
Domain Decomposition with
PETSc

William Gropp and David Keyes

Argonne National Laboratory

and

Columbia University

DD-15 July 2003 – p.1/148

Introduction

• What and why is PETSc?

– PETSc is a portable library for solving linear and

nonlinear systems of equations in parallel

– PETSc was originally designed to provide a library for

experimentation in domain decomposition algorithms

• What is Domain Decomposition?

– DD is a algorithmic technique for dividing problems into

subproblems and combining the results to solve (or

approximate) the solution

– DD is a natural method for effective parallel algorithms

for distributed memory computers

DD-15 July 2003 – p.2/148

PETSc Team

Satish
Balay

Bill
Gropp

Lois
Curfman
McInnes

Kris
Buschelman

Dinesh
Kaushik

Barry
Smith

Victor
Eijkhout

Matt
Knepley

Hong
Zhang

Plus many users and contributors

DD-15 July 2003 – p.3/148

PETSc at Scale

• FUN3d, a legacy Fortran
application, was
parallelized using PETSc

– 3D incompressible
Euler

– Tetrahedral grid

– Up to 11 million
unknowns

– Based on a legacy
NASA code, FUN3d,
developed by W. K.
Anderson

– Fully implicit
steady-state

– Primary PETSc tools:
nonlinear solvers
(SNES) and vector
scatters (VecScatter)

DD-15 July 2003 – p.4/148

Performance of Fun3D/PETSc

Dimension = 11,047,096

0 500 1000 1500 2000 2500 3000 3500 4000
0

50

100

150

200

250

300

Asci Red

T3E

Asci Blue

Aggregate Gflop/s

DD-15 July 2003 – p.5/148

Tutorial Overview

• Introduction to PETSc—Hello World

• Building a Poisson Solver in PETSc

– Using distributed arrays to describe data parallelism

– Using domain decomposition methods in PETSc

• Solving Nonlinear problems

– Algorithms for nonlinear problems

– Bratu example

– More on distributed arrays in PETSc

• Time dependent problems

• Applications

– Driven cavity example

• Wrapup
DD-15 July 2003 – p.6/148

A Few Comments Before We Start

• PETSc is a very large library

– This tutorial is designed to introduce PETSc without
overwhelming you with information

– Many features will not be covered. PETSc comes with
extensive examples and documentation

• PETSc is a freely available and supported research code

– Available via http://www.mcs.anl.gov/petsc

– Free for everyone, including industrial users

– Hyperlinked documentation and manual pages for all routines

– Many tutorial-style examples

– Support via email: petsc-maint@mcs.anl.gov

– Usable from Fortran 77/90, C, and C++

DD-15 July 2003 – p.7/148

http://www.mcs.anl.gov/petsc
petsc-maint@mcs.anl.gov

• Portable to any parallel system supporting MPI, including

– Tightly coupled systems
Cray T3E, SGI Origin, IBM SP, HP 9000, Sun Enterprise

– Loosely coupled systems, e.g., networks of workstations
HP (including Compaq/DEC), IBM, SGI, Sun and PCs running
Linux or Windows

• What is not in PETSc

– Discretizations

– Unstructured mesh generation or refinement

– Load balancing tools

– Sophisticated visualization support

– (But PETSc provides ways to interface to other tools)

DD-15 July 2003 – p.8/148

Prerequisites

This tutorial assumes that you have at least a
basic background in

• Finite difference methods for PDEs

• Iterative methods for solving linear systems

In addition

• Familiarity with MPI (the Message Passing
Interface) is helpful but not required.

DD-15 July 2003 – p.9/148

A First PETSc Program

• What do PETSc programs look like?

• What do PETSc parallel programs look like?

• How to compile, link, and run PETSc
programs?

DD-15 July 2003 – p.10/148

Hello World

#include "petsc.h"

int main(int argc, char *argv[])

{

PetscInitialize(&argc, &argv, 0, 0);

PetscPrintf(PETSC_COMM_WORLD, "Hello World\n");

PetscFinalize();

return 0;

}

DD-15 July 2003 – p.11/148

Understanding the Code

PetscInitialize Initialize PETSc. The arguments
allow PETSc to initialize MPI if necessary

PetscFinalize Finalize PETSc. Causes PETSc to
call MPI_Finalize if necessary and also to
generate summary reports.

PetscPrintf Ensures that only one process prints
the data (Try it!)

DD-15 July 2003 – p.12/148

Hello World in Fortran

integer ierr, rank

#include "include/finclude/petsc.h"

call PetscInitialize(PETSC_NULL_CHARACTER, ierr)

call MPI_Comm_rank(PETSC_COMM_WORLD, rank, ierr)

if (rank .eq. 0) then

print *, ’Hello World’

endif

call PetscFinalize(ierr)

end

DD-15 July 2003 – p.13/148

Understanding the Code

• Like the C code, except
– PetscInitialize has fewer arguments

because Fortran has no argc or argv
– Must use MPI_Comm_rank and print

because Fortran I/O uses a interface
unavailable to libraries

• PETSc 2.1.6 adds a routine that can be used
with a single character string (Fortran can’t
implement its own I/O operations, so PETSc
can’t provide parallel replacements)

DD-15 July 2003 – p.14/148

How To Compile, Link, and Run

• PETSc make use of three environment variables. Two specify the location of
PETSc and the particular machine architecture:

PETSC DIR The location of PETSc

PETSC ARCH The name of the machine architecture. In some cases, the script
$PETSC_DIR/bin/petscarch can be used to get the value that should be
used for this environment variable

• The third specifies the level of optimization to use.

BOPT One of g, O, or Opg; these indicate the level of optimization and debugging
support within the PETSc library. Usually set on make line:

make BOPT=g hello

• Use PETSc makefiles to ensure that all of the necessary libraries and compiler
options are used. The makefiles in the various example directories are good
starting points

– Alternately, just include the PETSc variables and write your own Makefile

DD-15 July 2003 – p.15/148

A Sample Makefile

SHELL = /bin/bash

PETSC_DIR = c:/programs/petsc-2.1.5

PETSC_ARCH = win32_gnu

BOPT ?= g

NP ?= 4

PGM ?= hello

include $(PETSC_DIR)/bmake/common/base

EXECS = hello

all-redirect: $(EXECS) $(OBJS)

hello: hello.o chkopts

$(CLINKER) -o hello hello.o $(PETSC_LIB)

run:

$(MPIRUN) -np $(NP) $(PGM) $(ARGS)

clean-local:

-rm -f $(EXECS) *.o

DD-15 July 2003 – p.16/148

Using PETSc at This Tutorial

Use

PETSC DIR = /usr/bin/petsc

PETSC ARCH = linux

To run programs, make sure that your PATH
includes mpirun.
Use mpirun to run programs:

mpirun -np 4 ./hello
Single process runs do not need mpirun:

./hello

DD-15 July 2003 – p.17/148

A Parallel Program

• PETSc uses the distributed memory, shared-nothing model

• Parallel PETSc programs consist of separate communicating
processes

• PETSc uses MPI for parallelism

– You can always access MPI routines

– You will rarely need to use MPI while using PETSc

– Many PETSc routines are collective in the MPI sense (all
processes must call); others are local.

– Common uses of MPI in PETSc are the routines for
communicator size and rank and for processor name.

– This is illustrated in a revised (and obviously parallel) hello
world program.

DD-15 July 2003 – p.18/148

Hello World Revisited

#include "petsc.h"

int main(int argc, char *argv[])

{

int rank;

PetscInitialize(&argc, &argv, 0, 0);

MPI_Comm_rank(PETSC_COMM_WORLD, &rank);

PetscSynchronizedPrintf(PETSC_COMM_WORLD,

"Hello World from rank %d\n", rank);

PetscSynchronizedFlush(PETSC_COMM_WORLD);

PetscFinalize();

return 0;

}

DD-15 July 2003 – p.19/148

Understanding the Program

PetscSynchronizedPrintf Like PetscPrintf, except output comes

from all processes in rank order.

PetscSynchronizedFlush Indicates that the calling process is done

printing.

• Allows the use of multiple PetscSynchronizedPrintf calls

PETSC COMM WORLD The PETSc version of

MPI_COMM_WORLD, they are usually the same set of

processes. PetscSetCommWorld, used before

PetscInitialize, may be used to give PETSc a subset of

processes

DD-15 July 2003 – p.20/148

PETSc and PDEs

• PETSc is designed around the mathematics of the
problem

– Specify the data in terms of vectors

– Specify the problem as linear (using matrices) or
nonlinear (using vector-valued functions) equations
to be solved

– Support parallel computing by automatically
distributing these objects across all processes

• We’ll see a sequence of increasingly sophisticated
PDE examples. . .

DD-15 July 2003 – p.21/148

Poisson Problem

Lets solve a simple linear elliptic PDE

∇2u = f in [0, 1]× [0, 1]

u = 0 on the boundary

using a simple discretization (ui,j = u(xi, yj), xi = ih)

ui+1,j − 2ui,j + ui−1,j

h2
+

ui,j+1 − 2ui,j + ui,j−1

h2
= f(xi, yj).

