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Abstract

Jacobian-free Newton-Krylov (JFNK) methods are synergistic combinations
of Newton-type methods for superlinearly convergent solution of nonlinear equa-
tions and Krylov subspace methods for solving the Newton correction equations.
The link between the two methods is the Jacobian-vector product, which may
be probed approximately without forming and storing the elements of the true
Jacobian, through a variety of means. Various approximations to the Jacobian
matrix may still be required for preconditioning the resulting Krylov iteration.
As with Krylov methods for linear problems, successful application of the JFNK
method to any given problem is dependent on adequate preconditioning. JFNK
has potential for application throughout problems governed by nonlinear partial
di�erential equations and integro-di�erential equations. In this survey article we
place JFNK in context with other nonlinear solution algorithms for both bound-
ary value problems (BVPs) and initial value problems (IVPs). We provide an
overview of the mechanics of JFNK and attempt to illustrate the wide variety of
preconditioning options available. It is emphasized that JFNK can be wrapped
(as an accelerator) around another nonlinear �xed point method (interpreted as
a preconditioning process, potentially with signi�cant code reuse).

The aim of this article is not to trace fully the evolution of JFNK, nor
to provide proofs of accuracy or optimal convergence for all of the constituent
methods, but rather to present the reader with a perspective on how JFNK may
be applicable to problems of physical interest and to provide sources of further
practical information.
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1 Introduction and Background

The need to solve nonlinear systems of algebraic equations is ubiquitous through-
out computational physics. Such systems typically arise from the discretization
of partial di�erential equations (PDEs), whether scalar (such as heat conduc-
tion) or a system of coupled equations (such as the Navier-Stokes equations).
One may be interested in the steady-state solution of these equations (a bound-
ary value problem, BVP) or in their dynamical evolution (an initial value prob-
lem, IVP). For BVPs, implicit nonlinear iterative methods are desirable. The
same is true for multiple time-scale IVPs, when discretized implicitly at each
time step. A particular uni�ed solution algorithm for these two classes of non-
linear systems, the Jacobian-Free Newton-Krylov method (JFNK), is the focus
of this survey article. JFNK methods have been developed and applied in many
areas of computational physics, but so far by a relatively small number of re-
searchers. The aim of this article is to review recent advances and help accelerate
the development and application of JFNK methods by a broader community of
computational physicists.

It is our observation that solution strategies for nonlinearly implicit PDEs
have evolved along somewhat di�erent trajectories in the applied mathemat-
ics community and the computational physics community. In discussing so-
lution strategies for BVPs [73, 125] the applied mathematics community has
emphasized Newton-based methods. Outside of �nite element practitioners,
the computational 
uid dynamics (CFD) community has emphasized Picard-
type linearizations and splitting by equation or splitting by coordinate direction
[1, 126]. The di�erence in predominating approach (Newton versus Picard)
seems stronger for implicit IVPs. Again, the applied mathematics community
has focused on Newton-based methods, and on converging the nonlinear residual
within a time step. In the computational physics community, operator splitting
[16, 124] has been the \bread and butter" approach, with little attention to
monitoring or converging the nonlinear residual within a time step, often allow-
ing a splitting error to remain that is �rst order (or even worse) in time. In both
IVP and BVP contexts, the concept of splitting (a form of divide-and-conquer
at the operator level) has been motivated by the desire to numerically integrate
complicated problems with limited computer resources. This tension does not
vanish with terascale hardware, since the hardware is justi�ed by the need to
do ever more re�ned simulations of more complex physics. On can argue that
the stakes for e�ective methods become higher, not lower, with the availability
of advanced hardware.

Recent emphasis on achieving predictive simulations (e.g., in the ASCI [103]
and SciDAC [122] programs of the U.S. Department of Energy) has caused
computational scientists to take a deeper look at operator splitting methods for
IVPs and the resulting errors. As a result, the computational physics community
is now increasingly driven towards nonlinear multigrid methods [18, 169] and
Jacobian-Free Newton-Krylov methods (JFNK) [21, 39, 73]. These nonlinear
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iterative methods have grown out of advances in linear iterative methods [5, 58],
multigrid methods [19, 62, 157, 169], and preconditioned Krylov methods [143].

The standard nonlinear multigrid method is called the \full approximation
scheme" or FAS [18, 169]. Whereas a linear multigrid scheme usually solves
for a delta correction for the solution based on linearized equations on coarser
grid levels, FAS performs relaxation on the full (nonlinear) problem on each
successively coarsened grid. In the FAS approach, the nonlinear correction (ei-
ther Newton or simpler Picard) is not global, but resides inside the cycle over
levels and the sweep over blocks of unknowns at each level. As a result, asymp-
totic quadratic convergence of the overall nonlinear iteration is not guaranteed.
The virtues of FAS include its low storage requirement (if one can use a sim-
ple smoother), optimal convergence on some problems, and a tendency for an
enlarged domain of convergence, relative to a straight Newton method directly
on the �nest discretization. Disadvantages include the hurdle of forming hier-
archical grids, the expertise required to develop coarse grid representations of
a nonlinear operator, and the potential for many expensive nonlinear function
evaluations. FAS has been used extensively and successfully in many computa-
tional 
uid dynamics settings [105, 107, 165].

In JFNK methods [21, 39, 73], the nonlinear iterative method is on the
outside, and a linear iterative method on the inside. Typically, the outer New-
ton iteration is \inexact" [44] and strict quadratic convergence is not achieved.
Asymptotic quadratic convergence is achievable, but only with e�ort on the part
of the inner, linear iterative method, which is usually unwarranted when overall
time to solution is the metric. An advantage of JFNK is that the code develop-
ment curve is not steep, given a subroutine that evaluates the discrete residual
on the desired (output) grid. Furthermore, inexpensive linearized solvers can be
used as preconditioners. The storage required for the preconditioner and Krylov
vectors may be a limitation.

There have been limited comparisons between FAS and JFNK methods on
identical problems. The authors regard both methods as important and comple-
mentary. It is not the purpose of this survey article to provide such comparisons,
but rather to hasten the applicability of JFNK to new applications, via \real
world" examples. Additionally, we direct the reader's attention to ongoing in-
teractions between these two approaches such as JFNK as a smoother for FAS
and multigrid as a preconditioner for JFNK [106, 127].

An important feature of JFNK is that the overall nonlinear convergence of
the method is not directly a�ected by the approximations made in the precondi-
tioning. The overall framework, making use of multiple discrete approximations
of the Jacobian operator, has a polymorphic object-oriented 
avor that lends it-
self well to modern trends in software design and software integration. In many
cases, including some referenced as case studies as DOE and NASA herein,
JFNK has been used to retro�t existing BVP and IVP codes while retaining
the most important investments (in the physics routines) of the original code.

The remainder of this article is organized as follows. In section 2, we present
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the fundamentals of the JFNK approach. Section 3 is devoted to consider-
ations of preconditioning. In section 4, we survey examples of JFNK from
a variety of applications. In section 5 we illustrate a number of techniques
and \tricks" associated with using JFNK in real problems, including many of
the applications discussed in section 4. Section 6 describes applications of the
JFNK methodology to nonlinear systems with generally dense Jacobians that
arise from nonlinear preconditioning. Section 7 considers a novel application of
JFNK to PDE-constrained optimization. We conclude in section 8 with a dis-
cussion of future directions for JFNK methodology, as in
uenced by directions
for scienti�c and engineering applications, computer architecture, mathematical
software, and the on-going development of other numerical techniques.

2 Fundamentals of the JFNK method

The Jacobian-free Newton-Krylov (JFNK) method is a nested iteration method
consisting of at least two, and usually four levels. The primary levels, which
give the method its name, are the loop over the Newton corrections and the
loop building up the Krylov subspace out of which each Newton correction is
drawn. Interior to the Krylov loop, a preconditioner is usually required, which
can itself be direct or iterative. Outside of the Newton loop, a continuation
scheme is often required. This can be implicit time stepping, with time steps
chosen to preserve a physically accurate transient or otherwise, or this can be
some other form of parameter continuation such as mesh sequencing.

2.1 Newton Methods

Newton iteration for F(u) = 0 derives from a multivariate Taylor expansion
about a current point uk:

F(uk+1) = F(uk) +F0(uk)(uk+1 � uk) + higher order terms. (1)

Setting the right-hand side to zero and neglecting the terms of higher-order
curvature yields a strict Newton method, iteration over a sequence of linear
systems

J(uk)�uk = �F(uk); uk+1 = uk + �uk; k = 0; 1; : : : ; (2)

given u0. Here, F(u) is the vector-valued function of nonlinear residuals, J � F0

is its associated Jacobian matrix, u is the state vector to be found, and k is the
nonlinear iteration index. For a scalar problem, discretized into n equations and
n unknowns, we have

F(u) = fF1; F2; :::; Fi; :::; Fng; (3)
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and

u = fu1; u2; :::; ui; :::; ung; (4)

where i is the component index. In vector notation, the (i; j)th element (ith

row, jth column) of the Jacobian matrix is

Jij =
@Fi(u)

@uj
: (5)

In this scalar example there is a one-to-one mapping between grid points and
rows in the Jacobian. Forming each element of J requires taking analytic or
discrete derivatives of the system of equations with respect to u. This can
be both error-prone and time consuming for many problems in computational
physics. Nevertheless, there are numerous examples of forming J numerically
and solving Eq. (2) with a preconditioned Krylov method [68, 82, 90, 109, 148,
149, 151]. J can also formed using automatic di�erentiation [66].

2.2 Krylov Methods

Krylov subspace methods are approaches for solving large linear systems in-
troduced as direct methods in the 1950's [65], whose popularity took o� after
Reid reintroduced them as iterative methods in 1971 [134] (see the interest-
ing history in [57]). They are projection (Galerkin) or generalized projection
(Petrov-Galerkin) methods [143] for solving Ax = b using the Krylov subspace,
Kj ,

Kj = span(r0;Ar0;A
2r0; :::;A

j�1r0)

where r0 = b�Ax0. These methods require only matrix-vector products to
carry out the iteration (not the individual elements of A) and this is key to
their use with Newton's method, as seen below.

A wide variety of iterative methods fall within the Krylov taxonomy [9, 73,
143]. A principal bifurcation in the family tree is applicability to nonsymmet-
ric systems. Since the vast majority of fully coupled nonlinear applications of
primary interest result in Jacobian matrices that are nonsymmetric, we focus
the discussion on this side of the tree. A further point of discrimination is
whether the method is derived from the Arnoldi orthogonalization procedure or
the Lanczos bi-orthogonalization procedure.

The widely used Generalized Minimal RESidual method (GMRES) [144] is
an Arnoldi-based method. In GMRES, the Krylov vectors are orthonormalized
and the latter form the trial subspace out of which the solution is constructed.
One matrix-vector product is required per iteration to create each new trial
vector, and the iterations are terminated based on a by-product estimate of
the residual that does not require explicit construction of intermediate residual
vectors or solutions | a major bene�cial feature of the algorithm. GMRES
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has a residual minimization property in the Euclidean norm but requires the
storage of all previous Krylov vectors. Full restarts, seeded restarts, and moving
�xed-sized windows of Krylov vectors, are all options for �xed-storage versions.
Full restart is simple and historically the most popular, though seeded restarts
show promise. The Bi-Conjugate Gradient STABilized (BiCGSTAB) [46] and
Transpose-free Quasi Minimal Residual (TFQMR) [53] methods are Lancozos-
based alternatives to GMRES for nonsymmetric problems. In neither method
are the Krylov vectors normalized and two matrix-vector products are required
per iteration. However, these methods enjoy a short recursion relation, so there
is no requirement to store many Krylov vectors.

We refer to [9, 11, 73, 143] for more details on Krylov methods, and for
preconditioning for linear problems. We also call attention to the delightful
article [121], which shows that there is no universal ranking possible for itera-
tive methods for nonsymmetric linear problems. Each of the major candidate
methods �nishes �rst, last, and in the middle of the pack over the span of a few
insight-provoking examples.

As a result of studies in [95, 110], we tend to use GMRES (and its vari-
ants) almost exclusively with JFNK. The resulting pressure on memory has put
an increased emphasis on quality preconditioning. We believe that it is only
through e�ective preconditioning that JFNK is feasible on large-scale problems.
It is in the preconditioner that one achieves algorithmic scaling and also in the
preconditioner that one may stand to lose the natural excellent parallel scaling
enjoyed by all other components of the JFNK algorithm as applied to PDEs.
For this reason we focus our main attention in this review on innovations in
preconditioning.

