999), 792-797.

X.-C. Cai and O. B. Widlund, Domain decomposition algorithms for indefinite elliptic prob-
lems, SIAM J. Sci. Stat. Comput. 13 (1992), 243-258.

, Multiplicative Schwarz algorithms for nonsymmetric and indefinite elliptic prob-
lems, SIAM J. Numer. Anal. 30 (1993), 936 952.

L. Chacon, D. A. Knoll, and J. M. Finn, An implicit nonlinear resistive and Hall MHD
solver, J. Comput. Phys. (2001), in review.

T. F. Chan and D.Goovaerts, On the relationship between overlapping and nonoverlapping
domain decomposition methods, SIAM J. Matrix Anal. Applics. 13 (1992), 663-675.

T. F. Chan and K. R. Jackson, Nonlinearly preconditioned Krylov subspace methods for
discrete Newton algorithms, SIAM J. Sci. Stat. Comput. 5 (1984), 535-542.

T. S. Coffey, C. T. Kelley, and D. E. Keyes, Pseudo-transient continuation and differential-
algebraic equations, submitted to STAM J. Sci. Comput., 2002.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.
61.

62.

63.

64.

65.

66.

67.

68.

TERASCALE IMPLICIT METHODS FOR PDES 53

N. Débit, M. Garbey, R. Hoppe, D. E. Keyes, Y. Kuznetsov, and J. Périaux, Proceedings
of the Thirteenth International Conference on Domain Decomposition Methods, Domain
Decomposition Press, 2002.

R. S. Dembo, S. C. Eisenstat, and T'. Steihaug, Inexact Newton methods, SIAM J. Numer.
Anal. 19 (1982), 400-408.

J. E. Dennis and R. B. Schnabel, Numerical methods for unconstrained optimization and
nonlinear equations, Prentice-Hall, 1983.

J. E. Dennis and V. Torczon, Direct search methods on parallel machines, STAM J. Opti-
mization 1 (1991), 448-474.

P. Deuflhard, Adaptive pseudo-transient continuation for monlinear steady state problems,
Tech. Report ZIB-Report 02-14, Konrad-Zuse-Zentrum, March 2002.

M. Dryja and O. B. Widlund, An additive variant of the Schwarz alternating method for
the case of many subregions, Tech. Report 339, Department of Computer Science, Courant
Institute, 1987.

, Schwarz methods of Neumann-Neumann type for three-dimensional elliptic finite
element problems, Commun. Pure Appl. Math. 48 (1995), 121-155.

S. C. Eisenstat and H. F. Walker, Choosing the forcing terms in an inexact Newton method,
SIAM J. Sci. Comput. 17 (1996), 16-32.

A. Ern, V. Giovangigli, D. E. Keyes, and M. D. Smooke, Towards polyalgorithmic linear
system solvers for mnonlinear elliptic systems, STAM J. Sci. Comput. 15 (1994), 681-703.

C. Farhat, M. Lesoinne, P. LeTallec, K. Pierson, and D. Rixen, FETI-DP: A dual-primal
unified feti method - part i: A faster alternative to the two-level feti method, Int. J. Numer.
Meths. Engineering 50 (2001), 1523-1544.

R. W. Freund, A transpose-free quasi-minimal residual algorithm for non-Hermitian linear
systems, STAM J. Sci. Stat. Comput. 14 (1993), 470-482.

C. W. Gear and Y. Saad, Iterative solution of linear equations in ode codes, STAM J. Sci.
Stat. Comput. 4 (1983), 583-601.

A. Griewank, Ewaluating derivatives: Principles and techniques of algorithmic differentia-
tion, STAM, 2000.

W. D. Gropp and D. E. Keyes, Complexity of parallel implementation of domain decomn-
position techniques for elliptic partial differential equations, SIAM J. Sci. Stat. Comput. 9
(1988), 312-326.

, Domain decomposition on parallel computers, Impact of Computing in Science and
Engineering 1 (1989), 421-439.

W. D. Gropp, D. E. Keyes, and J. S. Mounts, Implicit domain decomposition algorithms for
steady, compressible aerodynamics, Sixth International Symposium on Domain Decomposi-
tion Methods, AMS, 1994, pp. 203—-213.

W. D. Gropp, D. K. Kaushik D. E. Keyes, and B. F. Smith, Performance modeling and
tuning of an unstructured mesh CFD application, Proceedings of SC2000, IEEE Computer
Society, 2000.