(We use finite differences for simplicity; finite elements can be used as
well.) For simplicity, consider f = sin(πx)sin(πy).
We will discretize the interior of the mesh only for this example.

DD-15 July 2003 – p.22/148

Schematic for Example

In PETSc, your main program remains in control:

main program
PetscInitialize()
A = create the matrix
b = create a vector
Use SLES to solve A x = b
print solution
PetscFinalize()

SLES is the “simplified linear equation solver”
component of PETSc

DD-15 July 2003 – p.23/148

Creating the Matrix

1 #include "petscsles.h"

2

3 /* Form the matrix for the 5-point finite difference 2d Laplacian

4 on the unit square. n is the number of interior points along a side */

5 Mat FormLaplacian2d(int n)

6 {

7 Mat A;

8 int r, rowStart, rowEnd, i, j;

9 double h, oneByh2;

10

11 h = 1.0 / (n + 1); oneByh2 = 1.0 / (h * h);

12 MatCreate(PETSC_COMM_WORLD, PETSC_DECIDE, PETSC_DECIDE,

13 n*n, n*n, &A);

14 MatSetFromOptions(A);

15 MatGetOwnershipRange(A, &rowStart, &rowEnd);

DD-15 July 2003 – p.24/148

Creating the Matrix II

16 /* This is a simple but inefficient way to set the matrix */

17 for (r=rowStart; r<rowEnd; r++) {

18 i = r % n; j = r / n;

19 if (j - 1 > 0) {

20 MatSetValue(A, r, r - n, oneByh2, INSERT_VALUES); }

21 if (i - 1 > 0) {

22 MatSetValue(A, r, r - 1, oneByh2, INSERT_VALUES); }

23 MatSetValue(A, r, r, -4*oneByh2, INSERT_VALUES);

24 if (i + 1 < n - 1) {

25 MatSetValue(A, r, r + 1, oneByh2, INSERT_VALUES); }

26 if (j + 1 < n - 1) {

27 MatSetValue(A, r, r + n, oneByh2, INSERT_VALUES); }

28 }

29 MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY);

30 MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY);

31 return A;

32 }

33

DD-15 July 2003 – p.25/148

Understanding the Code I

MatCreate Create a matrix object.
• n2 equations, so matrix is of size n*n×n*n

• PETSC_DECIDE tells PETSc to choose the distribution of the matrix across
the processes

MatSetFromOptions Set basic matrix properties (such as data structure)
from command line

MatGetOwnershipRange Get the rows of the matrix that PETSc assigned
to this process
• PETSc uses a simple assignment of consecutive rows to a process. This

simplifies much of the internal structure of PETSc, and, as we shall see, does
not reduce the generality

• It is not necessary to set values on the “owning” process

• Returns first row to one + last row on process.
– Matches common C idiom (for (i=start; i<end; i++))
– Number of rows is end-start

DD-15 July 2003 – p.26/148

Understanding the Code II

MatSetValue Insert (or optionally add with ADD_VALUES) a value to a
matrix (Warning: This is a macro and needs braces)

MatAssemblyBegin and MatAssemblyEnd Complete the creation of matrix.
The matrix may not be used for any operation (other than
MatSetValue) until after MatAssemblyEnd.

The approach of separating setting values from assembly has several
benefits

• Any process may set a value to any element of the matrix, even
ones not “owned” by the calling process.

• PETSc manages all data communication between processes

• PETSc can optimize the insertion of matrix elements

DD-15 July 2003 – p.27/148

Data Structure Neutral Design

• PETSc matrices are objects for storing linear operators

• They allow many types of data structures:

– Default sparse format MATMPIAIJ and MATSEQAIJ

– Block sparse MATMPIBAIJ and MATSEQBAIJ

– Symmetric block sparse MATMPISBAIJ and MATSEQSBAIJ

– Block diagonal MATMPIBDIAG and MATSEQBDIAG

– Dense MATMPIDENSE and MATSEQDENSE

– Many others (see $PETSC_DIR/include/petscmat.h)

• Choice of format is made from command line (with
MatSetFromOptions) or program (with MatSetType)

• The same routines are used for all choices of data structure

• User-defined data-structures supported with “Shell” objects

DD-15 July 2003 – p.28/148

Data Decomposition in PETSc

• How are objects distributed among processes in PETSc?

– Continguous rows of a vector or matrix are assigned to processes, starting
from the process with rank zero

• The matrix and vector for a 3 × 3 mesh, with two processes, has the following
decomposition

P0

P1

x0

x1

x2

x3

x4

x5

x6

x7

x8

=

4 −1 −1

−1 4 −1 −1

−1 4 −1

−1 4 −1 −1

−1 −1 4 −1 −1

−1 −1 4 −1

−1 4 −1

−1 −1 4 −1

−1 −1 4

DD-15 July 2003 – p.29/148

Why Are PETSc Matrices The Way
They Are?

• No one data structure is appropriate for all problems

– Blocked and diagonal formats provide significant performance benefits

– PETSc provides a large selection of formats and makes it (relatively) easy to
extend PETSc by adding new data structures

• Matrix assembly is difficult enough without being forced to worry about data
partitioning

– PETSc provide parallel assembly routines

– Achieving high performance still requires making most operations local to a
process, but this approach allows incremental development of programs

• Matrix decomposition by consecutive rows across processes is simple and makes
it easier to work with other codes

– For applications with other ordering needs, PETSc provides “Application
Orderings” (AO)

DD-15 July 2003 – p.30/148

Vectors In PETSc

• In order to support the distributed memory “shared nothing”
model, as well as single processors and shared memory systems,
a PETSc vector is a “handle” to the real vector

– Allows the vector to be distributed across many processes

– To access the elements of the vector, we cannot simply do

for (i=0; i<n; i++) v[i] = i;

– We do not want to require that the programmer work only with
the “local” part of the vector; we want to permit operations,
such as setting an element of a vector, to be performed by any
process.

• The solution is to make vectors an object, just like a parallel matrix

DD-15 July 2003 – p.31/148

Creating the Vectors I

1 #include "petscvec.h"

2

3 /* Form a vector based on a function for a 2-d regular mesh on the

4 unit square */

5 Vec FormVecFromFunction2d(int n, double (*f)(double, double))

6 {

7 Vec V;

8 int r, rowStart, rowEnd, i, j;

9 double h;

10

11 h = 1.0 / (n + 1);

12 VecCreate(PETSC_COMM_WORLD, &V);

13 VecSetSizes(V, PETSC_DECIDE, n*n);

14 VecSetFromOptions(V);

DD-15 July 2003 – p.32/148

Creating the Vectors II

15 VecGetOwnershipRange(V, &rowStart, &rowEnd);

16 /* This is a simple but inefficient way to set the vector */

17 for (r=rowStart; r<rowEnd; r++) {

18 i = (r % n) + 1;

19 j = (r / n) + 1;

20 VecSetValue(V, r, (*f)(i * h, j * h), INSERT_VALUES);

21 }

22 VecAssemblyBegin(V);

23 VecAssemblyEnd(V);

24

25 return V;

26 }

27

DD-15 July 2003 – p.33/148

Understanding the Code

VecCreate Creates the vector. Unlike MatCreate, the size must be set
separately

VecSetSizes Sets the global and local size of the vector. Use
PETSC_DECIDE to have PETSc choose the distribution across
processes

VecSetFromOptions Like the matrix counterpart. VecSetType may be
used instead.

VecGetOwnershipRange Like the matrix counterpart

VecSetValue Sets the value for a vector element. Use ADD_VALUES to
add to a vector element. Like the matrix routines, elements can be
inserted or added by any process.

VecAssemblyBegin and VecAssemblyEnd Like the Matrix counterparts

DD-15 July 2003 – p.34/148

Solving a Poisson Problem I

1 #include <math.h>

2 #include "petscsles.h"

3 extern Mat FormLaplacian2d(int);

4 extern Vec FormVecFromFunction2d(int, double (*)(double,double));

5 /* This function is used to define the right-hand side of the

6 Poisson equation to be solved */

7 double func(double x, double y) {

8 return sin(x*M_PI)*sin(y*M_PI); }

9

10 int main(int argc, char *argv[])

11 {

12 SLES sles;

13 Mat A;

14 Vec b, x;

15 int its, n;

16

17 PetscInitialize(&argc, &argv, 0, 0);

DD-15 July 2003 – p.35/148

Solving a Poisson Problem II

18 n = 10; /* Get the mesh size. Use 10 by default */

19 PetscOptionsGetInt(PETSC_NULL, "-n", &n, 0);

20

21 A = FormLaplacian2d(n);

22 b = FormVecFromFunction2d(n, func);

23 VecDuplicate(b, &x);

24 SLESCreate(PETSC_COMM_WORLD, &sles);

25 SLESSetOperators(sles, A, A, DIFFERENT_NONZERO_PATTERN);

26 SLESSetFromOptions(sles);

27 SLESSolve(sles, b, x, &its);

28

29 PetscPrintf(PETSC_COMM_WORLD, "Solution in %d iterations is:\n", its);

30 VecView(x, PETSC_VIEWER_STDOUT_WORLD);

31

32 MatDestroy(A); VecDestroy(b); VecDestroy(x);

33 SLESDestroy(sles);

34 PetscFinalize();

35 return 0;

DD-15 July 2003 – p.36/148

Understanding the Code

SLESCreate Create a context used to to solve a linear system. This routine is used for
all solvers, independent of the choice of algorithm or data structure

SLESSetOperators Define the problem.