2.3 Jacobian-Free Newton-Krylov Methods

In the JFNK approach, a Krylov method is used to solve the linear system of
equations given by Eq. (2). An initial linear residual, r0, is de�ned, given an
initial guess, �u0, for the Newton correction:

r0 = �F(u)� J�u0 : (6)

Note that the nonlinear iteration index, k, has been dropped. This is because
the Krylov iteration is performed at a �xed k. Let j be the Krylov iteration
index. Since the Krylov solution is a Newton correction, and since a locally
optimal move was just made in the direction of the previous Newton correction,
the initial iterate for the Krylov iteration for �u0 is typically zero. This is
asymptotically a reasonable guess in the Newton context, as the converged value
for �u should approach zero in late Newton iterations. The jth GMRES iteration
minimizes k J�uj + F(u) k2 within a subspace of small dimension, relative
to n, in a least squares sense. �uj is drawn from the subspace spanned by
the Krylov vectors, fr0;Jr0; (J)2r0; :::; (J)j�1r0g, orthonormalized in practice,
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obtained during the previous j � 1 GMRES iterations. This linear combination
of Krylov vectors can be written as,

�uj = �u0 +

j�1X
i=0

�i(J)
ir0; (7)

where the scalars �i minimize the residual.
Upon examining Eq. (7) we see that GMRES requires the action of the Ja-

cobian only in the form of matrix-vector products, which may be approximated
by [21, 39]:

Jv � [F(u+ �v)�F(u)] = �; (8)

where � is a small perturbation.
Equation (8) is simply a �rst-order Taylor series expansion approximation

to the Jacobian, J, times a vector, v. For illustration consider the two coupled
nonlinear equations F1(u1; u2) = 0; F2(u1; u2) = 0. The Jacobian matrix is

J =

26664
@F1
@u1

@F1
@u2

@F2
@u1

@F2
@u2

37775 :
JFNK does not require the formation of this matrix; we instead form a result
vector that approximates this matrix multiplied by a vector. Working backwards
from Eq. (8), we have

F(u+ �v) �F(u)
�

=

0BBB@
F1(u1+�v1;u2+�v2)�F1(u1;u2)

�

F2(u1+�v1;u2+�v2)�F2(u1;u2)
�

1CCCA :

Approximating F(u+ �v) with a �rst-order Taylor series expansion about u, we
have

F(u+ �v) �F(u)
�

�

0BBBBB@
F1(u1;u2)+�v1

@F1
@u1

+�v2
@F1
@u2
�F1(u1;u2)

�

F2(u1;u2)+�v1
@F2
@u1

+�v2
@F2
@u2
�F2(u1;u2)

�

1CCCCCA ;

which simpli�es:0B@ v1
@F1

@u1
+ v2

@F1

@u2

v1
@F2

@u1
+ v2

@F2

@u2

1CA = Jv:
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The error in this approximation is proportional to jj�vjj. This matrix-free
approach has many advantages. The most attractive is Newton-like nonlinear
convergence without the costs of forming or storing the true Jacobian. In prac-
tice one forms a matrix (or set of matrices) for preconditioning purposes, so we
eschew the common description of this family of methods as fully \matrix-free."
However, the matrices employed in preconditioning can be simpler than the true
Jacobian of the problem, so the algorithm is properly said to be \Jacobian-free."
We brie
y discuss options for matrix-free (or nearly matrix-free) preconditioning
in Section 3.5. A convergence theory has been developed for JFNK [20].

2.3.1 The Jacobian-Vector Product Approximation

As shown above, the Jacobian-vector product approximation is based on a Tay-
lor series expansion. Here we discuss various options for choosing the perturba-
tion parameter, � in Eq. (8), which is obviously sensitive to scaling, given u and
v. If � is too large, the derivative is poorly approximated and if it is too small
the result of the �nite di�erence is contaminated by 
oating-point roundo� er-
ror. The best � to use for a scalar �nite-di�erence of a single argument can be
accurately optimized as a balance of these two quanti�able trade-o�s. However,
the choice of � for a Fr�echet �nite di�erence is as much of an art as a science.
A simple choice of � is

� =
1

njjvjj2
nX
i=1

bjuij; (9)

where n is the linear system dimension and b is a constant whose magnitude is
within a few orders of magnitude of the square root of machine roundo� (typ-
ically 10�6 for 64-bit double precision). Another more sophisticated approach
proposed by Brown and Saad [21] is

� =
b

jjvjj2 max[juTvj; typujvj] sign(uTv): (10)

Here, typu is a user-supplied \typical size" of u.
Equation (8) is a �rst-order approximation. It is straightforward to construct

a second-order approximation,

Jv � [F(u+ �v)�F(u� �v)] = �: (11)

A disadvantage of second order is the cost of two fresh function evaluations per
matrix-vector multiply.

2.3.2 Inexact Newton Methods

Since the use of an iterative technique to solve Eq. (2) does not require the
exact solution of the linear system, the resulting algorithm is categorized as
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an \inexact" Newton's method [44]. A simple inexact method results in the
following convergence criteria on each linear iteration.

k Jk�uk +F(uk) k2< 
 k F(uk) k2; (12)

where 
 is a constant smaller than unity. Keeping 
 small, which is required
for Newton-like nonlinear convergence, makes large demands upon the precon-
ditioner, especially as the dimension of the linear system grows. There is a
trade-o� between the e�ort required to solve the linear system to a tight toler-
ance and the resulting required number of nonlinear iterations. Too large a value
for 
 results in less work for the Krylov method but more nonlinear iterations,
whereas too small a value for 
 results in more Krylov iterations per Newton
iteration. The forcing function and the issue of \oversolving" a Newton step
has gained recent interest [148, 159]. It has been demonstrated that in some
situation the Newton connvergence may actually su�er if 
 is too small in early
Newton iterations. Examples of this trade-o� between total nonlinear iterations
and execution time are given in [109, 129]. Several strategies for optimizing the
computational work with a variable \forcing term" 
 are given in [49].

2.4 Globalization

The lack of convergence robustness of Newton's method is frequently raised. In
practice, globalization strategies leading from a convenient initial iterate into the
ball of convergence of Newton's method around the desired root are required.
For problems arising from di�erential equations, there are many choices. The
issue of globalization is more vexing for BVPs then IVPs, where accurately
following the physical transient often guarantees a good initial guess. Based
on the robustness of IVP solvers, BVPs are often approached through a false
time-stepping.

2.4.1 Pseudo-transient Continuation

Pseudo-transient continuation solves the steady-state problem F(u) = 0, for
which a solution is presumed to exist, through a series of problems

f`(u) � u� u`�1
� `

+F(u) = 0; ` = 1;2; : : : ; (13)

which are derived from a method-of-lines model

@u

@t
= �F(u);

each of which is solved (approximately) for u`. The physical transient is followed
when the timestep � ` is su�ciently small, and the problems at each timestep
are well solved, leading the iterations through a physically feasible sequence of
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states. Furthermore, the Jacobians associated with f`(u) = 0 are well condi-
tioned when � ` is small. See [52] for an analysis of this e�ect based on the
spectrum of the preconditioned operator in the case of the constant coe�cient
heat equation.

� ` is advanced from �0 � 1 to � ` ! 1 as ` ! 1, so that u` approaches
the root of F(u) = 0. We emphasize that pseudo-transient continuation does
not require reduction in jjF(u`)jj at each step, as do typical linesearch or trust
region globalization strategies [45]; it can \climb hills."

Strict Newton iteration applied to (13) yields

u`;k = u`�1�(I+� `F0(u`;k))�1(u`;k+� `F(u`;k)�u`�1); k = 0;1; : : : :(14)

If we take u`;0 = u`�1 (the simplest initial iterate), then the �rst correction
step is

u`;1 = u`�1 � (
1

� `
I+F0(u`�1))�1F(u`�1): (15)

In some problems, it may be required to iterate the Newton corrector (14)
more than once [69] or until it converges (limk!1 u`;k � u`), thus leading in
the limit to following the transient implicitly. However, we generally prefer to
advance in pseudo-time after just one Newton step (15).

A time-step selection scheme is required to complete the algorithm. One
choice is successive evolution-relaxation (SER) [120], which lets the time step
grow in inverse proportion to residual norm progress:

� ` = � `�1 � jjF(u
`�2)jj

jjF(u`�1)jj : (16)

Alternatively, a temporal truncation error strategy bounds the maximum tem-
poral truncation error in each individual component, based on a local estimate
for the leading term of the the error. (The idea is not to control the error, per
se, but to control the stepsize through its relationship to the error.) Another
approach sets target maximum magnitudes for change in each component of the
state vector and adjusts the time step so as to bring the change to the target.
All such devices are \clipped" into a range about the current time step in prac-
tice. Typically, the time step is not allowed to more than double in a favorably
converging situation, or to be reduced by more than an order of magnitude in
an unfavorable one, unless feasibility is at stake, in which case the time step
may be drastically cut [74].

The globalization theory of [74] employs a three-phase approach, whose
phases in practice may or may not be cleanly demarcated in residual norm
convergence plots. Initially, jju0 � u�jj � 1 and �0 � 1. During an \induction
phase" the solution is marched in a method-of-lines sense with relatively small
time step until jju� u�jj=jju0 � u�jj � 1. Success of this phase is governed by
stability and accuracy of the integration scheme (we simply use the backward
Euler method) and by the choice of initial iterate.
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For problems in which a complex feature, such as a shock or a 
ame front,
must arise from a structure-free initial condition, the induction phase is typically
by far the longest. In a grid-sequenced problem, in which the initial iterate on a
given �ne grid is interpolated from a converged solution on a coarser grid, and in
which solution features are correctly located (if not fully resolved), the induction
phase on the �nest grid can be relatively brief [150]. During a second \transition
phase" the time step is built up in the neighborhood of the solution. The critical
assumption is existence of a � such that k(I+ �F0(u))�1k � (1+ ��)�1 for all
� � 0 if ku� u�k � �. Finally comes a \polishing phase," during which the the
time steps approach in�nity (or some user-imposed upper bound) and iterates
approach the root with asymptotic Newton-like convergence. This phase is
treated by a conventional local analysis, as in [73].

The main result of the theory is that there is either convergence from u0

to u� or an easily detectable (undesirable) contraction of � ` toward 0, allowing
recovery actions before blow-up or 
oating point faults from infeasible steps.
(Robust recovery is particularly important in parallel applications.) The main
hypotheses of the theory, including smooth di�erentiability of F(u), are di�cult
to verify in practice. They are also rarely respected in practice, since instan-
taneous analytical approximations of F0(u) are too expensive in memory and
execution time. The theory for pseudo-transient continuation has recently been
extended to index-1 di�erential-algebraic equations [40], in which not all of the
equations possess a time derivative term. This is relevant for systems of PDEs
in which temporal evolution takes place on a manifold of constraints, such as
incompressibility in Navier-Stokes.

2.4.2 Other Continuation Methods

Besides pseudo-transient continuation, there are two other important types of
continuation in the literature of numerical solutions for nonlinear BVPs, namely,
continuation in a physical parameter of the problem, and mesh sequencing,
which is continuation in a discretization parameter | namely a scale for the
mesh spacing.

Physical parameters often provide \knobs" by which the nonlinearity in a
problem can be varied. An easily understood example from computational 
uid
dynamics is the Reynolds number, which directly multiplies the convective terms
of Navier-Stokes, but there are many other examples including body forcings and
boundary forcings. The solution of F(u; �`) = 0, where �` is such a parameter,
can be implicitly de�ned as u(�`).

We suppose that F(u; �0) = 0 is \easy" to solve; for instance, it may be
linear in u, as when � is a Reynolds number and the governing equations reduce
to the Stokes subset. Given u`�1 corresponding to �`�1, we can posit a good
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initial guess for u` at a nearby �` from the Taylor expansion

u`;0 = u(�`�1) +

�
@u

@�

�`�1
(�` � �`�1) : (17)

Implicitly di�erentiating F(u; �) = 0 with respect to � gives�
@F

@u

��
@u

@�

�
+

�
@F

@�

�
= 0 ; (18)

or �
@u

@�

�
= �

�
@F

@u

��1�
@F

@�

�
(19)

whence the right-hand side of (17) can be evaluated. This presumes that one
is able to readily solve linear systems with the Jacobian, @F@u ; otherwise, poorer
approximations are possible, including the simple \bootstrapping" procedure of
using just u(�`�1), itself, for u`;0.

Mesh sequencing is useful when a nonlinear problem is easier to solve on
a coarser grid than the one on which the solution is ultimately desired, either
because the nonlinearity, itself, is milder or because the linear conditioning
of the sequence of nonlinear correction problems is milder. An initial iterate
for the next �ner mesh is constructed by interpolation from the solution on
the preceding coarser mesh. Asymptotically, under certain assumptions that
are natural when the discretization ultimately becomes �ne enough to accu-
rate resolve the continuous statement of the BVP, it can be shown that the
initial interpolant lies in the domain of convergence of Newton's method [149]
on the �ner grid. Unfortunately, it is usually not easy to determine when this
asymptotic range is reached. Consequently, another continuation method, such
as pseudo-transience, may be used to drive the initial interpolant towards the
Newton domain on each mesh step. Such nested continuation methods are of-
ten required in practice on highly nonlinear problems, such as detailed kinetics
combustion. Since a decreasing number of inner continuation steps are required
on the �ner meshes, the nested approach can be economical.

2.4.3 Other Robusti�cation Techniques

Whatever the combination of continuation strategies that may be invoked to
prepare for a full Newton iteration on the ultimate accurately discretized BVP,
modi�ed Newton-like systems need to be solved at each stage. Traditional
physics-independent, discretization-independent algebraic robusti�cation strate-
gies can be employed on these systems and any code intended for general pur-
pose by non-experts should default to some combination of the strategies of line
search, trust region, and back-tracking, [45, 73] or the more crude, but often
successful \damping on percentage change" [97, 170].
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3 Preconditioning of the JFNK Method

The purpose of preconditioning the JFNK method is to reduce the number of
GMRES (Krylov) iterations, as manifested (in the GMRES convergence theory;
see [144]) by e�ciently clustering eigenvalues of the iteration matrix. Tradi-
tionally, for linear problems, one chooses a few iterations of a simple iterative
method (applied to the system matrix) as a preconditioner. A goal of the JFNK
approach is to avoid forming the system matrix J. As illustrated in the sequel,
an e�ective preconditioner for JFNK can typically be simpler than the strict
Jacobian of the system.

A linear preconditioner can be applied on the left (rescaling the matrix rows
and the right-hand side) or on the right (rescaling the matrix columns and the
solution vector), or on both, if suitably factored. Since left preconditioning
changes the residual by which convergence to a linear iterative method is gener-
ally measured, right preconditioning is often preferred in comparing the intrinsic
merit of di�erent preconditioning strategies. However, in the Newton context,
we often use left preconditioning, since the preconditioned residual serves as a
useful estimate of the size of the Newton correction, itself, when the precondi-
tioning is of high quality. Either strategy may be employed in a Jacobian-free
context.