, High performance parallel implicit CFD, Parallel Computing 27 (2001), 337-362.
W. D. Gropp, L. C. Mclnnes, M. D. Tidriri, and D. E. Keyes, Globalized Newton-Krylov-
Schwarz algorithms and software for parallel implicit CFD, Int. J. High Performance Com-
puting Applications 14 (2000), 102-136.

W. Hackbusch, Iterative methods for large sparse linear systems, Springer, 1993.

F. H. Harlow and A. A. Amsden, A numerical fluid dynamical calculation method for all
flow speeds, J. Comput. Phys. 8 (1971), 197-214.

A. C. Hindmarsh and A. G. Taylor, PVODE and KINSOL: Parallel software for differential
and nonlinear systems, Tech. report, Lawrence Livermore National Laboratory, 1998.

S. A. Hutchinson, J. N. Shadid, and R. S. Tuminaro, Aztec user’s guide: Version 1.1, Tech.
Report SAND95-1559, Sandia National Laboratories, October 1995.

H. Jiang and P. A. Forsyth, Robust linear and nonlinear strategies for solution of the tran-
sonic Euler equations, Computers and Fluids 24 (1995), 753-770.

Z. Johann, T. J. R. Hughes, and F. Shakib, A globally convergent matriz-free algorithm for
implicit time-marching schemes arising in finite element analysis in fluids, Computational
Methods in Applied Mechanics and Engineering 87 (1991), 281-304.

J.E. Jones and C.S. Woodward, Newton-Krylov-multigrid solvers for large scale, highly het-
erogeneous, variably saturated flow problems, SIAM J. Sci. Stat. Comput. (submitted, 2001).

54

69

70.

71.

72.
73.
74.
75.
76.

7.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

DAVID E. KEYES

J. E. Dennis Jr. and R. Schnabel, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations, Prentice-Hall, 1983.

G. Karypis and V. Kumar, A fast and high quality scheme for partitioning irreqular graphs,
SIAM J. Scientific Computing 20 (1999), 359-392.

D. K. Kaushik, D. E. Keyes, and B. F. Smith, Newton-Krylov-Schwarz methods for aerody-
namic problems: Compressible and incompressible flows on unstructured grids, Proceedings
of the 11th International Conference on Domain Decomposition Methods, Domain Decom-
position Press, 1999, pp. 513-520.

C. T. Kelley, Iterative methods for linear and nonlinear equations, SIAM, 1995.

, Iterative methods for linear and nonlinear equations, STAM, 1995.

C. T. Kelley and D. E. Keyes, Convergence analysis of pseudo-transient continuation, SIAM
J. Numer. Anal. 35 (1998), 508-523.

, Convergence analysis of pseudo-transient continuation, SIAM J. Num. Anal. 35
(1998), 508-523.

D. E. Keyes, Domain decomposition methods for the parallel computation of reacting flows,
Computer Physics Commun. 53 (1989), 181-200.

, Aerodynamic applications of Newton-Krylov-Schwarz solvers, Proceedings of the
14th International Conference on Numerical Methods in Fluid Dynamics, Springer, 1995,
pp. 1-20.

, How scalable is domain decomposition in practice?, Proceedings of the 11th In-
ternational Conference on Domain Decomposition Methods, Domain Decomposition Press,
1999.

D. E. Keyes and W. D. Gropp, A comparison of domain decomposition techniques for elliptic
partial differential equations and their parallel implementation, SIAM J. Sci. Stat. Comput.
8 (1987), no. 2, s166-s202.

, Domain decomposition techniques for monsymmetric systems of elliptic boundary
value problems: Examples from CFD, Second International Symposium on Domain Decom-
position Methods (T. F. Chan, R. Glowinski, J. Périaux, and O. Widlund, eds.), SIAM,
1989, pp. 321-339.

D. E. Keyes and M. D. Smooke, A parallelized elliptic solver for reacting flows, Parallel
Computations and Their Impact on Mechanics (A. K. Noor, ed.), ASME, 1987, pp. 375-402.
D. A. Knoll and D. E. Keyes, Jacobian-free Newton-Krylov methods: A survey of approaches
and applications, submitted to J. Comput. Phys., 2002.

D. A. Knoll, P. R. McHugh, and D. E. Keyes, Newton-Krylov methods for low Mach number
compressible combustion, AIAA J. 34 (1996), 961-967.

D. A. Knoll and V.A. Mousseau, On Newton-Krylov multigrid methods for the incompressible
Navier-Stokes equations, J. Comput. Phys. 163 (2000), 262—267.