• The third argument allows the use of a different matrix for preconditioning

• DIFFERENT_NONZERO_PATTERN indicates whether the preconditioner has
the same nonzero pattern each time a system is solved. This default works
with all preconditioners. Other values (e.g., SAME_NONZERO_PATTERN) can
be used for particular preconditioners. Ignored when solving only one system

SLESSetFromOptions Set the algorithm, preconditioner, and the associated
parameters, using the command-line

SLESSolve Actually solve the system of linear equations. The number of iterations is
returned (a reflection of the bias towards iterative methods). If a direct method is
used, one is returned in its

SLESDestroy Free the SLES context and all storage associated with it

DD-15 July 2003 – p.37/148

Objects in PETSc

• How should a matrix be described in a program?

– Old way:
– Dense matrix

double precision A(10,10)

– Sparse matrix
integer ia(11), ja(max_nz)

double precision a(max_nz)

– New way:

Mat M

• Hides the choice of data structure

– Of course, the library still needs to represent the matrix with some choice of
data structure, but this is an implementation detail

• Benefit

– Programs become independent of any particular choice of data structure,
making it easier to modify and adapt programs.

DD-15 July 2003 – p.38/148

Operations in PETSc

• How should operations like “solve linear system” be described in a program?

– Old way

mpiaijgmres(ia, ja, a, comm, x, b, nlocal, nglobal,

ndir, orthomethod, convtol, &its)

– New way

SLESSolve(sles, b, x, &its)

• Hides the choice of algorithm

– Algorithms are to operations as data structures are to objects

• Benefit

– Programs become independent of a particular choice of algorithm, making it
easier to explore algorithmic choices and to adapt to new methods

• In PETSc, operations have their own “handle”, called a “context variable”

DD-15 July 2003 – p.39/148

Context Variables in PETSc

• Context variables are the key to solver
organization

• They contain the complete state of an
algorithm, including
– parameters (e.g., convergence tolerance)
– functions run by the algorithm (e.g.,

convergence monitoring routine)
– information about the current state (e.g.,

iteration number)

DD-15 July 2003 – p.40/148

SLES Structure

• Each SLES object contains two other objects:
KSP Krylov Space Method

– The iterative method
– The KSP context contains information on

the method parameters, e.g. GMRES
restart and search directions)

PC Preconditioners
– Knows how to apply the preconditioner
– The context contains information on the

preconditioner, such as ILU fill level

DD-15 July 2003 – p.41/148

Available Methods

KSP PC

Name PETSc
option

Name PETSc
option

Conjugate Gradient cg Block Jacobi bjacobi

GMRES gmres Overlapping
Additive
Schwarz

asm

Bi-CG-stab bicg ILU ilu

Transpose-free QMR tfqmr SOR sor

Richardson richardson LU (direct solve) lu

CG-Squared cgs Multigrid mg

SYMMLQ symmlq Arbitrary matrix mat

others others

DD-15 July 2003 – p.42/148

Using the Command Line Interface

• PETSc makes it each to try different algorithms

mpiexec -n 4 poisson -ksp_type cg

mpiexec -n 4 poisson -ksp_type gmres

mpiexec -n 4 poisson -pc_type bjacobi -sub_pc_type ilu \

-ksp_type bcgs

• PETSc make experimentation with different algorithms easy

– Many are already built-in

– You can add new algorithms and data structures to PETSc;
these are then used just like the built-in ones (e.g., a new
preconditioner can be used with an existing source code
without any changes. (However, this is not a one-day project.)

• Many other options available. Use

poisson -help | more

to get a list of available options
DD-15 July 2003 – p.43/148

Monitoring Convergence

• PETSc provides routines to check for and monitor
convergence

• The choice of monitor and the output from that monitor
can be controlled from the command line

-ksp monitor Print the preconditioned residual norm

-ksp xmonitor Plot the preconditioned residual norm

-ksp truemonitor Print the true residual norm ‖Ax− b‖2

-ksp truexmonitor Plot the true residual norm

• Custom monitors can be defined by the user

DD-15 July 2003 – p.44/148

Accessing the Solution

• Viewers are used in PETSc to access and display the
contents of an object

• A simple viewer prints data out standard output:

VecView(V, PETSC_VIEWER_STDOUT_WORLD);

• PETSc provides a wide range of viewers for all major
objects

– Viewers make it easy to send vectors and matrices
to Matlab

– Graphical viewers make it easy to display data

– Binary viewers make it easy to save and load data

DD-15 July 2003 – p.45/148

PETSc Viewers

• PETSc has many viewers

PETSC VIEWER STDOUT SELF Sequential, prints to stdout

PETSC VIEWER STDOUT WORLD Parallel, prints to stdout

PETSC VIEWER DRAW WORLD Parallel, draws using

X-Windows

• Viewers exist for matrices, vectors, and other objects

– Matrix viewers provide information and graphical display

of matrix sparsity structure and assembly (try

-mat_view_draw, -mat_view_info, or -mat_view

– Viewers on other objects can print out information about

the object

DD-15 July 2003 – p.46/148

Working With Vectors

• It is sometimes helpful to have direct access to the storage for the
local elements of a vector

• The routines VecGetArray and VecRestoreArray may be used to
get and return the local elements

• The routine VecGetLocalSize returns the number of elements in
the local part of the vector

• VecGetArray returns a pointer to an array that contains the
locally-owned values in the vector. Normally, this is just a pointer
into the storage that PETSc uses, but for special vector
implementations, it may be different storage used just for
VecGetArray

• VecRestoreArray gives the array back to PETSc. Normally, this
has no work to do, but if PETSc had to allocate storage for
VecGetArray, this routine will free that storage

• We illustrate this with a routine to compute the norm of ‖x+ ay‖.
With a = −1, this can be used as part of a convergence test.

DD-15 July 2003 – p.47/148

Example: Computing ‖x− y‖

• Often need to compute ‖x− y‖, for example, for

convergence tests. Also useful in checking a solution

• PETSc does provide routines to compute x+ αy and ‖x‖,

but no single routine to compute the norm of the difference

of two vectors

• As an example of accessing local elements of a vector, we

will implement “mVecNormXPAY” which computes ‖x+ αy‖

– Accepts all PETSc norm types: NORM_1, NORM_2,

and NORM_INFINITY.

• A single routine avoids creating an unneeded temporary

vector and avoids extra memory motion needed when using

multiple routines
DD-15 July 2003 – p.48/148

Computing ‖x− y‖ I

1 #include "petscvec.h"

2

3 /* This is a new vector routine for PETSc, illustating the use

4 of several PETSc functions for accessing vector elements */

5

6 int mVecNormXPAY(Vec x, Vec y, const PetscScalar a, NormType ntype,

7 PetscReal *norm)

8 {

9 const double * restrict xvals, * restrict yvals;

10 int nlocal, i, ierr = 0;

11 MPI_Op normop;

12 double sum = 0.0, totsum;

13

14 /* Get the local arrays and the size */

15 VecGetArray(x, (PetscScalar **)&xvals);

16 VecGetArray(y, (PetscScalar **)&yvals);

17 VecGetLocalSize(x, &nlocal);

DD-15 July 2003 – p.49/148

Computing ‖x− y‖ II

18

19 if (a == -1) {

20 /* Special case for difference of two vectors */

21 switch (ntype) {

22 case NORM_1:

23 for (i=0; i<nlocal; i++) {

24 sum += fabs(xvals[i] - yvals[i]);

25 }

26 normop = MPI_SUM;

27 break;

28 case NORM_2:

29 for (i=0; i<nlocal; i++) {

30 register PetscScalar tmp;

31 tmp = xvals[i] - yvals[i];

32 sum += tmp*tmp;

33 }

34 normop = MPI_SUM;

35 break;

DD-15 July 2003 – p.50/148

Computing ‖x− y‖ III

36 case NORM_INFINITY:

37 for (i=0; i<nlocal; i++) {

38 register PetscScalar tmp;

39 tmp = fabs(xvals[i] - yvals[i]);

40 if (tmp > sum) sum = tmp;

41 }

42 normop = MPI_MAX;

43 break;

44 default:

45 ierr = 1;

46 break;

47 }

48 }

49 else {

50 /* Unimplemented */

51 ierr = 1;

52 }

53 if (!ierr) {

DD-15 July 2003 – p.51/148

Computing ‖x− y‖ IV

54 MPI_Comm comm;

55 PetscObjectGetComm((PetscObject)x, &comm);

56 MPI_Allreduce(&sum, &totsum, 1, MPI_DOUBLE, comm, normop);

57 if (ntype == NORM_2) {

58 totsum = sqrt(totsum);

59 }

60 *norm = totsum;

61 }

62

63 VecRestoreArray(x, (PetscScalar **)&xvals);

64 VecRestoreArray(y, (PetscScalar **)&xvals);

65

66 return ierr;

67 }

68

PetscScalar is just a name for double; using this name allows the
PETSc to be rebuilt for float or Complex scalars.