Using right preconditioning one solves

(JP�1)(P�u) = �F(u): (20)

P symbolically represents the preconditioning matrix (or process) and P�1 the
inverse of preconditioning matrix. Right preconditioning is actually realized
through a two step process. First solve

(JP�1)w = �F(u); (21)

for w. Then solve

�u = P�1w; (22)

for �u. Thus, while we may refer to the matrix P, operationally the algorithm
only requires the action of P�1 on a vector. Note that if a distributed or
segregated approach is used for preconditioning, then P�1 may be formed as a
linear combination of approximate inverses of submatrices. An example is the
additive Schwarz method of section 3.2. The right-preconditioned version of
Eq. (8) is:

JP�1v � [F(u+ �P�1v)�F(u)] = �: (23)

This operation is done once per GMRES iteration, and is actually done in two
steps:
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1. Preconditioning: Solve (approximately) for y in Py = v .

2. Perform matrix-free product Jy � [F(u+ �y)�F(u)] = �:
Only the matrix elements required for the action of P�1 are formed. There

are two primary choices to be made:

1. What linearization should be used to form the matrices required in P�1 ?

(A new decision facing the user of a Jacobian-free Newton-Krylov method)

2. What linear iterative method should be used for y = P�1v ?

(A standard decision facing the user of a Krylov method)

The following subsections focus on speci�c issues. In practice, many precon-
ditioning approaches use a combination of these ideas.

3.1 Standard Approaches

In systems where forming the Jacobian is a dominant cost one may employ a
\stale" (or frozen) Jacobian from an earlier step in the preconditioner while ob-
taining the action of the current Jacobian in the JFNK matrix-vector multiply
[91, 92, 93]. This is referred to as \MFNK" in [92, 93]. This approach is not
truly Jacobian-free since some true Jacobians are formed and stored. However
this usually expensive task is not done every Newton iteration. This is di�er-
ent from a more traditional modi�ed Newton-Krylov (MNK) method where the
actual matrix approximating the local tangent hyperplane in Newton's method
(not just its preconditioner) is held constant over several Newton iterations.
The MNK approach has much weaker nonlinear convergence properties. The
Jacobian-free method \feels" the true Jacobian (to within �nite di�erence trun-
cation error, or other less severe limitation) at each iteration.

In BVPs, incomplete lower-upper (ILU) factorizations have been frequently
employed when approximately inverting Jacobian matracies in the precondi-
tioner. For systems of equations characterized by tight intra-equation coupling,
a blocked ILU factorization may be more e�ective than a standard \point" ILU
factorization preconditioner [70, 111]. Here the degrees of freedom de�ned at a
common point are interlaced and a full factorization (usually dense for systems
typical of CFD or MHD, with a dozen or fewer independent �elds) is performed
amongst them. The overall factorization is incomplete above the block level,
with �ll-in limited between degrees of freedom de�ned at di�erent points.

In systems of conservation laws in which convection dominates, high-order
convection schemes are desired for accuracy. Using the Jacobian-free method,
one can construct the preconditioner from a low-order upwinded discretization
that is more stable with respect to incomplete factorization, saving memory and
often resulting in more e�ective preconditioning [77, 84, 111]. Convergence of
the nonlinear system occurs to the higher-order discretization represented in
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the right-hand side residual. Operationally, this split-discretization Jacobian-
free preconditioned product is

JP�1v � Fhigh(u+ �P�1lowv) � Fhigh(u)
�

: (24)

Here, Fhigh(u) denotes the nonlinear function evaluated with a high-order dis-
cretization, and P�1low denotes a preconditioning operator formed with a low-
order discretization.

3.2 Newton-Krylov-Schwarz

Newton-Krylov-Schwarz (NKS) is a preconditioned Jacobian-free Newton-Krylov
method in which the action of the preconditioner is composed from those of
preconditioners de�ned on individual subdomains. Historically, the primary
motivation for NKS (�rst called by this name in [27]) is parallel processing
through divide-and-conquer. Scalability studies based on dimensionless ratios
of communication and computation parameters for message-passing aspects of
Schwarz-type iterative methods appeared in [78, 80]. Recently, a sequential
motivation for Schwarz methods has become apparent [168]: their localized
working sets can be sized to �t in the Level-2 caches of contemporary micro-
processors. Furthermore, multilevel Schwarz, algebraically similar to the AFAC
form of multigrid [108], can have bounded condition number in the asymptotic
limit of �nely resolved meshes, and is therefore an \optimal" method from the
perspective of convergence rate.

If we decompose the domain of a PDE problem into a set of possibly over-
lapping subdomains 
i, the standard additive Schwarz preconditioner can be
expressed as

P�1ASM =
X
i

Ri
TJ�1i Ri; (25)

where the three-phase solution process (reading operators from right to left)
consists of �rst collecting data from the local and neighboring subdomains via
global-to-local restriction operators Ri, then performing a local linear solve on
each subdomain J�1i , and �nally sending partial solutions to the local and neigh-
boring subdomains via the local-to-global prolongation operatorsRi

T . The solve
with the local Jacobian can be replaced with an approximate solve, such as a
local incomplete factorization, or a multigrid sweep.

While the three phases are sequential and synchronized by communication
requirements, each term in the sum can be computed concurrently, leading
to parallelism proportional to the number of subdomains. This is in contrast
with a global incomplete factorization, whose concurrency is determined by
the discretization stencil and the matrix ordering and cannot be scaled to an
arbitrary number of processors.
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Parallel experience with NKS methods is growing. We mention the shared-
memory implementation of [112] and the distributed-memory implementations
of [26, 30, 72]. Domain-based parallelism is recognized as the form of data
parallelism that most e�ectively exploits contemporary microprocessors with
multi-level memory hierarchy [41, 168]. Schwarz-type domain decomposition
methods have been extensively developed for �nite di�erence/element/volume
PDE discretizations over the past decade, as reported in the annual proceedings
of the international conferences on domain decomposition methods, of which the
most recent volume is [54].

In practice, we advocate the restricted additive Schwarz Method (RASM),
which eliminates interprocess communication during either the restriction or
prolongation phase of the additive Schwarz technique [32]. One version of the
RASM preconditioner can be expressed in operator notation as

P�1RASM =
X
i

R0i
T
J�1i Ri: (26)

It performs a complete restriction operation but does not use any communica-
tion during the interpolation phase, R0i

T
. This provides the obvious bene�t of

a 50% reduction in nearest-neighbor communication overhead. In addition, ex-
perimentally, it preconditions better than the original additive Schwarz method
over a broad class of problems [32], for reasons that are beginning to be under-
stood in the function space theory that underlies Schwarz methodology [23].

As originally introduced in [48], additive Schwarz preconditioning includes a
coarse grid term in the sum (25). Indeed, the coarse grid is essential for optimal
conditioning in the scalar elliptic case. Table 1 shows the successive improve-
ments towards optimality of a hierarchy of methods, all of which �t within the
additive Schwarz algebraic framework, Eq. (25). The most primitive is point
Jacobi, in which each subdomain is one point and there is no overlap. Subdo-
main Jacobi clusters all the points in one subdomain into a single subdomain
solve, which is performed concurrently within each subdomain, with no overlap.
One-level additive Schwarz has the same concurrency as Jacobi, except that
the subdomains overlap, and nontrivial communication is required to set up
the subproblems. To achieve the mesh-independent estimates shown (iterations
depending only upon the number of processors or subdomains), some operator-
dependent, not very severe in practice, assumptions need to be made about
the extent of overlap. Finally, the Schwarz preconditioner supplemented with a
low-dimensional but global coarse grid problem (2-level) achieves independence
of the number of subdomains, at the price of an increasingly complex problem
linking the subdomains.

NKS methods have been developed and studied by Cai and collaborators
[24, 25, 26, 30], Knoll and collaborators [93, 95, 111], Pernice and collaborators
[130], and Tidriri [152, 154], among many others. The combination of pseudo-
transient continuation and NKS has been called 	NKS, and is discussed in [60].

16



Table 1: Iteration count scaling of Schwarz-preconditioned Krylov methods,
translated from the theory in terms of mesh spacing and subdomain diame-
ter into the corresponding quantities of discrete problem size N and processor
number P , assuming quasi-uniform grid, quasi-unit aspect ratio grid and de-
composition, and quasi-isotropic operator.

Iteration Count
Preconditioning in 2D in 3D

Point Jacobi O(N1=2) O(N1=3)

Subdomain Jacobi O((NP )1=4) O((NP )1=6)

1-level Additive Schwarz O(P 1=2) O(P 1=3)
2-level Additive Schwarz O(1) O(1)

3.3 Multigrid Approaches

There has been considerable success in applying the multigrid method as a
preconditioner to Krylov methods on linear problems [4, 88, 123, 113]. As a
result of this success, JFNK researchers have begun to consider the performance
of linear multigrid as a preconditioner to a Jacobian-free Newton-Krylov method
[22, 34, 71, 96, 98, 128, 139]. In the multigrid preconditioned Newton-Krylov
method (NKMG), the system y = P�1v, in Eq. (23), is approximately solved
for y using a linear multigrid algorithm.

Whereas the primary motivation for Schwarz-type preconditioning is con-
currency, the primary motivation in NKMG is optimal operation complexity.
By this we mean a preconditioner that not only renders the number of precon-
ditioned Krylov iterations per Newton iteration independent of grid resolution,
but imposes a cost per iteration that grows only linearly in the number of dis-
crete unknowns. NKMG has also been quite e�ectively implemented in parallel
[22, 128].

The basic building blocks of a multigrid algorithm are the mesh interpola-
tion operators, restriction R and prolongation P , and a method of constructing
the coarse grid operators. In the limit (for nested multilevel methods), the
\perfect" coarse grid operator is the Schur complement of the �ne grid operator
with the degrees of freedom not represented on the coarse grid eliminated. The
corresponding perfect restriction is the elimination step, and the correspond-
ing prolongation the backsolve. In practice, one uses much less expensive grid
transfer operators, such as multilinear interpolation, or even simple injection
restriction and piecewise constant prolongation. In [4, 123] it is shown on some
challenging problems that multigrid as a preconditioner may outperform multi-
grid as a solver, and in general it is also more robust, due to the outer Krylov
method. In [88] it is shown that a suboptimal multigrid method, which is not
a scalable solver as a result of overly simpli�ed restriction and prolongation
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operators, can produce a scalable method when used as a preconditioner.
In [98] the restriction and prolongation operators are piecewise constant and

piecewise linear. Since the systems considered there contain second-order op-
erators, the choice of R and P as piecewise constant violates the level transfer
\order rule", mP + mR > 2 [169]. Here mP and mR are the order of inter-
polation plus one for the prolongation and restriction operators, respectively.
Thus, this approach can not be considered an optimal multigrid method. In
[98] it is demonstrated that multigrid methods make excellent precondition-
ers for JFNK, superior to comparably complex SGS and ILU, with a typical
approximate inverse being only one V-cycle. It is also demonstrated that the
algorithmic simpli�cations which may result in loss of convergence for multigrid
as a solver (such as piecewise constant prolongation in place of piecewise linear
prolongation) have a much weaker e�ect when multigrid is the preconditioner.

In [96] two di�erent approaches for de�ning the coarse grid approximations
to the preconditioner are considered. The �rst approach is to restrict the de-
pendent variables (u) down through a series of grids, re-discretize the equa-
tions F(u), and then form each of the preconditioner elements independently.
This may be troublesome for multi-scale nonlinear physics and/or nonlinear dis-
cretizations. The second method is to build the coarse grid operators using an
additive correction [67] procedure, which can also be viewed as a Galerkin, or
variational, approach [169]. Here, the coarse grid operator, Pc is constructed
from the �ne grid operator, Pf as:

Pc = R �Pf � P : (27)

When R and P are piecewise constant, this should be viewed as an additive
correction multigrid method [67, 146]. This is attractive for complex physics
codes and/or unstructured grids since no discretizations on the coarse grids are
required. Details of this speci�c multigrid approach, used as a preconditioner
to GMRES, on a scalar problem can be found in [88]. In [96] both approaches
of forming the coarse grid operators were found to give good algorithmic per-
formance.

Recently, Mavripilis [106] has considered nonlinear multigrid as a precondi-
tioner to JFNK with encouraging results.

3.4 Physics-based preconditioning

An important new class of preconditioners for the Jacobian-free Newton-Krylov
method is referred to as physics-based or PDE-based. The motivation behind
this approach is that there exist numerous, legacy algorithms to solve nonlinear
systems, both IVPs and BVPs. These algorithms typically were developed with
some insight into the time scales or physical behavior of the problem. As a
bene�t of this insight, a reduced implicit system, or a sequence of segregated
explicit or implicit systems may be solved in place of the fully coupled system.
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Examples include the semi-implicit method for low-speed 
ow [64], the SIMPLE
algorithm for incompressible 
ow [126], Gummel's method for the semiconduc-
tor drift-di�usion equations [61], and numerous other structure-based operator
splitting methods for reaction-di�usion systems [16, 124].

The SIMPLE algorithm [126] is a classical segregated solution method in
computational 
uid dynamics. Its use as a preconditioner to a Jacobian-free
Newton-Krylov method is demonstrated in [128]. One employs multiple itera-
tions of the SIMPLE algorithm in \delta (incremental) form" as the precondi-
tioner. By \delta form" we mean that the linear system Pu = b is solved for
�u, i.e., P�u = b�Pu0 (y = P�1v in Eq. 23) and u = u0+ �u. It is necessary
to cast the preconditioner in \delta form" since this is the form of the problem
upon which the outer Newton-Krylov iteration operates. Split, or segregated,
methods are employed as preconditioners for Newton-Krylov on a system of
time dependent reaction di�usion equations [116], time-dependent MHD equa-
tions [37], and steady state incompressible Navier-Stokes equations [96, 128],
and time-dependent incompressible Navier-Stokes equations [101, 128]. Also in
[101], a standard approximate linearization method used for phase-change heat
conduction problems, is employed as a preconditioner for a JFNK solution of
phase-change heat conduction problems. In this subsection we present detail
on constructing preconditioners for sti�-wave systems using the semi-implicit
method and constructing preconditioners using stucture-based operator split-
ting.