D. A. Knoll, A. K. Prinja, and R. B. Campbell, A direct Newton solver for the two-
dimensional tokamak edge plasma fluid equations, J. Comput. Phys. 104 (1993), 418-426.
D. A. Knoll and W. J. Rider, A multilevel Newton-Krylov method for nonsymmetric, non-
linear boundary value problems, Tech. report, Los Alamos National Laboratory, 1997.

D. A. Knoll, W. J. Rider, and G. L. Olson, Newton-Krylov methods applied to nonequilibrium
radiation diffusion, Tech. report, Los Alamos National Laboratory, 1998.

D. A. Knoll and W.J. Rider, A multigrid preconditioned Newton-Krylov method, STAM J.
Sci. Comput. 21 (2000), 691-710.

D. A. Knoll, W. B. VanderHeyden, V. A. Mousseau, and D. B. Kothe, On preconditioning
Newton-Krylov methods in solidifying flow applications, SIAM J. Sci. Comput. (2001), in
press.

G. Kron, A set of principles to interconnect the solutions of physical systems, J. Appl. Phys.
24 (1953), 965-980.

J. Mandel, Balancing domain decomposition, Commun. Numer. Meths. Engineering 9 (1992),
233-241.

D. J. Mavriplis, On convergence acceleration techniques for unstructured meshes, Tech. Re-
port 98-2966, ATAA, 1998.

P. R. McHugh and D. A. Knoll, Inexzact Newton’s method solutions to the incompressible
Navier-Stokes and energy equations using standard and matriz-free implementations, Pro-
ceedings of the AIAA Eleventh Annual Computational Fluid Dynamics Conference, 1993.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.
104.
105.

106.
107.

108.

109.

110.
111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

TERASCALE IMPLICIT METHODS FOR PDES 55

P.R. McHugh, D.A. Knoll, and D.E. Keyes, Application of a Newton-Krylov-Schwarz algo-
rithm to low Mach number combustion, ATAA J. 36 (1998), 290-292.

V.A. Mousseau, Newton-Krylov methods for time accurate solutions of multiphysics systems
with advection, Los Alamos National Laboratory Report, LA-UR-00-2524 (2000).

V.A. Mousseau, D. A. Knoll, and J. Reisner, Nonlinearly consistent method for the shallow
water equations, Mon. Wea. Rev. (2002), to appear.

V.A. Mousseau, D. A. Knoll, and W.J. Rider, Physics-based preconditioning and the Newton-
Krylov method for non-equilibrium radiation diffusion, J. Comput. Phys. 160 (2000), 743—
765.

W. Mulder and B. Van Leer, Experiments with implicit upwind methods for the Euler equa-
tions, J. Computational Physics 59 (1985), 232-246.

, Exzperiments with implicit upwind methods for the Euler equations, J. Comp. Phys.
59 (1995), 232-246.

N. M. Nachtigal, S. C. Reddy, and L. N. Trefethen, How fast are nonsymmetric matriz
iterations?, SIAM J. Matrix Anal. Appl 13 (1992), 778 795.

J. C. Newton, W. K. Anderson, and D. L. Whitfield, Multidisciplinary sensitivity deriva-
tives using complex variables, Tech. Report 98-08, Mississippi State University Engineering
Research Center, July 1998.

E. J. Nielsen, R. W. Walters, W. K. Anderson, and D. E. Keyes, Application of Newton-
Krylov methodology to a three-dimensional unstructured Euler code, Tech. Report 95-1733,
ATAA, 1995.

J. Nocedal and S. J. Wright, Numerical optimization, Springer, 1999.

E. S. Oran and J. P. Boris, Numerical Simulation of Reactive Flow, Elsevier, 1987.

P. D. Orkwis, Comparison of Newton’s and quasi-Newton’s method solvers for the Navier-
Stokes equations, ATAA J. 31 (1993), 832-836.

S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere, 1980.

M. Pernice and M. D. Tocci, A multigrid-preconditioned Newton-Krylov method for the
incompressible Navier-Stokes equations, SIAM J. Sci. Comput. 23 (2001), 398 418.

M. Pernice, L. Zhou, and H. F. Walker, Parallel solution of nonlinear partial differential

equations using a globalized inexact Newton-Krylov-Schwarz method, Tech. Report 48, Uni-
versity of Utah Center for High Performance Computing, 1997.

Michael Pernice and Homer F. Walker, NITSOL: A Newton iterative solver for monlinear
systems, SIAM J. Sci. Comput. 19 (1998), 302-318.

J. S. Przemieniecki, Matriz structural analysis of substructures, ATAA J. 1 (1963), 138-147.
N. Qin, D. K. Ludlow, and S. T. Shaw, A matriz-free preconditioned Newton/GMRES
method for Navier-Stokes equations, Submitted to J. of Computational Physics, 1997.