DD-15 July 2003 – p.52/148

Distributed Arrays in PETSc

How should a vector be distributed across processes? PETSc’s

default is a “one-dimensional decomposition”

How can you make use of different data decompositions in

PETSc? PETSc provides “Distributed Arrays” (DAs) for this

purpose.

For example, consider the layout of a mesh onto this processor

mesh:

P2 P3

P0 P1

DD-15 July 2003 – p.53/148

Layout Of Distributed Arrays

On this 2× 2 process grid, the vector elements are
numbered like this:

20 21 22

15 16 17

23 24

18 19

10 11 12

5 6 7

0 1 2

13 14

8 9

3 4

Natural numbering

→

18 19 20

15 16 17

23 24

21 22

6 7 8

3 4 5

0 1 2

13 14

11 12

9 10

PETSc’s internal numbering
DAs provide a “logically Cartesian” decomposition. There
are no physical coordinates associated with a DA.

DD-15 July 2003 – p.54/148

Distributed Arrays

• PETSc distributed arrays (DAs) provide a way to describe a multidimensional
arrays, distributed across a parallel processor

• DAs provide a way to use more complex data decompositions

DACreate2d(PETSC_COMM_WORLD, DA_NONPERIODIC,

DA_STENCIL_STAR,

nx, ny, px, py, 1, 1, 0, 0, &grid);

creates a global nx× ny grid, with a px× py process
decomposition

• The DA_STENCIL_STAR and the arguments after py have to do
with the difference stencil that may be used with this array and will
be discussed later.

• MPI_Dims_create may be used to determine good values for px
and py.

DD-15 July 2003 – p.55/148

Setting the Vector Values I

1 #include "petsc.h"

2 #include "petscvec.h"

3 #include "petscda.h"

4

5 /* Form a vector based on a function for a 2-d regular mesh on the

6 unit square */

7 Vec FormVecFromFunctionDA2d(DA grid, int n,

8 double (*f)(double, double))

9 {

10 Vec V;

11 int is, ie, js, je, in, jn, i, j;

12 double h;

13 double **vval;

14

15 h = 1.0 / (n + 1);

16 DACreateGlobalVector(grid, &V);

17

DD-15 July 2003 – p.56/148

Setting the Vector Values II

18 DAVecGetArray(grid, V, (void **)&vval);

19 /* Get global coordinates of this patch in the DA grid */

20 DAGetCorners(grid, &is, &js, 0, &in, &jn, 0);

21 ie = is + in - 1;

22 je = js + jn - 1;

23 for (i=is ; i<=ie ; i++) {

24 for (j=js ; j<=je ; j++){

25 vval[j][i] = (*f)((i + 1) * h, (j + 1) * h);

26 }

27 }

28 DAVecRestoreArray(grid, V, (void **)&vval);

29

30 return V;

31 }

32

DD-15 July 2003 – p.57/148

Understanding the Code

DACreateGlobalVector Creates a PETSc vector that may be used with
DAs

DAVecGetArray Get a multidimensional array that gives the illusion of a
global array (PETSc uses tricks with the array indexing to provide
access to the local elements of the vector). Otherwise, like
VecGetArray.

DAVecRestoreArray Like VecRestoreArray, used to allow PETSc to free
any storage allocated by DAVecGetArray

DAGetCorners Returns the indices of the lower-left corner of the local
part of the distributed array relative to the global coordinates,
along with the number of points in each direction.

DD-15 July 2003 – p.58/148

Setting the Matrix Elements I

1 #include "petscsles.h"

2 #include "petscda.h"

3

4 /* Form the matrix for the 5-point finite difference 2d Laplacian

5 on the unit square. n is the number of interior points along a

6 side */

7 Mat FormLaplacianDA2d(DA grid, int n)

8 {

9 Mat A;

10 int r, i, j, is, ie, js, je, in, jn, nelm;

11 MatStencil cols[5], row;

12 double h, oneByh2, vals[5];

13

14 h = 1.0 / (n + 1); oneByh2 = 1.0 / (h*h);

15

16 DAGetMatrix(grid, MATMPIAIJ, &A);

17 /* Get global coordinates of this patch in the DA grid */

DD-15 July 2003 – p.59/148

Setting the Matrix Elements II

18 DAGetCorners(grid, &is, &js, 0, &in, &jn, 0);

19 ie = is + in - 1;

20 je = js + jn - 1;

21 /* This is a simple but inefficient way to set the matrix */

22 for (i=is; i<=ie; i++) {

23 for (j=js; j<=je; j++){

24 row.j = j; row.i = i; nelm = 0;

25 if (j - 1 > 0) {

26 vals[nelm] = oneByh2;

27 cols[nelm].j = j - 1; cols[nelm++].i = i;}

28 if (i - 1 > 0) {

29 vals[nelm] = oneByh2;

30 cols[nelm].j = j; cols[nelm++].i = i - 1;}

31 vals[nelm] = - 4 * oneByh2;

32 cols[nelm].j = j; cols[nelm++].i = i;

33 if (i + 1 < n - 1) {

34 vals[nelm] = oneByh2;

35 cols[nelm].j = j; cols[nelm++].i = i + 1;}

DD-15 July 2003 – p.60/148

Setting the Matrix Elements III

36 if (j + 1 < n - 1) {

37 vals[nelm] = oneByh2;

38 cols[nelm].j = j + 1; cols[nelm++].i = i;}

39 MatSetValuesStencil(A, 1, &row, nelm, cols, vals,

40 INSERT_VALUES);

41 }

42 }

43

44 MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY);

45 MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY);

46

47 return A;

48 }

49

DD-15 July 2003 – p.61/148

Understanding the Code

DAGetMatrix Returns a matrix whose elements
can be accessed with the coordinates of the
distributed array. The type of the matrix must
be specified; this choses a parallel matrix
using AIJ format (MATMPIAIJ).

MatSetValuesStencil Sets elements of a matrix
using mesh coordinates

MatStencil Data structure that contains the
indices of a point in the DA, using the i,j,k
members of the structure

DD-15 July 2003 – p.62/148

Poisson Solver Revisited

1 #include <math.h>

2 #include "petscsles.h"

3 #include "petscda.h"

4 extern Mat FormLaplacianDA2d(DA, int);

5 extern Vec FormVecFromFunctionDA2d(DA, int, double (*)(double,double));

6 /* This function is used to define the right-hand side of the

7 Poisson equation to be solved */

8 double func(double x, double y) {

9 return sin(x*M_PI)*sin(y*M_PI); }

10

11 int main(int argc, char *argv[])

12 {

13 SLES sles;

14 Mat A;

15 Vec b, x;

16 DA grid;

17 int its, n, px, py, worldSize;

DD-15 July 2003 – p.63/148

Poisson Solver Revisited II

18

19 PetscInitialize(&argc, &argv, 0, 0);

20

21 /* Get the mesh size. Use 10 by default */

22 n = 10;

23 PetscOptionsGetInt(PETSC_NULL, "-n", &n, 0);

24 /* Get the process decomposition. Default it the same as without

25 DAs */

26 px = 1;

27 PetscOptionsGetInt(PETSC_NULL, "-px", &px, 0);

28 MPI_Comm_size(PETSC_COMM_WORLD, &worldSize);

29 py = worldSize / px;

30

31 /* Create a distributed array */

32 DACreate2d(PETSC_COMM_WORLD, DA_NONPERIODIC, DA_STENCIL_STAR,

33 n, n, px, py, 1, 1, 0, 0, &grid);

34

35 /* Form the matrix and the vector corresponding to the DA */

DD-15 July 2003 – p.64/148

Poisson Solver Revisited III

36 A = FormLaplacianDA2d(grid, n);

37 b = FormVecFromFunctionDA2d(grid, n, func);

38 VecDuplicate(b, &x);

39 SLESCreate(PETSC_COMM_WORLD, &sles);

40 SLESSetOperators(sles, A, A, DIFFERENT_NONZERO_PATTERN);

41 SLESSetFromOptions(sles);

42 SLESSolve(sles, b, x, &its);

43

44 PetscPrintf(PETSC_COMM_WORLD, "Solution is:\n");

45 VecView(x, PETSC_VIEWER_STDOUT_WORLD);

46 PetscPrintf(PETSC_COMM_WORLD, "Required %d iterations\n", its);

47

48 MatDestroy(A); VecDestroy(b); VecDestroy(x);

49 SLESDestroy(sles); DADestroy(grid);

50 PetscFinalize();

51 return 0;

52 }

53

DD-15 July 2003 – p.65/148

Scaling Studies

• Lab: Explore the scaling of the in terms of the
iteration counts for solving Poisson problem
using the default 1-d and the DA-based 2-d
decomposition, as a function of the number of
processes.