3.4.1 Sti� wave systems

To demonstrate how to construct a physics-based preconditioner for a sti� wave
system, consider the 1D shallow water wave equations with a sti� gravity wave
(a hyperbolic system):

@h

@t
+
@uh

@x
= 0; (28)

@uh

@t
+
@u2h

@x
= �gh@h

@x
: (29)

Here u is the 
uid velocity, h is the hydrostatic pressure, x is the spatial coor-
dinate, t is time, g is gravity, and

p
gh is the fast wave speed. The fast wave

time scale is the time scale we which to \step over" in evolving the mesoscale
dynamics of interest. A semi-implicit method is constructed by linearizing and
implicitly discretizing only those terms which contribute to the sti� gravity
wave. Thus, some physics insight is required to produce the implicit system.
With n+1 as new time and n as old time, and suppressing spatial discretization,
we have

hn+1 � hn

�t
+
@(uh)n+1

@x
= 0 (30)
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(uh)n+1 � (uh)n

�t
+
@(u2h)n

@x
+ ghn

@hn+1

@x
= 0: (31)

Note that the nonlinear term in h is linearized by evaluating the square of the

wave speed (gh) at old time. We evaluate @(u2h)
@x at old time since it does not

contribute to the linearized gravity wave.
We rearrange the momentum equation as;

(uh)n+1 = ��tghn @h
n+1

@x
+ Sn; (Sn = (uh)n ��t

@(u2h)n

@x
): (32)

Equation (32) is then substituted into Eq. (30) to give the following scalar
parabolic equation.

hn+1 � hn

�t
� @

@x

�
�tghn

@(h)n+1

@x

�
=

@Sn

@x
(33)

Equation (33) is solved for hn+1, and then one can easily solve for (uh)n+1 using
Eq. (32). For this simple problem the source of the nonlinear inconsistency is the
linearized wave speed (a time discretization error) and the fact that advection
in Eq. (31) is at a di�erent time level. This is an issue when advection and wave
propagation happen on the same time scale. The innovation of physics-based
preconditioning is realizing that the nonlinear inconsistent solution of Eqs. (32)
and (33) can be used as the preconditioner to a nonlinearly consistent Newton-
Krylov solution of Eqs. (28){(29). This is possible since JFNK does not require
the formation of the Jacobian, and thus time-splitting approaches, such as the
semi-implicit method, can be used as preconditioners. Since the action of the
true operator is maintained in the evaluation of the full nonlinear residual and
the forward Jacobian used in the Newton-Krylov iteration, the inverse Jacobian
used in the preconditioner can be further weakened without compromise to the
solution in the interest of minimizing execution time. For instance, a few cycles
of a multigrid method, which is ideal for di�usion problems, can be used to
approximate the solution of Eq. (33) in the preconditioner.

To be more speci�c, the function of a preconditioner is to map [resh; resuh],
or \y", to [�h; �uh], or \v." Using the semi-implicit method in delta form
(suppressing spatial discretization) the linearized equations are:

�h

�t
+
@�uh

@x
= �resh; (34)

�uh

�t
+ ghn

@�h

@x
= �resuh: (35)

Substituting Eq. (35) into Eq. (34), and eliminating �uh, produces

�h

�t
+

@

@x
(�t ghn

@�h

@x
) = �resh + @

@x
(�t resuh): (36)
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This parabolic equation can be approximately solved for �h. Then �uh can be
evaluated:

�uh = ��t ghn @�h
@x
� resuh: (37)

To summarize, we use a classical semi-implicit method, to map (resh; resuh)
to (�h; �uh) with one approximate parabolic solve. The utility of this precon-
ditioning approach is veri�ed on the 2D shallow water equations including the
Coriolis force [115]. In addition, this framework has been used to develop pre-
conditioners for MHD problems [37] and the compressible Euler equations [137].

3.4.2 Structure-based Preconditioning

Traditional techniques based on operator structure, which may be only marginally
appealing as solvers or stationary operator splittings, may be e�ective and ef-
�cient preconditioners. Two structure-based techniques of particular interest
are direction-based splitting and phenomenon-based splitting. To illustrate,
consider a canonical system of unsteady convection-di�usion-reaction problems,
symbolized by

@u

@t
+R(u) + S(u) = 0 :

u is a discrete gridfunction of p components per point.
The operator R, representing convection and di�usion, typically has dis-

cretization stencils that strongly couple near neighbors of the same gridfunc-
tion component but typically only weakly couple di�erent components, except
through convective velocities and perhaps through composition-dependent con-
stitutive laws. S, representing reaction, may strongly couple di�erent compo-
nents, but typically involves only the unknowns de�ned at a single gridpoint.
The remaining, transient term is typically diagonal (or narrow banded in an
unlumped �nite element discretization).

The combination of the transient term and S is well preconditioned with
a block-diagonal operator, with no spatial coupling. The combination of the
transient term with R is well preconditioned with independent multigrid solves
for each component, with no intercomponent coupling. Each of these two pre-
conditionings is substantially less computationally complex than a block ILU
preconditioning for the entire discrete operator, and it is natural to consider
multiplicative or additive forms of operator splitting in which each is applied
independently.

Consider a simple backward di�erence for the transient term in advancing
through timestep �t from u to u + �u. Discretized implicitly at the advanced
level and linearized about u, we have

�u

�t
+ S(u)(u+ �u) +R(u)(u+ �u) = 0;
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or, in delta-form,
�u

�t
+ S(u)�u+R(u)�u = �F(u):

where F(u) � S(u)u +R(u)u = 0.
Let the linear system to be solved by Krylov iteration at a given Newton

iteration be written J�u = �F, where J = �I+ S+R, and � is the reciprocal
of the timestep. Apply an operator-split preconditioner P to Krylov vector v
with preconditioned output v0 as follows:

� Phase 1, block-diagonal (reaction) coupling

v�  (�I + S)�1v:

� Phase 2, segregated scalar (spatial) coupling

v0  (�I+R)�1 � � � v�:

The left-preconditioned Jacobian-vector product, PJ, has the form

I� (�I+R)�1R+ (�I+R)�1 � � � (�I + S)�1R;

which is equivalent to approximating J with an operator that has �rst-order
temporal splitting error, namely with �I + S +R+ ��1SR. This di�ers from
the unsplit original J only in the last term. When the time step is small, so is
this di�erence.

Alternatively, one can apply P to vector v with preconditioned output v0 as
follows:

� Phase 1, block-diagonal (reaction) coupling

v�  (�I + S)�1v:

� Phase 2, segregated scalar (spatial) coupling

v0  v� + (�I+R)�1(v � Jv�):

An extra Jacobian-vector product is required to update the residual in prior
to Phase 2. Surprisingly, this extra Jacobian-vector product buys nothing; this
method is mathematically identical to the �rst method, as is readily veri�ed by
algebraic manipulation.

Why one would wish to consider this type of preconditioner is apparent
from a back-of-the-envelope complexity analysis. Besides p, the number of com-
ponents (�elds) per storage location, consider n, the number of data storage
locations (vertices or cells) in the grid, and m, the number of neighbors in a
typical stencil. Under a components-�rst ordering, the Jacobian consists of n
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blockrows of width p, with m nonzero p�p blocks per row. The discrete dimen-
sion of u is pn. The number of nonzeros in the Jacobian (natively, or after block
ILU factorization with no �ll) is approximately p2nm. The number of nonzeros
in the spatial operator alone, however, is pnm, and the number in the reaction
operator alone is np2. Hence, the sum of the storage required for the discrete S
and R operators is only pn(m+ p). The ratio of the storage required by the full
Jacobian to the sum of the component operators is therefore mp=(m+ p). The
same ratio applies to memory tra�c per iteration involving the full Jacobian,
or its components separately, and to the 
oating point operation count of the
preconditioner application. For unstructured tetrahedral grids, m � 15. For
combustion applications, p can be 10 to 100 or more. The savings in storing
and applying the preconditioner can easily range up to an order of magnitude.
Moreover, the best multilevel preconditioners for the p systems represented in
the S operator may have superior properties | in convergence rate and in cache
locality | for the segregated systems than for the combined. In Fig. 1 below,
the two matrices on the right would be used in place of the full Jacobian in the
upper left.

Structure-based operator-split preconditioning has been employed in radia-
tion transport [116, 22], charge transport in semiconductors [8, 75], and 
uid

ow [43, 128, 101].

Due to architectural factors in high-end computers, the operator-split pre-
conditioners discussed herein | and perhaps several other varieties | are natu-
ral to try, to replace block preconditioners that have heavier storage and memory
tra�c costs. Where operator-splitting is already used as a solver, it can easily
be converted into a preconditioner by putting it into �-form and wrapping a
matrix-free Newton-Krylov acceleration around it. A small number of Newton
steps (two or three) cleans up the splitting error. In cases in which there are
strong couplings across di�erent components stored at di�erent mesh points, the
type of phenomenon-based operator splitting described above is not expected
to be successful; hence it is probably best exploited in an adaptive way in a
polyalgorithmic preconditioner.

The salient point of this subsection is that a JFNK \wrapper" can provide
nonlinear consistency to an inner operator-split solver. This is true even if the
operator split preconditioner does not allow one to use the large time step size
that is otherwise achievable by the outer JFNK solver.

Structured grids are often still used in practice, being natural for many
problems in regular geometries such as rectangular parallelipipeds or spherical
annuli. In such contexts, directional splitting, of which the Alternating Direc-
tion Implicit method (or \ADI") is paradigmatic, remains a popular solver. The
operator algebra is identical to that above, except that R may represent, for
instance, x-directional splitting and S y-directional. The complexity advantages
of ADI are obvious, application of each inverse reduces to set of independent
one-dimensional (e.g., block tridiagonal) problems. For all of the same qual-
itative reasons as for physics-based methods, and with only slight qualitative
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di�erences, such direction-based operator splittings may make excellent precon-
ditioners, at least in serial computing environments. An outer Newton-Krylov
iteration on each time step should quickly remove the splitting error.

Though the results of this section are developed for �rst-order implicit time-
discretization, the real bene�ts of JFNK come in its ability to make higher-order
implicit time discretizations worthwhile. Operationally, the only changes are in
the presence of linear combinations of earlier time values of u on the right-hand
side.

The work of Dawson et. al. [43] on two-phase subsurface 
ow and that
of Kerkhoven [75] on the drift-di�usion semiconductor equations are excellent
examples of the use of split-based preconditioners. In [75], the outer Newton-
Krylov method is regarded as the accelerator to the inner �xed point method.
Understanding and quantifying the limitations of split-based preconditioners is
an active area of research.

3.5 Matrix-free Preconditioning Approaches

As shown in the previous subsections there are numerous ways to take advantage
of the matrix-free matrix-vector multiply while still forming matrices that are
reduced in complexity as compared to the full Jacobian. In the \physics-based"
example (section 3.4), the approximate preconditioning matrix is derived from
a scalar parabolic problem, while the Jacobian matrix is derived from a three-
component hyperbolic system. In the \structure-based" paradigm (section 3.5),
several independent systems replace a coupled system of greater overall com-
plexity.

However, preconditioner matrix objects are still formed. Storage and mem-
ory bandwidth limitations always provide a motive to investigate precondition-
ing approaches that do not require the formation of any matrix.

There is a continuum of choices ranging from forming no preconditioner to
forming the complete Jacobian. In this subsection, we brie
y outline a few ideas
that lie closest to true matrix-free preconditioning. The only iterative method
that can be implemented in a fashion that is literally matrix-free is a Krylov
method. Since Krylov methods may present a di�erent matrix polynomial ap-
proximation to the matrix inverse for every initial iterate, they have not always
enjoyed a reputation as preconditioners. It is now well known, however, how to
employ one Krylov method to precondition an outer Krylov method with P�1

\changing" on each outer Krylov iteration. The price is generally some extra
dense vector storage, which must be traded against the cost of a sparse ma-
trix. The Flexible GMRES [142] (FGMRES) and GMRES-R [47] methods were
developed to address the issue of using a preconditioner (Krylov or otherwise)
that may vary within the GMRES iteration.

These 
exible accelerators open up a number of preconditioning options such
as using a relaxation method preconditioner with variable termination from
outer iteration to outer iteration. On some convection-di�usion problems in
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[142], FGMRES with GMRES as a preconditioner (a fully matrix-free option)
outperformed GMRES with and ILU preconditioner. In the 2D shallow water
problem just discussed the preconditioning matrix is symmetric and positive
de�nite, thus we could use conjugate gradient as the preconditioner iterative
method and be truly matrix-free. However, in this case, we should use FGMRES
on the outside. In the JFNK context, however, where the Krylov solve is often
performed inexactly throughout all but the endgame of the Newton cycle, plain
GMRES is surprisingly forgiving of mildly inconsistent preconditioning.

The next step up in matrix formation is to implement a relaxation method
in such a manner that only the main diagonal (or main block diagonal) need be
formed. This is done in [39, 135]. In [39] a nonlinear SOR method is used as a
preconditioner, requiring only the diagonal. Another step up is represented by
[132] where an approximate factorization of ADI type is implemented. There
storage is retained for only one of the required block inverses. This matrix is re-
populated and inverted several times to approximate the preconditioner inverse.
In both [132, 135] it is demonstrated that the price paid for this reduced storage
method in the preconditioner is an increase in the execution time, as compared
to the matrix counterparts.

As is justi�ably touted in the multigrid community, the FAS algorithm rep-
resents a low storage multigrid algorithm. No global matrices need be formed
for simple point smoothers. For block Jacobi smoothers, storage is only re-
quired for a local block diagonal. Thus, FAS can be viewed as a matrix-free
preconditioner, as in [106].