G. H. Golub R. W. Freund and N. M. Nachtigal, Iterative solution of linear systems, Acta
Numerica (1992), 57 100.

Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 7 (1986), 856-869.

V. Schmitt and F. Charpin, Pressure distributions on the ONERA M6 wing at transonic
Mach numbers, Tech. Report AR-138, AGARD, May 1979.

R. Schreiber and H. B. Keller, Driven cavity flows by efficient numerical techniques, J. Comp.
Phys. 49 (1983), 310-333.

F. Shakib, T. J. R. Hughes, and Z. Johan, Element-by-element algorithms for nonsymmet-
ric matriz problems arising in fluids, Superlarge Problems in Computational Mechanics,
Plenum, 1987, pp. 1-34.

B. F. Smith, P. Bjgrstad, and W. D. Gropp, Domain decomposition: Parallel multilevel
methods for elliptic partial differential equations, Cambridge University Press, 1996.

M. D. Smooke, Solution of Burner-Stabilized Premized Laminar Flames by Boundary Value
Methods, J. Comput. Phys. 48 (1982), 72-105.

M. D. Smooke and R. M. Mattheij, On the solution of nonlinear two-point boundary value
problems on successively refined grids, Appl. Numer. Math. 1 (1985), 463-487.

P. Sonneveld, CGS, a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J.
Sci. Stat. Comput. 10 (1989), 36-52.

M. D. Tidriri, Krylov methods for compressible flows, Tech. Report 95-48, ICASE, June
1995.

56

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

DAVID E. KEYES

, Schwarz-based algorithms for compressible flows, Tech. Report 96-4, ICASE, Janu-
ary 1996.

, Efficient preconditioning of Newton-Krylov matriz-free algorithms for compressible
flows, J. Comp. Phys. 132 (1997), 51-61.

, Hybrid Newton-Krylov/domain decomposition methods for compressible flows, Pro-
ceedings of the Ninth International Conference on Domain Decomposition Methods in Sci-
ences and Engineering, 1998, pp. 532-539.

U. Trottenberg, A. Schuller, and C. Oosterlee, Multigrid, Academic Press, 2000.

H. M. Tufo and P.F. Fischer, Fast parallel direct solvers for coarse grid problems, J. Par.
Dist. Comput. 61 (2001), 151-177.

H. van der Vorst, Bi-CGSTAB: A fast and smoothly converging varient of Bi-CG for the
solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 13 (1992), 631 644.

S. P. Vanka, Block-implicit calculation of steady turbulent recirculating flows, Int. J. Heat
Mass Transfer 28 (1985), 2093-2103.

V. Venkatakrishnan, Newton solution of inviscid and viscous problems, AIAA J. 277 (1989),
885-891.

V. Venkatakrishnan and D. J. Mavriplis, Implicit solvers for unstructured meshes, J. Comp.
Phys. 105 (1993), 83-91.

G. Wang and D. K. Tafti, Performance enhancements on microprocessors with hierarchical
memory systems for solving large sparse linear systems, Int. J. High Performance Computing
Applications 13 (1999), 63-79.

D. L. Whitfield and L. K. Taylor, Discretized Newton-relaxation solution of high resolution
fluz-difference split schemes, Proceedings of the ATAA Tenth Annual Computational Fluid
Dynamics Conference, 1991, pp. 134-145.

, Variants of a two-level method for the approximate numerical solution of field sim-
ulation equations, Tech. Report 98-09, Mississippi State University Engineering Research
Center, July 1998.

L. B. Wigton, N. J. Yu, and D. P. Young, GMRES acceleration of computational fluid
dynamics codes, Tech. Report 85-1494, ATAA, 1985.

K.A. Winkler, M.L. Norman, and D. Mihalas, Implicit Adaptive-Grid Radiation Hydrody-
namics, Multiple Time Scales (J.U. Brackbill and B.I. Cohen, eds.), Academic Press, 1985.
J. Xu, Iterative methods by space decomposition and subspace correction, SIAM Review 34
(1991), 581-613.

MATHEMATICS & STATISTICS DEPARTMENT, OLD DOMINION UNIVERSITY, NORFOLK, VA 23529-

0077 AND ISCR, LAWRENCE LIVERMORE NAT. LAB., LIVERMORE, CA 94551-9989 AND ICASE,
NASA LANGLEY RES. CTR., HAMPTON, VA 23681-2199

E-mail address: keyes@icase.edu