DD-15 July 2003 – p.66/148

Incremental Application Improve-
ment

• Get the application “up and walking”

• Experiment with options. Determine opportunities for
improvement

• Extend algorithms and/or data structures as needed

• Consider interface and efficiency issues for integration
and interoperability of multiple toolkits

• Full tutorials available at
http://www.mcs.anl.gov/petsc/docs/tutorials

DD-15 July 2003 – p.67/148

http://www.mcs.anl.gov/petsc/docs/tutorials

Examples of Linear Solves

ex1.c: Solves a tridiagonal linear system with SLES
ex2,3.c: Solves a linear system in parallel with SLES
ex4.c: Uses a different preconditioner matrix and linear system matrix in the SLES
solvers
ex5.c: Solves two linear systems in parallel with SLES
ex7.c: Block Jacobi preconditioner for solving a linear system in parallel with SLES
ex8.c: Illustrates use of the preconditioner ASM
ex9.c: The solution of 2 different linear systems with different linear solvers
ex10.c: Reads a PETSc matrix and vector from a file and solves a linear system
ex11.c: Solves a linear system in parallel with SLES
ex12.c: Solves a linear system in parallel with SLES
ex13.c: Solves a variable Poisson problem with SLES
ex15.c: Solves a linear system in parallel with SLES
ex16.c: Solves a sequence of linear systems with different right-hand-side vectors
ex22.c: Solves 3D Laplacian using multigrid
ex23.c: Solves a tridiagonal linear system
ex25.c: Solves 1D variable coefficient Laplacian using multigrid
ex26.c: Solves a linear system in parallel with ESI
ex27.c: Reads a PETSc matrix and vector from a file and solves the normal equationsDD-15 July 2003 – p.68/148

More Preconditioners

• PETSc provides a large collection of preconditioners, including
domain decomposition preconditioners
– Additive Schwarz

mpiexec -n 4 poisson -pc_type asm

– Control the subdomain solver with -sub_pc_type:
mpiexec -n 4 poisson -pc_type asm -sub_pc_type ilu

(In general, -sub_pc_<pcparmname> may be used to change the PC

parameter pcparmname in the subdomain, and -sub_ksp_<kspparmname>

for KSP in the subdomain.)

– Control the subdomain overlap
mpiexec -n 4 poisson -pc_type asm -pc_asm_overlap 2

• The tutorial example Makefile lets you run these with the “run”
target:

make run PGM=poisson NP=4 ARGS="-pc_type asm -pc_asm_overlap 2"

DD-15 July 2003 – p.69/148

PETSc’s Automatic ASM

• PETSc automatically generates overlap by using the structure of the sparse
matrix. Control with -pc_asm_overlap

• DAs allow you to control the local physical domain

• By using DAs, you can experiment with the effects of different decompositions

mpiexec -n 16 poisson -n 64 -pc_type asm

mpiexec -n 16 poisson2 -n 64 -pc_type asm -mx 8 -my 2

mpiexec -n 16 poisson2 -n 64 -pc_type asm -mx 4 -my 4

• Other ASM types are available with -pc_asm_type

basic full interpolation and restriction

restrict full restriction, local process interpolation

interpolate full interpolation, local process restriction

none local process restriction and interpolation

DD-15 July 2003 – p.70/148

Flow of Information

• The number and layout of domains sets a minimum for the number of iterations
expected for convergence

• At the very least, data must travel from across the entire mesh:

• In general, solving with a px × py decomposition requires at least (px − 1)(py − 1)

steps, thus

• Square decompositions provide the best starting point

DD-15 July 2003 – p.71/148

Flow of Information

• The number and layout of domains sets a minimum for the number of iterations
expected for convergence

• At the very least, data must travel from across the entire mesh:

• In general, solving with a px × py decomposition requires at least (px − 1)(py − 1)

steps, thus

• Square decompositions provide the best starting point

DD-15 July 2003 – p.71/148

Flow of Information

• The number and layout of domains sets a minimum for the number of iterations
expected for convergence

• At the very least, data must travel from across the entire mesh:

• In general, solving with a px × py decomposition requires at least (px − 1)(py − 1)

steps, thus

• Square decompositions provide the best starting point

DD-15 July 2003 – p.71/148

Flow of Information

• The number and layout of domains sets a minimum for the number of iterations
expected for convergence

• At the very least, data must travel from across the entire mesh:

• In general, solving with a px × py decomposition requires at least (px − 1)(py − 1)

steps, thus

• Square decompositions provide the best starting point

DD-15 July 2003 – p.71/148

Flow of Information

• The number and layout of domains sets a minimum for the number of iterations
expected for convergence

• At the very least, data must travel from across the entire mesh:

• In general, solving with a px × py decomposition requires at least (px − 1)(py − 1)

steps, thus

• Square decompositions provide the best starting point

DD-15 July 2003 – p.71/148

Flow of Information

• The number and layout of domains sets a minimum for the number of iterations
expected for convergence

• At the very least, data must travel from across the entire mesh:

• In general, solving with a px × py decomposition requires at least (px − 1)(py − 1)

steps, thus

• Square decompositions provide the best starting point

DD-15 July 2003 – p.71/148

Flow of Information

• The number and layout of domains sets a minimum for the number of iterations
expected for convergence

• At the very least, data must travel from across the entire mesh:

• In general, solving with a px × py decomposition requires at least (px − 1)(py − 1)

steps, thus

• Square decompositions provide the best starting point

DD-15 July 2003 – p.71/148

Flow of Information

• The number and layout of domains sets a minimum for the number of iterations
expected for convergence

• At the very least, data must travel from across the entire mesh:

• In general, solving with a px × py decomposition requires at least (px − 1)(py − 1)

steps, thus

• Square decompositions provide the best starting point

DD-15 July 2003 – p.71/148

Aside: Error Handling in PETSc

• All PETSc routines return an error value. This can be tested with
CHKERRQ, as in

ierr = SLESCreate(PETSC_COMM_WORLD, &sles); CHKERRQ(ierr);

Using CHKERRQ allows PETSc to provide clear and specific
error messages

• An alternative is to set the error handler that PETSc calls when an
error is first detected:

PetscPushErrorHandler(PetscAbortErrorHandler, 0);

(only available in C in PETSc 2.1.5). Other handlers exist,
including PetscAttachDebuggerErrorHandler .

• Command line options -on_error_abort and
-start_in_debugger may also be used to change the default
error handler

DD-15 July 2003 – p.72/148

Solving Nonlinear Equations

We would like to solve

F (u) = 0

for u. A powerful method for this is Newton’s method :

uk+1 = uk − (F ′(uk))−1F (uk), k = 0, 1, . . .

where uk is the approximation to u at the kth step. The term
F ′(uk) is a matrix, and this algorithm can be rewritten as

F ′(uk)∆uk = −F (uk)

uk+1 = uk +∆uk

DD-15 July 2003 – p.73/148

Newton-based Methods

In practice, various modifications are made to
Newton’s method. PETSc supports many of the
most common:

• Line search strategies

• Trust region strategies

• Pseudo-transient continuation

• Matrix-free varients

PETSc provides a “Simplified Nonlinear Equation
Solver” (SNES) for nonlinear problems. SNES is
the nonlinear analogue of SLES.

DD-15 July 2003 – p.74/148

PDE Jacobian

The matrix F ′(u) is called the Jacobian.
For PDE problems, computing the Jacobian can
be tricky. Three choices are:

1. Compute F ′ analytically, then discretize

2. Discretize F , then compute F ′ by finite
difference approximation

3. Discretize F , then compute F ′ by analytically
differentiating the discretization of F

PETSc provides additional support for 2, and by
interfacing to ADIFOR and ADIC, support for 3

DD-15 July 2003 – p.75/148

A Simple Nonlinear PDE

The Bratu problem is defined by

−∇2u− λeu = 0 in [0, 1] × [0, 1]

u = 0 on the boundary

We will use the same simple discretization for
this problem as for the Poisson problem.

DD-15 July 2003 – p.76/148

Evaluating the Function

• Evaluating the function F (u) = −∇2u− λeu is somewhat

difficult because it involves a differential operator. This

requires information from the neighboring processes. We

will use distributed arrays (DAs) to help with this, taking

advantage of their support for different stencils.