Finally, we mention an idea that is often exploited in the context of prob-
lems that are dominantly elliptic. There exists a technology of \fast Poisson
solvers" based on Fast Fourier Transforms (FFTs) or other fast transforma-
tions. The FFT and the multidimensional fast Poisson solvers (accommodating
some spatially uniform, but directionally varying di�usion coe�cients) that can
be assembled from it require workspace equal to just a few gridfunction vectors
and operation count only a log-factor higher than linear in the size of the grid-
function vector. Such FFT-based preconditioners, de�ned simply by subroutine
calls on vectors, with no explicit matrix formation or storage whatsoever, may
be highly e�ective in linear problems, or in nonlinear problems solved by JFNK
in which the nonlinearity is a relatively controllable perturbation of one of the
elliptic operators for which a fast inversion is known.

4 Applications

The focus of this section is to survey uses of JFNK in various �elds of com-
putational physics. We provide some references to the use of more standard
Newton-based methods, as well. The subsequent section is an enumeration of
\tricks" and techniques that span individual applications, illustrated in some of
the work grouped by application domain here.
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4.1 Fluid Dynamics / Aerodynamics

Computational 
uid dynamics has been a rich area for algorithmic development,
testing, and application, including nonlinear multilevel methods. In this section
we can only sample the diverse literature to JFNK and computational 
uid
dynamics. The majority of this work has been on steady-state BVPs.

Vanka [162] was an early advocate of Newton's method for incompressible

uid 
ow, as was MacArthur [104]. Early explorations of Newton's method in
compressible 
ow can be traced back Venkatakrishnan [163, 164]. This work is
representative of the �nite volume / �nite di�erence CFD community. There
has also been extensive development of nonlinearly implicit algorithms within
the �nite element community [56].

The incompressible Navier-Stokes equations have been used as a testbed for
much JFNK algorithm development and testing, with emphasis on standard test
problems, such as the driven cavity [55] and the natural convection cavity [42].
In fact, the driven cavity problem was considered in one of the original JFNK
papers [21]. McHugh and co-workers studied inexact Newton methods and mesh
sequencing, the performance of various Krylov methods within JFNK, the use
of low-order spatial di�erencing within the preconditioner, as well as block ILU
compared to point ILU preconditioning [70, 109, 110] The work of Shadid et. al.
[148] is not JFNK, but NK. It has elucidated important issues related to inexact
Newton methods, oversolving, and backtracking in a CFD context. Knoll et al.
[96, 98, 101, 118] studied the ideas of multigrid preconditioning in JFNK in the
context of the incompressible Navier-Stokes equations. They are also among the
�rst to consider operator-split based preconditioning. Pernice et al. [127, 128]
studied hybrid combinations of nonlinear multigrid, the SIMPLE algorithm,
and JFNK. Most notably, the work in [128] applied JFNK, with a SIMPLE /
multigrid preconditioner, to a 5123-cell thermally driven 
ow problem on up to
512 processors.

JFNK methods have been developed and applied to the compressible Eu-
ler and Navier-Stokes equations primarily by the aerodynamics community.
Newton-Krylov-Schwarz (NKS) development occupied ICASE and Boeing in
the mid-1990s [30, 26, 77, 82, 153, 155]. The combined impact of paralleliza-
tion, pseudo-transient continuation, and NKS is documented in [59]. Nearly
matrix-free preconditioning techniques have been developed for the compress-
ible Navier-Stokes equations [132]. Mavriplis studied the use of agglomeration
multigrid as a preconditioner to JFNK on unstructured grids [106]. Other JFNK
applications in compressible 
ow include [69, 133].

4.2 Plasma Physics

Problems in plasma physics provide a rich variety of time scales and nonlinear-
ities. These result from the free electrons in an ionized gas (plasma) and the
ability of the plasma to support and propagate electrostatic and electromag-
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netic waves. JFNK methods have made a signi�cant impact in computational
plasma physics within the past decade, and a number of plasma physics studies
have been enabled by JFNK [17, 38, 85, 86, 94, 102, 131, 171, 173]. We brie
y
discuss the work in three separate areas of plasma physics.

4.2.1 Edge Plasma

The edge plasma (scrape-o�, boundary layer) of a tokamak fusion experiment
is that region of plasma which lies between the last closed 
ux surface and the
vessel wall. This set of equations describes partially ionized 
ow with nonlinear
and anisotropic heat conduction, thermal nonequilibrium (two temperatures),
and �nite rate ionization and recombination (i.e., chemistry).

The earliest use of JFNK in computational plasma physics was on the toka-
mak edge plasma 
uid equations [140]. For the original use of Newton's method
on the edge plasma equations see [83, 89, 90, 97, 167], with other Newton method
applications following soon after [166, 174]. The JFNK method has become the
mainstay of edge plasma simulation within the U.S. fusion community, as em-
bodied in the UEDGE code [140].

JFNK applications in this area have utilized the numerical formation of a
Jacobian and standard ILU factorization to perform the preconditioning pro-
cess. In a set of papers [91, 92] on two di�erent edge plasma physics models it
is demonstrated that the use of a stale Jacobian in the preconditioning process
provides signi�cant CPU savings. It is also demonstrated the a pseudo-transient
approach (section 2.4.1) provides a good globalization approach to this challeng-
ing boundary value problem

In [84] a higher-order, nonlinear, convection scheme is applied to the edge
plasma 
uid equations. It is demonstrated the forming the preconditioner from
a low-order spatial discretization provided a simultaneous savings in memory
requirements and CPU time, as compared to using the higher-order method
in both the preconditioner and the residual evaluation. In [95] some initial
investigation is done on the application of 1-level Schwarz preconditioning to the
edge plasma equations. In [141] Newton-Krylov-Schwarz methods are applied
to the edge plasma equation for parallelism. Also in [141], the superiority of
JFNK over an operator split approach is demonstrated.

4.2.2 Fokker-Planck

The Fokker-Planck equation is used to model semi-collisional transport of charged
particles in phase space. There is a wide variety of applications of the Fokker-
Planck approach in plasma physics. JFNK is applied to Fokker-Planck-based
models of the tokamak edge plasma [117] and of inertial electrostatic con�ne-
ment (IEC) devices [33, 34, 35, 38]. The major challenge of the Fokker-Planck
model is that it is nonlinear integro-di�erential. Thus a standard implemen-
tation of Newton's method results in a dense Jacobian matrix. The storage
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requirements of such a problem limit its use, although it is well understood that
such an implicit implementation has other signi�cant advantages [51].

In [117] the Landau form of the Fokker-Planck equation is solved where
the integral e�ect arises through coe�cients that are integral functions of the
distribution function (1D in con�guration space and 1D in phase space). The
preconditioner is formed by lagging the integral coupling while maintaining this
coupling in the residual evaluation. A standard ILU method is applied to the
resulting sparse preconditioning matrix. This preconditioner is frequently used
by others as a solver. However, as the collision frequency increases, that fastest
time scale in the problem is being evaluated at the previous iteration. It is clearly
demonstrated in [117] that as collision frequency increased, the JFNK method
signi�cantly outperformed the method which lagged the integral coupling.

In [33, 34] the Fokker-Planck equation is solved in Rosenbluth form in 2D
phase space. Here, two subsidiary potential (elliptic) equations must be solved.
This is done inside the residual evaluations using a multigrid-GMRES method.
The preconditioning matrix for JFNK (2D, 9-point) is evaluated with the coef-
�cients lagged and the preconditioning matrix is approximately inverted using
simple multigrid ideas [88]. This approach is shown to have superior accuracy
and scale e�ciently to �ne grids.

4.2.3 MHD

The equations of magnetohydrodynamics (MHD) represent a combination of the
Navier-Stokes equations and Maxwell's equations without displacement current,
from which the speed of light has been removed. The MHD equations are typ-
ically used to simulate plasma phenomena on the ion time scale, with the fast
electron time scales removed. By retaining the Hall term in the generalized
Ohm's law (so-called Hall MHD) some electron physics is retained. This adds
an additional fast wave to the system, the Whistler wave. As compared to the
Navier-Stokes equations, the MHD equations are more complicated since they
support a family of waves that propagate at di�erent speeds in an anisotropic
manner. In [37] JFNK is applied to a 2D incompressible MHD equation sys-
tem (a three-equation system). A semi-implicit, physics-based preconditioner
is developed and the resulting scalar elliptic problems are approximately solved
with simple multigrid methods (section 3.3). The resulting nonlinearly consis-
tent algorithm is demonstrated to have a second-order accurate time step. It
is shown that this algorithm can e�ciently step over sti� wave time step con-
straints while maintaining a second-order accurate time step. Excellent time
step and grid re�nement scaling is demonstrated, as well as signi�cant CPU
gains as compared to an explicit simulation.

In [36] JFNK is applied to a 2.5-D incompressible Hall MHD equation sys-
tem (a �ve-equation system). The parabolic operator that arises from the
semi-implicit treatment of the Whistler wave is of fourth order in space. The
conjugate gradient method is used to approximately invert this system in the
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preconditioner.

4.3 Reactive 
ows and 
ows with phase change

Reactive 
ows and 
ows with phase change are examples of nonlinear multiple
time scale problems. There are many engineering and industrial application that
are simulated by such systems. Operator splitting has been used extensively
to simulate reactive 
ows [124]. Early Newton method research as applied to
reactive 
ows may be found in [76, 149, 151].

In [93, 111] the performance of the JFNK method is studied in low Mach
number compressible combustion. The base model is a BVP and represents
a laminar di�usion 
ame. In [93] the SER method is employed for pseudo-
transient continuation with standard ILU type preconditioners (similar to [92]).
In [111] (within a Schwarz context) standard ILU preconditioners are compared
to block ILU preconditioners, where the blocksize follows the number of conser-
vation equations within a control volume. Block ILU precondtioning is shown
to be superior in memory and in terms of preconditioner performance. The edge
plasma Navier-Stokes neutrals model discussed in section 4.2.1 and in [84, 92]
also contains �nite rate \chemistry" in table look-up form. This model has mass,
momentum, and energy exchange between \phases" as a result of the �nite rate
"chemistry". A particularly challenging version of this problem results from
including both molecules and atoms in the neutral 
uid [102]. The addition of
molecules brings in fast (sti�) reactions. Here block ILU is essential to e�ective
preconditioning. The standard ILU machinery can be thought of as attack-
ing the intra-equation coupling, while the blocking attacks the inter-equation
coupling.

Another recent example of the application of JFNK methods to reactive

ows is the work of Mukadi and Hayes [119]. Their application is the transient
simulation of an automotive catalytic convertor. In this study the e�ects of
spatial discretization on preconditioner performance are considered.

Shadid [148] uses standard inexact Newton-Krylov methodology (not JFNK)
to simulate reactive 
ows in 3D, on unstructured grids, and on massively parallel
architectures. Simulations with several chemical species and reactions have been
performed [147].

JFNK methods are applied to phase change heat conduction problems [87,
101]. This is done for pure material (isothermal phase change) alloys, and pure
materials with multiple phase transitions. The key to implementing the JFNK
methodology on this class of problems is the use of the enthalpy formulation [87]
(enthalpy as the dependent energy variable). Here, temperature is a function of
enthalphy, the phase diagram, and a local scale model for alloys. In the initial
study of this problem the phase-change physics is ignored in the preconditioner
and the preconditioning operator is formed only from heat conduction. In a sub-
sequent study, the \e�ective heat capacity" method [101] (a linearized solver for
this problem) is used as a preconditioner. This is a approximate route to bring-
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ing the phase change physics into the preconditioner. This is shown to provide a
factor of �ve reduction in GMRES iterations and a factor of four improvement in
execution time. VanderHeyden and co-workers [160, 161] have been developing
a three-dimensional unstructured grid code for simulating multiphase 
ow with
phase change based on JFNK methods. This work is developing novel hybrid
preconditioning stratigies.

4.4 Radiation di�usion and radiation hydrodynamics

Radiation di�usion and radiation hydrodynamics are further examples of non-
linear multiple time scale systems. The equations of radiation hydrodynamics
are used to simulate astrophysical phenomena and problems in inertial con-
�nement fusion. These equations are formed by combining the compressible
Navier-Stokes equations with one of many models for radiation transport. In
many regimes of interest there is strong nonlinear coupling between the 
ow
�eld (often called the \material") and the radiation (photon) �eld. Operator
splitting has been used extensively to simulate radiation hydrodynamics [16].
Early Newton method research as applied to radiation hydrodynamics is found
in [170]. The simplest of radiation transport models is the di�usion model, and
this is where one �nds most of the initial JFNK e�ort. As with many other
multiple time scale systems, the nonequilbrium radiation di�usion problem has
both a dynamical time scale and normal modes. Reaction and di�usion time
scales can be very fast compared to the thermal front time scale. One wants to
be able to follow the dynamical time scale [138].

Early 1D work [99, 100] focused on presenting the ideas behind JFNK to the
radiation transport community, as well as elucidating the ability of JFNK to
provide increases in both accuracy and e�ciency as compared to more standard
linearized and operator split methods. The work in [99] demonstrates that the
JFNK approach has superior nonlinear convergence rates compared to a Picard
iteration. The results in [100] show that when nonlinearities within a time step
are not converged, one may not observe the design accuracy of the chosen time
step method.