• An alternate approach for this example is to use a

matrix-vector multiply, using

MatMult(A, x, y);

to compute y = Ax. This routine handles all data motion

required. However, it is suitable only for relatively simple

F (u). Thus, we will explore more general techniques

DD-15 July 2003 – p.77/148

Stencils

Star Stencil Box Stencil

(DA_STENCIL_STAR) (DA_STENCIL_BOX)

DD-15 July 2003 – p.78/148

Stencils

Star Stencil Box Stencil

(DA_STENCIL_STAR) (DA_STENCIL_BOX)

DD-15 July 2003 – p.78/148

Global and Local Representations

• A vector associated with a DA has two representations: the global and the local

• The global representation is nothing more than the natural mesh, distributed
across all processes

• The local representation is the local part of the global mesh, plus the ghost points

Global: each process stores a
unique local set of vertices, and
each vertex is owned by exactly one
process

Local: each process stores a
unique local set of vertices as well
as ghost points from neighboring
processes

DD-15 July 2003 – p.79/148

Using Ghost Points with DAs

A ghost region is defined by the coordinates in the global
representation:

Upper right ghost corner

Lower left ghost corner

The routine DAGetGhostCorners returns this information,
similar to DAGetCorners

DD-15 July 2003 – p.80/148

Moving Data Between the Global and Local Representations

DACreateLocalVector Creates a PETSc vector that
can hold the local representation of a DA (the
local mesh plus ghost points)

DAGlobalToLocalBegin and DAGlobalToLocalEnd
Update the ghostpoint values. This involves
communication with the neighboring
processes

DALocalToGlobal Transfers values in the local
representation back to the global
representation. The ghost points are
discarded.

DD-15 July 2003 – p.81/148

Parallel Evaluation of the Function

In the Bratu example,

F (u) = −∇2u− λeu

so

F ′(u)a = −∇2a− λaeu,

where aeu is just {ai × eui}. Thus the Jacobian F ′(u) is
almost the same as the matrix for the Poisson problem,
with a diagonal element that depends on u. Now that we
know what these are, how do we provide them to PETSc?

DD-15 July 2003 – p.82/148

Providing the Function and Jaco-
bian

We now have functions that evaluate F and F ′. How can these be
used by the SNESSolve routine?

• The algorithm needs to evaluate both, under control of the
algorithm

• The solution used in PETSc is to pass the functions themselves to
the routine that defines the problem, much as the matrix defining
a linear problem to solve is passed to SLESSetOperators.

• This is a “callback” method, because the user provides functions
to the solver that are called back by the algorithm when their
results are needed

• The calling sequence for the routine is specified by PETSc.

DD-15 July 2003 – p.83/148

Specifying Callbacks

• User provides the routines to perform actions that the library
requires. For example

SNESSetFunction(snes, f, userfunc, userctx)

snes SNES context

f Vector that will be used to store the function value

userfunc Name of (really, pointer to) the function

userctx Pointer to data passed that will be passed to the function

• The library can call this function whenever it needs to evaluate the
function

• The userctx pointer allows the user to provide an “application
context” object. By using this approach, the library need never
know the details of data needed only by the application.

DD-15 July 2003 – p.84/148

Forming the Function I

#include "petscsnes.h"

#include "petscda.h"

#include "bratu.h"

#include <math.h>

/* Evaluate the function for the Bratu nonlinear problem on the local

mesh points */

int FormBratuFunction(SNES snes, Vec v, Vec f, void *ctx)

{

UserBratuCtx *bratu = (UserBratuCtx *)ctx;

DA da = bratu->da;

double lambda = bratu->lambda;

double h = bratu->h;

Vec lv;

int i, j;

int lli, llj, ni, nj; /* lower left i,j and size for local

part of mesh */

DD-15 July 2003 – p.85/148

Forming the Function II

const double **varr;

double **fvarr;

/* Get the coordinates of our part of the global mesh */

DAGetCorners(da, &lli, &llj, 0, &ni, &nj, 0);

DAGetLocalVector(da, &lv);

/* Scatter the ghost points to the other processes, using

the values in the input vector v */

DAGlobalToLocalBegin(da, v, INSERT_VALUES, lv);

DAGlobalToLocalEnd(da, v, INSERT_VALUES, lv);

DAVecGetArray(da, lv, (void **)&varr);

DAVecGetArray(da, f, (void **)&fvarr);

for (j=llj ; j<llj+nj ; j++)

for (i=lli ; i<lli+ni ; i++) {

DD-15 July 2003 – p.86/148

Forming the Function III

if (i == 0 || j == 0 ||

i == bratu->n + 1 || j == bratu->n + 1) {

fvarr[j][i] = 0.0;

}

else {

fvarr[j][i] = -(varr[j-1][i] + varr[j][i-1] +

varr[j+1][i] + varr[j][i+1] -

4 * varr[j][i]) / (h*h) -

lambda * exp(varr[j][i]);

}

}

DAVecRestoreArray(da, f, (void **)&fvarr);

DAVecRestoreArray(da, lv, (void **)&varr);

DARestoreLocalVector(da, &lv);

return 0;

}

DD-15 July 2003 – p.87/148

Understanding the Code

• One key feature of this routine is the use of the fourth argument,
“ctx”, to pass additional information to the Function. In this case,
we use a user-defined structure define in bratu.h:

/* This typedef defines a struct that contains the

data that we need to have when evaluating the

function or the Jacobian for the Bratu problem */

typedef struct {

DA da; /* DA for grid */

double h; /* Mesh spacing */

double lambda; /* parameter in problem */

int n; /* interior grid is n x n */

} UserBratuCtx;

• The rest of the code uses the DA to provide ghost values for the
the evaluation of the finite difference scheme

– Boundary conditions, as always, add complexity
DD-15 July 2003 – p.88/148

Forming the Jacobian I

#include "petscsnes.h"

#include "petscda.h"

#include "bratu.h"

#include <math.h>

/* Form the matrix for the Jacobian of the Bratu problem, where the

function uses a 5-point finite difference 2d Laplacian

on the unit square. n is the number of interior points along a side */

Mat FormBratuJacobian(SNES snes, Vec u, Mat *A, Mat *B, MatStructure *flag,

void *ctx)

{

Mat jac = *A;

UserBratuCtx *bratu = (UserBratuCtx *)ctx;

DA da = bratu->da;

int r, i, j, n = bratu->n;

double oneByh2, **uvals;

double h = bratu->h, lambda = bratu->lambda;

DD-15 July 2003 – p.89/148

Forming the Jacobian II

int lli, llj, ni, nj; /* lower left i,j and size for local

part of mesh */

MatStencil row, col[5];

double v[5];

oneByh2 = 1.0 / (h*h);

DAGetCorners(da, &lli, &llj, 0, &ni, &nj, 0);

DAVecGetArray(da, u, (void **)&uvals);

/* This is a simple but inefficient way to set the matrix */

for (j=llj; j<llj+nj; j++) {

for (i=lli; i<lli+ni; i++) {

row.i = i; row.j = j;

if (i == 0 || j == 0 ||

i == n + 1 || j == n + 1) {

v[0] = 1.0;

MatSetValuesStencil(jac, 1, &row, 1, &row, v, INSERT_VALUES);

DD-15 July 2003 – p.90/148

Forming the Jacobian III

}

else {

col[0].i = i; col[0].j = j - 1; v[0] = - oneByh2;

col[1].i = i; col[1].j = j + 1; v[1] = - oneByh2;

col[2].i = i - 1; col[2].j = j; v[2] = - oneByh2;

col[3].i = i + 1; col[3].j = j; v[3] = - oneByh2;

col[4].i = i; col[4].j = j;

v[4] = 4.0 * oneByh2 - lambda * exp(uvals[j][i]);

MatSetValuesStencil(jac, 1, &row, 5, col, v, INSERT_VALUES);

}

}

}

MatAssemblyBegin(jac, MAT_FINAL_ASSEMBLY);

DAVecRestoreArray(da, u, (void **)&uvals);

flag = SAME_NONZERO_PATTERN; / preconditioner has same structure */

MatAssemblyEnd(jac, MAT_FINAL_ASSEMBLY);

DD-15 July 2003 – p.91/148

Forming the Jacobian IV

return 0;

}

DD-15 July 2003 – p.92/148

Bratu Example I

#include "petscsnes.h"

#include "petscda.h"

#include "bratu.h"

extern int FormBratuJacobian(SNES, Vec, Mat *, Mat *, MatStructure *, void *);

extern int FormBratuFunction(SNES, Vec, Vec, void *);

int main(int argc, char *argv[])

{

UserBratuCtx bratu;

SNES snes;

Vec x, r;

Mat J;

int its;

PetscInitialize(&argc, &argv, 0, 0);

DD-15 July 2003 – p.93/148

Bratu Example II

/* Get the problem parameters */

bratu.lambda = 6.0;

PetscOptionsGetReal(0, "-lambda", &bratu.lambda, 0);

if (bratu.lambda >= 6.81 || bratu.lambda < 0) {

SETERRQ(1,"Lambda must be between 0 and 6.81");

}

bratu.n = 10; /* Get the mesh size. Use 10 by default */

PetscOptionsGetInt(PETSC_NULL, "-n", &bratu.n, 0);

bratu.h = 1.0 / (bratu.n + 1);

SNESCreate(PETSC_COMM_WORLD, &snes);

/* Create the mesh and decomposition */

DACreate2d(PETSC_COMM_WORLD, DA_NONPERIODIC, DA_STENCIL_STAR,

bratu.n + 2, bratu.n + 2, PETSC_DECIDE, PETSC_DECIDE,

1, 1, 0, 0, &bratu.da);

DACreateGlobalVector(bratu.da, &x);

DD-15 July 2003 – p.94/148

Bratu Example III

VecDuplicate(x, &r); /* Use this as the vector to give SetFunction */

SNESSetFunction(snes, r, FormBratuFunction, &bratu);

DAGetMatrix(bratu.da, MATMPIAIJ, &J);

SNESSetJacobian(snes, J, J, FormBratuJacobian, &bratu);

SNESSetFromOptions(snes);

FormBratuInitialGuess(&bratu, x);

SNESSolve(snes, x, &its);

PetscPrintf(PETSC_COMM_WORLD,

"Number of Newton iterations = %d\n", its);

VecDestroy(r);

SNESDestroy(snes);

PetscFinalize();

return 0;

} DD-15 July 2003 – p.95/148

Understanding the Code

SNESCreate Creates the SNES context

SNESSetFunction Specify the function to be called to evaluate the
function F (u)

SNESSetJacobian Specify the function to be called to create the
Jacobian matrix.