Two-dimensional examples focus on the development on simple multigrid-
based preconditioning strategies [139] and on the use of operator-splitting as a
preconditioner [116]. Analysis and results of operator-split based precondition-
ing on such problems indicate that the approach can break down [22]. Thus,
there can exist a window where JFNK can integrate a system accurately but
traditional operator splitting does not provide adequate preconditioning. This
happens when there is an extremely large spread between the dynamical time
scale (where JFNK can integrate a system accurately) and the normal modes
of the system. Options to overcome this hurdle include Schur complement ap-
proaches considered in [22], coupled multigrid preconditioning, or augmenting
the operator splitting with a two-stage approach that includes a defect correc-
tion and a �ne grid block Jacobi smoother on the Jacobian [114].
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Two recent e�orts in radiation transport couple JFNK with nonlinear multi-
grid. In [7] JFNK is used as a smoother in an FAS scheme for a radition
transport problem. The problem considered has integral coupling, which is an
opportune setting for JFNK. In [106] FAS is used as a preconditioner to JFNK
for a nonequilbrium radiation di�usion problem similar to that in [116]. This
system is solved on an unstructured grid using agglomeration multigrid in the
preconditioner.

Coupled radiation hydrodynamics problems are beginning to come under
investigation using JFNK. Typically, in radiation hydrodynamics the radiation
transport is done implicitly and coupled via operator splitting to an explicit
method for the hydrodynamics. The research in [170] considers the implicit
Newton solution to the coupled problem. The work in [10] compares a nonlin-
early consistent (JFNK) method applied to the radiation model, and coupled
to the hydrodynamics model in a predictor-corrector fashion. While this new
approach is more accurate than the standard linearize-and-split approach, it is
still able to achieve only �rst order in time.

4.5 Geophysical 
ows

Problems in porous media 
ow and atmospheric 
ows can possess widespread
time scales and/or strong nonlinearities. Both of these problems motivate the
consideration of JFNK methods. We brie
y mention results coming from two
di�erent applications of JFNK methods to subsurface 
ow and one application
of JFNK to atmospheric 
ow.

In [156] JFNK is applied to Richard's equation, a nonlinear parabolic model
for variably saturated 
ow, and the perfomance of various Krylov methods is
considered. In [71] JFNK is applied to Richards' equation. Semicoarsening
multigrid [145] and simpler multigrid [4] are applied to approximately invert
the preconditioning matrix. The preconditioner is the the symmetric part of
the complete Jacobian. The work in [68], while not Jacobian-free, develops
e�ective two-level preconditioners for the Newton-Krylov solution of Richard's
equation.

In [43] JFNK methods are applied to multiphase 
ow in a permeable media.
A two-stage preconditioner is developed. The �rst stage is a decoupling stage
(similar to ABF [8]) while the second stage, solves separate (scalar) elliptic
systems, as promoted in [101, 116]. The two-stage preconditioner is shown
to outperform an additive split-based preconditioner. In the recent work of
Hammond and co-workers [63] JFNK and an operator-split preconditioner are
applied to a multicomponent reactive subsurface transport model. The JFNK
method is shown to provide advantages relative to conventional methods in this
�eld.

There is a growing interest in increasing the predictive nature of atmospheric

ow simulations such as those involved in wild�re modeling [136] and hurricane
modeling. Both of these problems are by nature highly nonlinear and contain
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multiple time scales. Currently, simulation e�orrts in this community are dom-
inated by operator splitting approaches, and thus they contain unmonitored
numerical error. The work in [115, 135, 137] represents an initial e�ort at bring-
ing JFNK into this community. In [115] JFNK is applied to the shallow water
wave equations in 2D with the Coriolis e�ect. Physics-based preconditioning
with simple multigrid is shown to be very e�ective on this classic sti� wave
problem. Here the outer JFNK method is integrating a three-component hy-
perbolic system, while the preconditioner only requires the approximate implicit
solution of a scalar parabolic equation. It is clearly shown that a second order
in time JFNK method can integrate this system at the dynamical time scale
(stepping over the sti� wave time scale) to obtain excellent time accuracy. The
work in [137] extends the work in [115] by considering the compressible Euler
equations, and thus a more complicated equation of state. This requires a more
sophisticated physics-based preconditioner. Here the outer JFNK method is
integrating a four-component hyperbolic system while the preconditioner only
requires the approximate implicit solution of a scalar parabolic equation. The
JFNK method developed in [137] will be used for simulating wild�res and hur-
ricanes.

5 Illustrations

This section provides computational illustrations of some of the techniques and
\tricks" of JFNK methods | making them work, and making them work ef-
fectively on real problems. As the heading indicates, this section is illustrative,
not exhaustive. We make reference back to the appropriate areas in sections 2
through 4.

5.1 Jacobian lagging

Here we present results from [92], which considers an eight-equation system for
the coupled edge plasma/Navier-Stokes neutral model. We consider the e�ect
of Jacobian lagging only in the preconditioner (as discussed in section 3.1), ver-
sus Jacobian lagging in the outer Newton iteration. In Table 2 (Table 1 in
[92]) a single grid simulation is considered using pseudo-transient continuation.
SNK is a standard Newton-Krylov method (not Jacobian-free) and forms the
Jacobian every Newton iteration. MFNK performs the Newton-Krylov itera-
tion matrix-free, while the Jacobian used in the preconditioner is formed with
a frequency of p Newton iterations. MNK (modi�ed Newton-Krylov) is a stan-
dard Newton-Krylov method but the Jacobian is formed with a frequency of p
Newton iterations for use in both the matrix vector multiply and the precondi-
tioner. Also note that within the pseudo-transient continuation method, to be
consistent, the time step is is advanced only every p Newton iterations. Table
2 clearly shows an execution time advantage for the JFNK approach.
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Table 2: Convergence and execution time performance for an 8-equation 2D
BVP for a coupled edge plasma/Navier-Stokes neutral model (from [92]).

Solution Newton GMRES Avg. GMRES Rel.
Method Iterations Iterations Per Newton CPU

SNK, p = 1 158 485 3.1 3.56
MNK, p = 5 681 318 0.5 3.26
JFNK, p = 5 234 1570 6.7 1.46
JFNK, p = 10 182 2624 14.4 1.0

5.2 Mesh Sequencing

The nonlinear convergence rate enhancement resulting from mesh sequencing
has been investigated in several studies for BVPs and is discussed in section
2.4.2. Table 3 (which is Table 4 in [92]) presents single grid and mesh sequencing
results from an 8-equation system for the coupled edge plasma/Navier-Stokes
neutral model in 2D. The impact of mesh sequencing for this BVP is clear. It
is also clear that the impact of mesh sequencing increases with grid re�nement.

Table 3: E�ect of mesh squencing on total execution time for an 8-equation 2D
BVP coupled edge plasma/Navier-Stokes neutral model (from[92]).

Problem Without mesh With mesh Speedup
Size sequencing sequencing

32� 16 0.4 0.4 1.0
64� 32 4.3 0.84 5.1
128� 64 14.7 1.5 9.8

5.3 Multigrid Preconditioning

We provide some results on the impact of multigrid as a preconditioner to JFNK
(discussed in section 3.3). We consider the steady-state solution of the in-
compressible Navier-Stokes BVP in the stream function-vorticity formulation.
Figure 2 is from [98], and plots the average number of GMRES iterations per
Newton iteration as a function of grid dimension for �ve di�erent solution meth-
ods. The solution methods vary in the preconditioner (MG, ILU(0), or BSGS)
and the number of GMRES vectors stored before restart. Advection is ig-
nored in all preconditioners. It can be seen that the simple multigrid-based
preconditioner signi�cantly outperforms ILU(0) as the grid is re�ned. Further-
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more, this allows storage of fewer GMRES vectors. While restart is employed
on this problem, allowing 200 total GMRES iterations, its success is limited.
We employ the standard restarting algorithm referred to as \Algorithm 6.11"
in [143]. In terms of normalized execution time for a converged solution on
the 160� 160 grid we have: NKMG/GMRES(20) = 1.0, NKMG/GMRES(10)
= 2.6, NK-ILU(0)/GMRES(100) = 3.1, NK-ILU(0)/GMRES(50) = 2.7, NK-
BSGS(3)/GMRES(50) = 5.3. Only NKMG/GMRES(20) converges in a reason-
able time on the 320� 320 grid, with an execution time of 5.6, relative to the
four times smaller 160 � 160 case. On the 160 � 160 grid, NKMG would not
converge with less than 10 GMRES vectors stored, while NK-ILU(0) would not
converge with less than 50 GMRES vectors stored.

Figure 3 is from [96], and is a plot of CPU time scaling, as a function grid
dimension, using both the distributed and the coupled multigrid approaches
in the preconditioner, piecewise constant restriction and prolongation, and a
Galerkin coarse grid operator. The data are for 80�80, 160�160, and 320�320
problems. We include a reference line for linear scaling, and we see that both
approaches scale better than linear.

5.4 Physics-based Preconditioning

Here we present some results from physics-based preconditioning, concentrating
on the sti�-wave problem discussed in section 3.4.1. First we present a result
from [115] where the JFNK method is applied to the 2D shallow water wave
equations with the Coriolis force. This is a three-component hyperbolic system
with a sti� gravity wave. As discussed in section 3.4.1, a semi-implicit method
is used to construct the preconditioner. Thus, the preconditioner action needs
only to approximate inversion of one step of a scalar parabolic equation, and
this is accomplished with low complexity multigrid. In [115] a sti�-wave model
problem is used to demonstrate that a nonlinearly consistent method (JFNK)
can use time steps on the order of the dynamical time scale while maintaining
comparable accuracy to a semi-implicit method run at the sti�-wave explicit
CFL. An example of the algorithmic scaling of the method is given in Table 4,
which is from [115]. As a result of spatial discretization mismatch between
the semi-implicit method and the true nonlinear function, the preconditioner
actually improves under grid re�nement. The number of Newton iterations per
time step is fairly constant, while the average number of GMRES iterations per
time step decreases. As a result, the actual execution time beats the expected
execution time scaling, which would be a factor of eight for each re�nement by
a factor of two in space and time.

Table 5 is from [37], and demonstrates the algorithmic scaling of physics-
based preconditioning (with MG) on a three-equation MHD problem. This
MHD problem contains a sti� Alfv�en wave whose time scale is typically well
separated from the dynamical time scale of interest. The data in Table 5 are from
three di�erent sti� wave CFL time step sizes over a range of grids. The scaling
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Table 4: CFL study for physics-based preconditioning for a 2D hyperbolic grav-
ity wave problem, showing preconditioner improvement with mesh re�nement
(from [115]).

Advection Normalized Normalized Error
NX �NY Newton

Timestep
GMRES
Newton CFL CPU Scaling (rel. to �nest)

32� 32 4.12 26.26 0.1394 1.00 1.0 6:998� 10�5

64� 64 4.01 15.68 0.2322 5.00 8.0 1:838� 10�5

128� 128 4.00 8.45 0.2421 24.19 64.0 3:003� 10�6

256� 256 4.00 5.22 0.2435 397.57 512.0 |

in terms of nonlinear iterations per time step and linear iterations per nonlinear
iteration is good over a range of grids. As in the shallow water wave problem, the
parabolic problem in each preconditioner application is approximately inverted
using simple multigrid methods.

5.5 Newton-Krylov-Schwarz: Parallelism and Scaling

We conclude this section with an illustration of the use of JFNK to parallelize a
legacy application code. We consider an aerodynamics application based on the
code FUN3D, a tetrahedral, vertex-centered unstructured mesh code originally
developed by W. K. Anderson of the NASA Langley Research Center for com-
pressible and incompressible Euler and Navier-Stokes equations [2, 3]. FUN3D
employs a control volume discretization with a variable-order Roe scheme for
approximating the convective 
uxes and a Galerkin discretization for the viscous
terms. FUN3D has been used for design optimization of airplanes, automobiles,
and submarines, with irregular meshes comprising several million mesh points.
The optimization involves many analyses, typically sequential. Thus, reaching
the steady-state solution in each analysis cycle in a reasonable amount of time
is crucial to conducting the design optimization. A representative achievement
to date for million meshpoint simulations on thousands of processors is about 10
�sec per degree of freedom for convergence of the steady-state residuals below
the square-root of machine precision.

In work that was recognized with a 1999 Gordon Bell Prize in the \special"
category, and subsequently published in [60], FUN3D was ported to the PETSc
[6] JFNK framework, using the single program multiple data (SPMD) message-
passing programming model, supplemented by multithreading at the physically
shared memory level.

Achieving high sustained performance, in terms of solutions per second, re-
quires attention to three factors. The �rst is a scalable implementation, in the
sense that time per iteration is reduced in inverse proportion to the number of
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Table 5: Grid convergence study with �t = 20; 40; 160��tCFL for the tearing
instability in 3D MHD with SL = Re = 104. Results are obtained for a run
of Tf = 30�A. dCPU is the execution time \CPU" normalized to GMRES

time step(from

[37]).

Grid �t(�A)
Newton
timestep

GMRES
Newton

GMRES
timestep CPU (s) dCPU

�t = 20�tCFL
32� 32 1.875 3.0 2.6 7.8 12.8 1.6
64� 64 0.9375 3.0 2.0 5.9 102. 17.3
128� 128 0.46875 2.8 1.4 3.8 793. 209.
256� 256 0.234375 3.0 1.0 3.0 6537. 2179.

�t = 40�tCFL
32� 32 3.75 3.0 3.8 11.5 8.2 0.71
64� 64 1.875 3.0 3.3 10.0 73.6 7.4
128� 128 0.9375 3.0 2.0 6 517. 86.
256� 256 0.46875 3.0 1.6 5.0 4248. 850.

�t = 160�tCFL
32� 32 15 3.0 9.3 28.0 4.2 0.15
64� 64 7.5 3.0 6.3 19.0 29. 1.5
128� 128 3.75 3.1 4.6 14.2 234. 16.
256� 256 1.875 3.6 5.9 21.5 3220. 150.
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processors (strong scaling), or that time per iteration is constant as problem size
and processor number are scaled proportionally (weak scaling). The second is
good per processor performance on contemporary cache-based microprocessors.
The third is algorithmic scalability, in the sense that the number of iterations to
convergence does not grow with increased numbers of processors. The third fac-
tor arises because the requirement of a scalable implementation generally forces
parameterized changes in the algorithm as the number of processors grows. If
the convergence is allowed to degrade, however, the overall execution is not
scalable, and this must be countered algorithmically.

The following is an incomplete list of parameters that need to be tuned in
various phases of a pseudo-transient Newton-Krylov-Schwarz algorithm.

� Nonlinear robustness continuation parameters: discretization order, initial
time step, pseudo-time step evolution law

� Newton parameters: convergence tolerance on each time step, globaliza-
tion strategy (line search or trust region parameters), refresh frequency
for Jacobian preconditioner

� Krylov parameters: convergence tolerance for each Newton correction,
restart dimension of Krylov subspace, overall Krylov iteration limit, or-
thogonalization mechanism

� Schwarz parameters: subdomain number, amount of subdomain overlap,
coarse grid usage

� Subdomain parameters: incomplete factorization �ll level, number of sweeps

Many of these parameters have been commented on during the presenta-
tion of the JFNK and 	NKS algorithms in sections 2 and 3. In relation to
the FUN3D example, we point out that although convergence is to a second-
order convection scheme discretization, much of the early nonlinear iteration
uses a �rst-order convection scheme, until the location of the shock has stabi-
lized. Only after this is the discretization sharpened up in the right-hand side
nonlinear residuals (and consequently in the Fr�echet derivative Jacobian-vector
products). Otherwise, Newton is di�cult to use on this problem, even with
pseudo-timestepping. First-order discretization for the convective terms is used
for the Jacobian preconditioner throughout.

We also call attention to the orthogonalization (or conjugation) mechanism
employed in the Krylov method. Conventional GMRES employs a modi�ed
Gram-Schmidt procedure to orthogonalize the Krylov subspace; however, this
requires a separate inner product for each new vector. On a parallel machine,
this degree of synchronization can be counter to high implementation e�ciency.
It is often better to combine multiple inner products into one synchronization,
by following the original Gram-Schmidt process, even though the latter is less
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numerically stable. Similar e�ciency-stability trade-o�s emerge throughout the
�eld of parallel algorithms.

Choices for these parameters are extensively studied in [60], where there is
no claim that the optimal combination has been found. JFNK algorithms are
evidently rich in options. This can be overwhelming to a new user, but it pro-
vides a great deal of architectural and application adaptivity to the experienced
user.

6 Nonlinear preconditioning

As discussed in Section 2.4, the lack of a global convergence theory for Newton's
method is a severe drawback that has been met in practice with a variety of
inventions. Some, generally those rooted in the physics known to lie behind par-
ticular discrete nonlinear systems, are applied outside of Newton's method and
exercise their bene�cial e�ect by changing the system or the initial iterate fed
to Newton's method. Others, generally those rooted in mathematical assump-
tions about the behavior of F(u) near a root, are applied inside, and have their
e�ect by modifying the strict Newton correction before it is accepted. In this
section, we mention a new technique, additive Schwarz preconditioned inexact
Newton (or \ASPIN"), that is nested inside multiple applications of Newton's
method. ASPIN involves a (generally nonlinear) transformation of the original
root�nding problem for F(u) to a new root�nding problem, F(u) = 0, to which
an outer Jacobian-free Newton method is applied. The formation of F(u) at
a given point u, which is required many times in the course of performing the
outer Jacobian-free Newton-Krylov iteration, in turn involves the solution of
possibly many smaller nonlinear systems by Newton's method.

Without such a transformation, Newton's method may stagnate for many
iterations in problems that are \nonlinearly sti�." A classical example is tran-
sonic compressible 
ow with a shock. The size of the global Newton step may be
limited in such a problem by high curvature in the neglected terms of the mul-
tivariate expansion of F(u) coming from just a few degrees of freedom de�ned
near the shock. Cai and collaborators [28, 29, 31] devised ASPIN to concen-
trate nonlinear work at such strong nonlinearities, and produce a more balanced
global nonlinear problem, on which Newton behaves better, with less damping.

From an algebraic viewpoint, ASPIN is a generic transformation that re-
quires only the unique solvability of subsystems of the original F(u) in the
neighborhood of the root u� to perform. From a physical viewpoint, ASPIN is
a family of methods in which the subsystems may be chosen by domain decom-
position, segregation of equations arising from di�erent physical phenomena,
identi�cation of nonlinear sti�ness, or still other criteria. As with all Schwarz
methods, many 
avors of nonlinear Schwarz preconditioning are possible |
additive, multiplicative, or general polynomial combination of sub-operators;
single-level or multi-level; overlapping or nonoverlapping. In this section, we
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discuss the additive, single-level case, with arbitrary overlap. We illustrate do-
main and equation partitioning.

6.1 A Nonlinear Additive Schwarz Preconditioner

In this section, following [28], we brie
y describe a nonlinear preconditioner
based on the additive Schwarz method. In a practical application of ASPIN we
assume that there is a dominant association of certain components of F with
certain components of u, and that, in fact, the square subblock of the full Jaco-
bian F0(u) describing this dominant relationship is invertible near the desired
root. This is major restriction for general nonlinear algebraic systems, but it
is completely natural for systems arising from partial di�erential equations de-
scribing local conservation laws. Just as in additive Schwarz for linear problems,
most of the computing in ASPIN is carried out within these local blocks.

Let the unknowns u 2 Rn and residuals F 2 Rn be partitioned into N (pos-
sibly overlapping) subsets. Based on the partitioning, we introduce subspaces
of Rn and the corresponding restriction and extension matrices. For the ith

subset, de�ne Vi � Rn as the subspace of vectors whose components vanish
outside of the ith subset.

Recalling the restriction operators of Section 3.2, de�ne the subdomain non-
linear function as

Fi = RiF:

For any vector v 2 Rn, de�ne Ti(v) 2 Vi as the solution of the nonlinear
system within the ith subspace:

Fi(v �Ti(v)) = 0:

Because of the restriction of Ti to Vi, with ni nontrivial components, this is
for each i a system of ni nonlinear equations in the same number of unknowns.
Under the natural association of equations to unknowns in the discretization of
a well-posed PDE, we expect the Jacobian of this system to be nonsingular, and
the local problem to be solvable, for reasonable v. If, for instance, v represents
the desired discrete solution in every component outside of the ith subspace,
solving the ith subproblem amounts to consistently extending the global solution
into the ith subspace. The new function

F(u) =
NX
i=1

Ti(u); (38)

formed by summing together all of these local corrections we refer to as the
nonlinearly preconditioned F(u). A single evaluation of the function F(v), for
a given v, involves the calculation of the Ti, which in turn involves the solution
of N nonlinear systems. If the overlap is zero, this is a block nonlinear Jacobi
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preconditioner. It is shown in [28] that u is a root of F(u) if and only if it is a
root of F(u).

In the linear case, this algorithm reduces to the additive Schwarz algorithm.
Using the usual notation, if

F(u) = Au� b;
then

F(u) =
 

NX
i=1

RT
i A

�1
i Ri

!
(Au� b);

where A�1i is the inverse of Ai = RiAR
T
i .

If F(u) = 0 is to be solved using a Newton type algorithm, then the Jacobian
F 0(u) is needed in one form or another. Since this is generally large and dense,
Jacobian-free methods are essential. It is shown in [28] that F 0(u) is well ap-
proximated at a point u near a root by J (u) =PN

i=1 R
T
i J

�1
i (u)RiJ(u), where

J(u) is the Jacobian of the original nonlinear system, F0(u), and Ji, is the Jaco-
bian of the subdomain nonlinear system, Ji(u) = RiJ(u)R

T
i , for i = 1; : : : ; N:

If F(u) is sparse nonlinear function of its arguments, then J is a sparse matrix,
and so are the Ji, so it is economical to apply J to an arbitrary vector. There-
fore, nonlinear systems involving F(u) are straightforward to solve using JFNK,
provided that the outer Newton-Krylov iteration does not need any linear pre-
conditioning. We note that the inner Newton iterations to form the Ti(u) may
also be solved with JFNK, or by any other Newton method, assuming we have
the Ji available.

From a software engineering viewpoint, it is convenient that the action re-
quired to apply the Jacobian of the nonlinearly preconditioned system to an
arbitrary vector is already present in any Newton-Krylov-Schwarz code, since
it is the action of the linearly Schwarz-preconditioned Jacobian of the original
nonlinear function F(u). The action of J on a vector can be approximated by
the usual Fr�echet derivative in a matrix-free manner, or with explicit elements.
The actions of J�1i on subvectors corresponding to the nontrivial components
in Vi can be performed concurrently within (possibly overlapping) partitions.
Several techniques are available for computing the Ji, for example, by analytic
formula, multi-colored �nite di�erencing, or automatic di�erentiation. A trian-
gular factorization of Ji may be performed, since the action is needed multiple
times within a single outer Newton step on F(u) = 0.

The evaluation of F(u) is not a process with a priori deterministic complex-
ity, since it involves summation of local corrections that are the result of inner
Newton iterations on Fi(u). In a parallel implementation, if a di�erent pro-
cessor is assigned to each partition and the partitions overlap, communication
to obtain nontrivial ghost values belonging to and updated in other processors
may be necessary. We note, however, that these ghost values do not change
during the solution of the subdomain nonlinear system. It is known (Section
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2.3.2) that the linear systems of the main Newton iteration for F(u) do not need
to be solved well (in fact, often should not be solved well) in early stages, in
the sense that it is only necessary to enforce the norm of the Newton correction
equation residual

jjF(u)�u+F(u)jj2
to be bounded by some \forcing term" [50] that may itself be a function of F and
other by-products of the computation, approaching zero at a rate su�cient to
guarantee convergence, superlinear convergence, or even quadratic convergence
of the outer iteration. This provides some latitude in the degree of accuracy to
which the subdomain nonlinear problems are solved in the early iterations.

It is shown in [28] that Newton's method applied to a nonlinearly precondi-
tioned version of the velocity-vorticity driven cavity problem, based on domain
decomposition converges rapidly (e.g., in 5{10 Newton iterations) at Reynolds
numbers far beyond those at which Newton's method applied to the original
discretization of the problem hopelessly stagnates.

It is shown in [31] that Newton convergence of the nonlinearly transformed
version of the problem of shocked 
ow in a variable cross-section duct is much
less sensitive to mesh re�nement than the original discretization.

The di�culties of Newton on the driven cavity problem can be ameliorated
by continuation in Reynolds number and the shocked 
ow problem through mesh
sequencing in other contexts. Nevertheless, it is interesting to see that a purely
algebraic method, ASPIN, is e�ective at rebalancing nonlinearities so that New-
ton converges easily. We expect that it will have wide applicability in problems
with complex nonlinearities as a means of increasing nonlinear robustness.

Unfortunately, it is di�cult to obtain direct approximations to the dense
Jacobian of the transformed system, J , so as to improve the linear conditioning
of the resulting Newton correction problems. Therefore, these problems are
subject to linear ill-conditioning as mesh resolution increases. To conquer this
linear ill-conditioning, multi-level methods of ASPIN need to be devised. The
straightforward FAS multigrid approach on F(u) may not be practical since the
nonlinear correction to be computed at each coarse level requires an evaluation
of the �ne-grid residual, which is subsequently restricted to compute the coarse-
grid defect that drives the correction. Since each �ne-grid residual involves a
host of �ne-grid nonlinear subproblems, this is expensive. An alternative multi-
level method is investigated, with promising results, in [29].

A case of special interest in ASPIN is the case of relatively few subspaces,
e.g., partitioning by equation type in a multicomponent problem, as opposed to
by subdomain in a problem of millions of gridcells. In this case, it is natural to
take the overlap to be zero; then the diagonal blocks of

PN
i=1 R

T
i J

�1
i RiJ are all

identities, and do not involve any computations when multiplied with vectors.
For two subdomains,

J =

�
J11 J12
J21 J22

�
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so

2X
i=1

RT
i J

�1
i RiJ =

�
I J�111 J12

J�122 J21 I

�
:

For example, partition 1 could represent the 
uid degrees of freedom, and par-
tition 2 the structural degrees of freedom in a 
uid-structure interaction. The
Jacobians of each need to be inverted only on the portion of each partition that
couples directly to the other.

7 PDE-constrained Optimization

It is increasingly recognized that PDE-based analyses are rarely ends in them-
selves, but more properly part of a scienti�c process that includes some type
of sensitivity analysis or optimization, in which the system of PDEs serves as
a constraint. The optimization process may arise, for instance, in design, in
control, in parameter identi�cation (inverse problems), or in data assimilation.
Some property, such as the integrated dissipation rate or the norm of some dis-
crepency between measured and modeled outcomes, is to be minimized, subject
to the constraint that a governing system of PDEs is satis�ed. Without the
PDE constraint, the optimization algorithm may �nd more optimal values of
the objective that are physically infeasible, and therefore uninteresting.

Jacobian-free Newton-Krylov methods have important roles to play in PDE-
constrained optimization. At the very least, the fact that PDEs need to be
solved in the inner loop of a conventional constrained optimization algorithm
requires time- and memory-e�cient PDE solvers. A Newton method makes
good use of a \warm" initial guess, and therefore performs well in projecting
the result of an optimization step onto the constraint manifold inside an itera-
tive optimization method such as Reduced Sequential Quadratic Programming
(RSQP) [172]. However, it has become apparent in recent years that there are
potentially much more e�cient classes of optimization algorithms that employ
a Jacobian-free Newton-Krylov method as the outer optimization loop, not as
the inner projection step. These methods search for saddle points of the La-
grangian formulation of the constrained optimization by looking for the roots
of the gradient of the Lagrangian with respect to all of its parameters | the
design parameters, the state variables of the PDE, and the Lagrange multipliers.
In these contemporary optimization methods, called Lagrange-Newton-Krylov
(LNK) methods [12, 13, 81], the PDE constraints are not necessarily satis�ed
accurately at every step, but are only guaranteed to be satis�ed asymptotically,
as a design parameter optimum is approached.