SNESSetFromOptions Set SNES parameters from the commandline

VecSet Set all elements of a vector to the same value

SNESSolve Solve the system of nonlinear equations. Return the
number of iteratoins in its

SNESDestroy Free the SNES context and recover space

DD-15 July 2003 – p.96/148

Using the Command Line Interface

• Easy to control Newton features
– -snes_type ls
– -snes_type tr
– -snes_rtol num (relative convergence

tolerance)

• Complete control over solution of Jacobian
problem—just use the same commandline
parmeters
– -ksp_type cgs
– -pc_type asm

DD-15 July 2003 – p.97/148

Convenience Functions

• PETSc’s design makes it relatively easy to layer functionality

• One example is the support for function and Jacobian evaluation on DAs

DASetLocalFunction Attach a function to a DA

DASetLocalJacobian Attach a Jacobian to a DA

SNESDAFormFunction Tell SNES that the function evaluation should use the
function on a DA. to provide the function values

SNESDAComputeJacobian Tell SNES that the Jacobian evaluation should use the
Jacobian function on a DA

• The functions provide just the computation applied to the local vector (from the DA,
which includes the ghost points)

• Wrapper functions provided by DASetLocalFunction and Jacobian handle all of the
details of setting up the local vectors and arrays.

• The function passed to DASetLocalFunction has the calling sequence:

FormFunctionLocal(DALocalInfo *info,PetscScalar **x,

PetscScalar **f,AppCtx *user)

DD-15 July 2003 – p.98/148

Example Local Function I

int FormFunctionLocal(DALocalInfo *info,PetscScalar **x,

PetscScalar **f,AppCtx *user)

{

int ierr,i,j;

PetscReal two = 2.0,lambda,hx,hy,hxdhy,hydhx,sc;

PetscScalar u,uxx,uyy;

PetscFunctionBegin;

lambda = user->param;

hx = 1.0/(PetscReal)(info->mx-1);

hy = 1.0/(PetscReal)(info->my-1);

sc = hx*hy*lambda;

hxdhy = hx/hy;

hydhx = hy/hx;

DD-15 July 2003 – p.99/148

Example Local Function II

/*

Compute function over the locally owned part of the grid

*/

for (j=info->ys; j<info->ys+info->ym; j++) {

for (i=info->xs; i<info->xs+info->xm; i++) {

if (i == 0 || j == 0 || i == info->mx-1 || j == info->my-1) {

f[j][i] = x[j][i];

} else {

u = x[j][i];

uxx = (two*u - x[j][i-1] - x[j][i+1])*hydhx;

uyy = (two*u - x[j-1][i] - x[j+1][i])*hxdhy;

f[j][i] = uxx + uyy - sc*PetscExpScalar(u);

}

}

}

ierr = PetscLogFlops(11*info->ym*info->xm);CHKERRQ(ierr);

PetscFunctionReturn(0);

}
DD-15 July 2003 – p.100/148

Time Stepping Solvers

PETSc can solve time-dependent equations of the form

∂u

∂t
= F (U, t)

by making use of the TS (timestepping solvers). F may be
linear in U (i.e., of the form AU or A(t)U) or nonlinear, and
may involve derivatives Two classic examples are

Ut = κ∇2U Heat equation

Ut = UUx + εUxx Burger’s equation

DD-15 July 2003 – p.101/148

Features of Timestepping Solvers

PETSc’s timestepping solvers are layered over
the SLES and SNES solvers

• Full access to all parameters for the linear
and nonlinear solvers

• Distributed arrays available for managing
regular meshes

Following the other solvers, the TS solvers
complete control of the solution process.
Commandline options include

• -ts_max_steps, -ts_type beuler, -ts_view

DD-15 July 2003 – p.102/148

Key Routines

See petsc-tut/frompetsc/heat-eqn.c or petsc-2.1.5/src/ts/examples/tutorials/ex4.c for
some examples

TSCreate Create a Time Stepping context.

TSSetProblemType Set the problem type. Use

TS LINEAR for Ut = AU or Ut = A(t)U

TC NONLINEAR for Ut = F (t, U)

TSSetRHSMatrix Defines the matrix A or A(t) (TS_LINEAR only)

TSSetInitialTimeStep Set the initial time and timestep

TSSetSolution Set the initial solution (U at the initial time)

TSSetDuration Set the maximum time and number of time steps

TSSetFromOptions Like all other PETSc objects

TSSetType Specify the algorithm to use. May be one of TS_EULER, TS_BEULER,
TS_PSEUDO, and (if installed) TS_PVODE

TSStep Step until the maximum time or time steps is reached

DD-15 July 2003 – p.103/148

Extending PETSc

• KSP Convergence test

• Matrix-free Solvers (adding a matrix)

• Adding a custom precondioner

• Letting Petsc know about a custom
preconditioner

DD-15 July 2003 – p.104/148

Changing the Convergence Test

Most operations in PETSc are implemented by calling a function

for that operation.

Most functions can be replaced, with a

<Object>Set<operation>. For example, the convergence

test for the Krylov method used in a SLES solve can be replaced:

MyConvData convdata;

SLESGetKSP(sles, &ksp);

KSPSetConvergenceTest(ksp, MyConvTest, &convdata)

The following example implements a test based on

‖W (Ax− b)‖2, where W is a diagonal matrix of weights.

DD-15 July 2003 – p.105/148

Weighted Convergence Test I

#include <math.h>

#include "petscsles.h"

typedef struct {

double ttol, rnorm0;

Vec weight;

} MyConvData;

int MyConvTest(KSP ksp, int it, PetscReal rnormUnweighted,

KSPConvergedReason *reason, void *convdata)

{

Vec V, WV;

PetscReal rtol, atol, dtol;

double rnorm;

int maxits;

MyConvData *cdata = (MyConvData *)convdata;

DD-15 July 2003 – p.106/148

Weighted Convergence Test II

reason = KSP_CONVERGED_ITERATING; / Continue iterating */

KSPBuildResidual(ksp, 0, 0, &V);

/* Scale the residual vector */

VecDuplicate(V, &WV);

VecPointwiseMult(cdata->weight, V, WV);

/* Compute the norm */

VecNorm(WV, NORM_2, &rnorm);

VecDestroy(V); VecDestroy(WV);

KSPGetTolerances(ksp, &rtol, &atol, &dtol, &maxits);

if (it == 0) {

/* save the initial values */

cdata->ttol = fmax(rtol*rnorm,atol);

cdata->rnorm0 = rnorm;

}

DD-15 July 2003 – p.107/148

Weighted Convergence Test III

/* The following is essentially the code from the

default test, KSPDefaultConverged */

if (rnorm <= cdata->ttol) {

if (rnorm < atol) {

*reason = KSP_CONVERGED_ATOL;

} else {

*reason = KSP_CONVERGED_RTOL;

}

} else if (rnorm >= dtol*cdata->rnorm0) {

*reason = KSP_DIVERGED_DTOL;

} else if (rnorm != rnorm) { /* NaN */

*reason = KSP_DIVERGED_DTOL;

}

return 0;

}

DD-15 July 2003 – p.108/148

Matrix-Free Solvers

You can create your own PETSc matrix with
MatCreateShell(MPI_Comm comm, int localRows, int localCols,

int globalRows, int globalCols, void *mctx,

Mat *A);

followed by
MatShellSetOperation(Mat A, MatOperation op, void (*f)(void));

For example
MatShellSetOperation(A, MATOP_MULT, MyMatV);

tells Petsc to call MyMatV when performing a matrix-vector

product with A.