Our discussion of the LNK family of methods in this survey is introductory
only, since a systematic treatment demands �rst a survey of constrained opti-
mization methdology, and also since this application of JFNK is relatively young.
However, a presentation of the prospects for JFNK would be incomplete without
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mentioning its use in LNK, and such a presentation can be self-contained with
the realization that equality-constrained optimization is treatable as a nonlinear
root�nding problem.

One of the chief practical di�erences between JFNK applied to PDEs and
JFNK applied to Lagrangian constrained optimization is that the Jacobian of
the direct analysis involves only �rst derivatives of the conservation laws with
respect to the state variables, whereas the Jacobian of the Lagrangian problem
(the so-called Karush-Kuhn-Tucker, KKT, matrix) involves second derivatives of
the objective function and the PDE conservation laws. It is relatively routine to
obtain approximations to �rst derivatives of well-scaled objects in standard 
oat-
ing point contexts with �nite di�erences. This is not true for second derivatives
since a second di�erence ampli�es the roundo� to levels generally unacceptable
for standard double-precision 
oating point. Therefore, the subject of automatic
di�erentiation makes an important appearance in optimization. Moreover, the
Jacobian of the Lagrangian problem involves in a fundamental way the transpose
of the Jacobian of the PDE constraints with respect to the state variables. In
the JFNK context, it is not known how to form Jacobian-transpose-vector prod-
ucts with �nite Frech�et derivatives. Automatic di�erentiation, whose so-called
\reverse mode" permits e�cient Jacobian-transpose applications, is therefore
important for this reason, as well. Indeed, it is no coincidence that LNK is
only now becoming a practically important method, with the advent of quality
automatic di�erentiation software [14, 15].

7.1 Newton's Method in Constrained Optimization

Equality constrained optimization leads, as mentioned, through the Lagrangian
formulation, to a multivariate nonlinear root�nding problem for the gradient
(the �rst-order necessary conditions), which is amenable to treatment by New-
ton's method. To establish notation, consider the following canonical frame-
work, in which we enforce equality constraints on the state variables only. (De-
sign variable constraints require additional notation, and inequality constraints
require additional algorithmics, so we leave their generalization to the litera-
ture [172].) Choose design variables u 2 Rm to minimize the scalar objective
function, �(u; x), subject to state constraints, h(u; x) = 0, where x 2 Rn is the
vector of state variables. In the Lagrange framework, a stationary point of the
scalar Lagrangian function

L(x; u; �) � �(x; u) + �Th(x; u)

is sought, where � 2 Rn. When Newton's method is applied to the �rst-order op-
timality conditions, a linear system known as the Karush-Kuhn-Tucker (KKT)
system arises at each step. There is a natural \outer" partitioning: the vec-
tor of parameters is often of lower dimension than the vectors of states and
multipliers. This suggests an approximate Schur complement-like block precon-

43



ditioning process at the outer level. Within the state-variable subproblem, in
turn, Schwarz provides a natural \inner" partitioning for concurrency.

To emphasize di�erences of computational scale relevant to the algorithmics,
we mention three classes of PDE-constrained optimization:

� Design optimization (especially shape optimization): u parametrizes
the domain geometry of the PDE (e.g., a lifting surface) and � is a cost-
to-bene�t ratio of forces, energy expenditures, etc. Typically, m is small
compared with n and does not scale directly with it as the mesh is re�ned.
However, m may still be hundreds or thousands in industrial applications.

� Optimal control: u parametrizes a continuous control function acting
in part of the domain or on part of the boundary of the domain, and �
is the norm of the di�erence between desired and actual responses of the
system. For boundary control, m / n2=3.

� Parameter identi�cation/data assimilation: u parametrizes an un-
known continuous constitutive or forcing function de�ned throughout the
domain, and � is the norm of the di�erence between measurements and
simulation results. Typically, m / n.

Written out in partial detail, the �rst-order optimality conditions are:

@L
@x
� @�

@x
+ �T

@h

@x
= 0 ;

@L
@u
� @�

@u
+ �T

@h

@u
= 0 ;

@L
@�
� h = 0 :

Newton's method iteratively seeks a correction,0@ �x
�u
��

1A to the iterate

0@ x
u
�

1A
to reduce the gradient of the Lagrangian to zero. With subscript notation for
the partial derivatives, the Newton correction (KKT) equations are24 (�;xx + �Th;xx) (�;xu + �Th;xu) hT;x

(�;ux + �Th;ux) (�;uu + �Th;uu) hT;u
h;x h;u 0

350@ �x
�u
��

1A = �
0@ �;x + �Th;x

�;u + �Th;u
h

1A
or 24 Wxx W T

ux JTx
Wux Wuu JTu
Jx Ju 0

350@ �x
�u
�+

1A = �
0@ gx

gu
h

1A ; (39)

whereWab � @2�
@a@b +�T @2h

@a@b , Ja � @h
@a , and ga =

@�
@a , for a; b 2 fx; ug, and where

�+ = �+ ��.
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7.2 Newton-RSQP and LNK

The RSQP method [172] consists of a three-stage iteration. We follow the
language and practice of [12, 13].

� Design Step (Schur complement for middle blockrow):

H �u = f ;

where H and f are the reduced Hessian and gradient, respectively:

H �Wuu � JTu J
�T
x W T

ux +
�
JTu J

�T
x Wxx �Wux

�
J�1x Ju;

f � �gu + JTu J
�T
x gx �

�
JTu J

�T
x Wxx �Wux

�
J�1x h:

� State Step (last blockrow):

Jx �x = �h� Ju �u:

� Adjoint Step (�rst blockrow):

JTx �+ = �gx �Wxx �x�W T
ux �u:

In each overall iteration, we must form and solve with the reduced Hessian
matrix H , and we must solve separately with Jx and JTx . The latter two solves
are almost negligible compared with the cost of forming H , which is dominated
by the cost of forming the sensitivity matrix J�1x Ju. Because of the quadratic
convergence of Newton, the number of overall iterations is few (asymptotically
independent of m). However, the cost of forming H at each design iteration is
m solutions with Jx. These are potentially concurrent over the m independent
columns of Ju, but prohibitive.

In order to avoid computing any Hessian blocks, the design step may be
approached in a quasi-Newton (e.g., BFGS) manner [172]. Hessian terms are
dropped from the adjoint step right-hand side.

� Design Step (severe approximation to middle blockrow):

Q �u = �gu + JTu J
�T
x gx ;

where Q is a quasi-Newton approximation to the reduced Hessian, H .

� State Step (last blockrow):

Jx �x = �h� Ju �u:
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� Adjoint Step (approximate �rst blockrow):

JTx �+ = �gx:

In each overall iteration of this quasi-Newton RSQP, we must perform a
low-rank update on Q or its inverse, and we must solve with Jx and JTx . This
strategy vastly reduces the cost of an iteration; however, it is no longer a Newton
method. The number of overall iterations is many. Since BFGS is equivalent to
unpreconditioned CG for quadratic objective functions, O(mp) sequential cycles
(p > 0, p � 1

2 ) may be anticipated. Hence, quasi-Newton RSQP is not scalable
in the number of design variables, and no ready form of parallelism can address
this convergence-related defect.

To summarize, conventional RSQP methods apply a (quasi-)Newton method
to the optimality conditions: solving an approximate m�m system to update
u, solving an n � n system to update x and � consistently, and iterating. The
unpalatable expense arises from the exact linearized analyses for updates to x
and � that appear in the inner loop. We therefore consider replacing the exact
elimination steps of RSQP with preconditioning steps in an outer loop, arriving
at LNK.

Consider applying a Krylov-Schwarz method directly to the (2n+m)�(2n+
m) KKT system, Eq. (39). For this purpose, we require the action of the full
matrix on the full-space vector and a good full-system preconditioner, for algo-
rithmic scalability. One Newton SQP iteration is a perfect preconditioner|a
block factored solver, based on forming the reduced Hessian of the Lagrangian
H|but, of course, far too expensive. Backing o� wherever storage or computa-
tional expense becomes impractical for large-scale PDEs generates a family of
attractive methods.

To precondition the full system, we need approximate inverses to the three
left-hand side matrices in the �rst algorithm of x7.2, namely, H , J , and JT .
If a preconditioner is available for H , and exact solves are available for J , and
JT , then it may be shown [79] that conjugate gradient Krylov iteration on the
(assumed symmetrizable) reduced system and conjugate gradient iteration on
the full system yield the same sequence of iterates. The iterates are identical in
the sense that if one were to use the values of u arising from the iteration on the
reduced system in the right-hand side of the block rows for x and �, one would
reconstruct the iterates of the full system, when the same preconditioner used for
H in the reduced system is used for the Wuu block in the full system. Moreover,
the spectrum of the full system is simply the spectrum of the reduced system
supplemented with a large multiplicity of unit eigenvalues. If one retreats from
exact solves with J and JT , this equivalence no longer holds; however, if good
preconditioners are used for these Jacobian blocks, then the cloud of eigenvalues
around unity is still readily shepherded by a Krylov method, and convergence
should be nearly as rapid as in the case of exact solves.
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This Schur-complement-based preconditioning of the full system was pro-
posed in this equality-constrained optimization context by Biros and Ghattas
in 1998 [12]. From a purely algebraic point of view (divorced from optimization),
the same Schur-complement-based preconditioning was advocated by Keyes and
Gropp in 1987 [79] in the context of domain decomposition. There, the reduced
system was a set of unknowns on the interface between subdomains, and the
savings from the approximate solves on the subdomain interiors more than paid
for the modest degradation in convergence rate relative to interface iteration on
the Schur complement. The main advantage of the full system problem is that
the Schur complement never needs to be formed. Its exact action is felt on the
design variable block through the operations carried out on the full system.

Biros and Ghattas have demonstrated the large-scale parallel e�ectiveness
of the full system algorithm on a 3D Navier-Stokes 
ow boundary control prob-
lem, where the objective is dissipation minimization of 
ow over a cylinder
using suction and blowing over the back portion of the cylinder as the con-
trol variables [13]. They performed this optimization with domain-decomposed
parallelism on 128 processors of a T3E, using an original optimization toolkit
add-on to the PETSc [6] toolkit. To quote one result from [13], for 6�105 state
constraints and 9� 103 controls, full-space LNKS with approximate subdomain
solves beat quasi-Newton RSQP by an order of magnitude (4.1 hours versus
53.1 hours).

Automatic di�erentiation has two roles in the new algorithm: formation of
the action on a Krylov vector of the full KKT matrix, including the full second-
order Hessian blocks, and supply of approximations to the elements of J (and
JT ) for the preconditioner. LNK will generally be applied to large problems of
n state variables and m parameters. Upon surveying existing AD tools, it is
concluded in [81] that the preconditioned matrix-vector product can be formed
in time linear in these two parameters.

8 Conclusions and Prospects

We conclude with brief remarks on future directions for JFNK methodology,
as in
uenced by directions for scienti�c and engineering applications, computer
architecture, mathematical software, and the on-going development of other
numerical techniques.

Computational simulation of systems governed by PDEs is being relied upon
as never before for accurate results on which to base massive economic invest-
ments, public and corporate, as well as critical governmental policies. For in-
stance, the ASCI program is intended to provide a computational alternative
to nuclear weapons testing and the SciDAC program to help target investments
in fusion energy devices and next-generation accelerators. The 40 Tera
op/s,
5120-processor Japanese Earth Simulator is intended to allow unprecedented
resolution and forward time integration horizons for climate prediction.
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The typical governing system confronted in these Grand Challenge problems
is nonlinear, coupled, multiscale, and multirate. The typical computational envi-
ronment is distributed shared memory. To address combination requires scalable
nonlinear implicit solvers, for which we propose preconditioned Jacobian-free
Newton-Krylov methods. As shown here, JFNK methods o�er asymptotically
rapid nonlinear convergence, and with proper preconditioning can also be both
linearly scalable and e�ciently parallelizable.

Preconditioning is where the battle for scalability is won or lost. Therefore,
in this article we have reviewed a set of preconditioning techniques so varied
that all that some of them have in common is that their action does not directly
rely on the matrix elements of the true Jacobian. The distinction between the
implicit forward action of the true Jacobian and the inverse action of the an
approximate Jacobian, which may be de�ned only by a subroutine call that
maps a residual into an approximate delta correction, is fundamental to the
culture of JFNK. As new ideas and implementations for preconditioners evolve,
the JFNK method readily absorbs them.

The generality of preconditioning and multiplicity of Jacobian representa-
tions exploited in JFNK dictates an open software infrastructure, such as, e.g.,
the PETSc [6] or Aztec [158] solver frameworks, and invites the reuse of valuable
existing user application solver code, which is reinterpreted as a component of
the preconditioner.

Future work planned by the authors include the release, in one or more of
these JFNK software frameworks, of tutorial examples of the advanced use of
JFNK in a variety of �elds. We also invite existing and new users of JFNK to
post us with their own successes and challenges and to join in expanding the
algorithm and application scope of this compelling methodology.
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Figure 1: Illustration of structure-based operator splitting for a small multi-
component Jacobian (�ve components, �ve-point stencil, 10 � 7 2D Cartesian
grid).
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Figure 3: Scaling (CPU time vs problem size) of Newton-Krylov-Multigrid
(NKMG) for coupled and distributed preconditioners, for Gr = 1:0� 105 (from
[96]).

0 500 1000 1500 2000 2500
0

20

40

60

80

100

120

140

160

180

200

Aggregate Gflop/s

10
2

10
3

10
4

10
2

10
3

10
4

Execution Time (s)

Figure 4: Giga
op/s ratings and execution times on ASCI Red (up to 3072
dual-processor nodes), ASCI Paci�c Blue (up to 768 processors), and a Cray
T3E (up to 1024 processors) for a 2.8M-vertex case, along with dashed lines
indicating \perfect" scalings, from a baseline of 128 processors (from [60]).

65