DD-15 July 2003 – p.109/148

Creating A New Preconditioner for
SLES

To create a new preconditioner, follow these steps. The routines

“myPCMult” and “myPCSetup” implement y ←Mx and the

initialization of the preconditioner M .
PC pc;

SLESGetPC(sles, &pc);

PCSetType(pc, PCSHELL);

PCShellSetName(pc, "MyPreconditioner");

PCShellSetApply(pc, myPCMult, &pcdata);

PCShellSetSetUp(pc, myPCSetup); /* Optional (e.g., for ILU

factorization */

DD-15 July 2003 – p.110/148

Example PC I

Compute Mx− (Mx)T w

wT w
w where w = {1, 1, 1, . . . , 1}T (project off the

component of all ones, e.g., for a problem where Aw = 0):

#include "petscpc.h"

typedef struct {

Mat m;

} MyPCData;

int myPCMult(void *ctx, Vec xin, Vec xout)

{

Vec ones;

int size;

double one = 1, r, scale;

DD-15 July 2003 – p.111/148

Example PC II

MyPCData *pcdata = (MyPCData *)ctx;

MatMult(pcdata->m, xin, xout);

VecDuplicate(xin, &ones);

VecGetSize(xin, &size);

VecSet(&one, ones);

VecDot(ones, xout, &r);

scale = r / size;

VecAXPY(&scale, ones, xout);

VecDestroy(ones);

}

DD-15 July 2003 – p.112/148

Adding Your Precondioner to
PETSc

PCRegister("MyPreconditioner", 0, "PCMyPreconditioner", MyPCCreate);

where

typedef struct { ... } MyPCData;

int MyPCCreate(PC pc)

{

MyPCData *pcdata;

PetscNew(MyPCData, &pcdata);

pc->data = (void *)pcdata;

pc->ops->apply = myPCMult;

pc->ops->setup = 0;

pc->ops->destroy = myPCDestroy;

pc->ops->setfromoptions = myPCFromOptions;

...

}

(To build this, look at an example such as petsc/src/sles/pc/impls/jacobi.c). Then

poisson -pc_type MyPreconditioner

will use your new preconditioner!

DD-15 July 2003 – p.113/148

Use the Source!

To find out more about PETSc, look at the
implementation. PETSc has a regular directory
structure:

petsc−2.1.5

gmrescg

implsinterface

ksp pc

seqmpiseqmpi

hyprebdiagaij

impls

vecmatsnessles

....srcincludedocs

DD-15 July 2003 – p.114/148

Some Applications

PETSc includes examples of some applications:

• Driven cavity (snes/.../ex19.c)

• MHD (snes/.../ex29.c)

• Radiative transport (snes/.../ex18.c)

DD-15 July 2003 – p.115/148

Nonlinear Solvers Examples

ex1.c: Newton’s method to solve a two-variable system, sequentially
ex2.c: Newton method to solve uxx + u2 = f , sequentially
ex3.c: Newton methods to solve uxx + u2 = f in parallel
ex5.c: Bratu nonlinear PDE in 2d
ex5s.c: 2d Bratu problem in shared memory parallel with SNES
ex6.c: uxx + u2 = f

ex14.c: Bratu nonlinear PDE in 3d
ex18.c: Nonlinear Radiative Transport PDE with multigrid in 2d
ex19.c: Nonlinear driven cavity with multigrid in 2d
ex20.c: Nonlinear Radiative Transport PDE with multigrid in 3d
ex21.c: Solves PDE optimization problem
ex22.c: Solves PDE optimization problem
ex23.c: Solves PDE problem from ex22
ex24.c: Solves PDE optimization problem of ex22
ex25.c: Minimum surface problem
ex26.c: Grad-Shafranov solver for one dimensional CHI equilibrium

DD-15 July 2003 – p.116/148

Driven Cavity

The problem

−∇
2u −

∂ω

∂y
= 0,

−∇
2v +

∂ω

∂x
= 0,

−∇
2ω + u

∂ω

∂x
+ v

∂ω

∂y
− Gr

∂T

∂x
= 0,

−∇
2T + Pr

(

u
∂T

∂x
+ v

∂T

∂y

)

= 0,

with velocity = (u, v), vorticity ω, and
temperature T .

Boundary conditions

bottom: u = v = 0,
∂T

∂y
= 0,

top: u = Vlid, v = 0,
∂T

∂y
= 0,

left: u = v = 0, T = 0

right: u = v = 0, T = 1 if Gr > 0,

T = 0 otherwise

with ω = −∂u/∂y + ∂y/∂x along the
boundary.

This

is the velocity-vorticity formulation

DD-15 July 2003 – p.117/148

Notes on the Discretization

• The examples use a very simple discretization to concentrate on the use of PETSc
to solve the system of nonlinear equations

• Improving the discretization is relatively easy

– Higher order discretizations can be used by increasing the stencil width

– Because the DA is a logical mesh, it is easy to put more mesh points along
the boundaries:

(But you must manage the discretization.)

– PETSc provides support for general sparse matrices:
– Index sets (ISxxx routines); VecScatter and VecGather
– Access to matrix partitioning for parallelism

DD-15 July 2003 – p.118/148

Driven Cavity Example I

• Try matrix-free Jacobian approximation with no preconditioning
(via -snes_mf)
– 1 process: (thermally-driven flow)

ex19 -snes_mf -snes_monitor -grashof 1000.0 -lidvelocity 0.0

– 2 processes, view DA
mpirun -np 2 ex19 -snes_mf -snes_monitor \

-da_view_draw -draw_pause 1

– View contour plots of converging iterates
ex19 -snes_mf -snes_monitor -snes_vecmonitor

DD-15 July 2003 – p.119/148

Driven Cavity Example II

• Use MatFDColoring for sparse finite difference Jacobian
approximation; view SNES options used at runtime

ex19 -snes_view -mat_view_info

• Set trust region Newton method instead of default line search

ex19 -snes_type tr -snes_view -snes_monitor

• Set transpose-free QMR as the Krylov method and set relative
KSP convergence tolerance to 0.01

ex19 -ksp_type tfqmr -ksp_rtol 0.01 -snes_monitor

DD-15 July 2003 – p.120/148

PETSc Programming Aids

• Correctness Debugging
– Automatic generation of tracebacks
– Detecting memory corruption and leaks
– Optional user-defined error handlers
– Differential debugging

• Performance Debugging
– Integrated profiling using -log_summary

– Profiling by stages of an application
– User-defined events

DD-15 July 2003 – p.121/148

Debugging Tools

• Error handlers

• Many useful commandline options:

-start in debugger

-on error attach debugger name

-on error abort

You may also need -display $DISPLAY or
-display ‘hostname‘:0.0 to get the separate
debugger windows to appear. Also, placing a
breakpoint in PetscError will often give you control
when PETSc first detects an error.

DD-15 July 2003 – p.122/148

Performance Tuning

• Limits of performance

• Finding problems
– Built-in timing information
– Adding user-specified states
– Pitfalls

• Using PETSc features
– Better data structures
– Aggregate operations

• Making best use of C or Fortran

DD-15 July 2003 – p.123/148

Limits of Performance

• Real systems have many levels of memory

– Programming models try to hide memory hierarchy

• Simplest model: Two levels of memory

– Divide at the largest (relative) gap

– Processes have their own memory
– Managing a processes memory is known (if

unsolved) problem

– Exactly matches the distributed memory model

• But even the single process job is often bound by
memory performance

DD-15 July 2003 – p.124/148

Sparse Matrix-Vector Product

• Common operation for optimal (in floating-point
operations) solution of linear systems

• Sample code

for row=0,n-1

m = i[row+1] - i[row];

sum = 0;

for k=0,m-1

sum += *a++ * x[*j++];

y[row] = sum;

• Data structures are a[nnz], j[nnz], i[n], x[n], y[n]

DD-15 July 2003 – p.125/148

Simple Performance Analysis

• Memory motion:

– nnz (sizeof(double) + sizeof(int)) +
n (2*sizeof(double) + sizeof(int))

– Perfect cache (never load same data twice)

• Computation:

– nnz multiply-add (MA)

• Roughly 12 bytes per MA

• Typical workstation node can move 1
2
–4 bytes/MA

– Maximum performance is 4–33% of peak

DD-15 July 2003 – p.126/148

More Performance Analysis

• Instruction counts:

– nnz (2 * load-double + load-int + mult-add) + n (load-int +

store-double)

• Roughly 4 instructions per multiply-add

• Maximum performance is 25% of peak (33% if MA overlaps

one load or store)

• Changing the matrix data structure (e.g., exploit small block

structure) allows some reuse of data in register, eliminating

some loads (of x and j)

• Implementation improvements (tricks) cannot improve on

these limits

DD-15 July 2003 – p.127/148

Why use BAIJ?

The BAIJ format can provide added performance:

Format Mflops

Ideal Achieved

AIJ 49 45

BAIJ 64 55

These results, from a 250 MHz R10000, are for matrices with a natural
blocksize of four.
Multiple right-hand sides show much greater improvement, if you can
take advantage of them.
See “Toward Realistic Performance Bounds for Implicit CFD Codes,” in
the proceedings of Parallel CFD’99 (preprint also available at
www.mcs.anl.gov/~gropp/bib/papers/1999/pcfd99/gkks.ps)

DD-15 July 2003 – p.128/148

www.mcs.anl.gov/~gropp/bib/papers/1999/pcfd99/gkks.ps

Finding Performance Problems

• PETSc provides built-in tools to measure and report on
performance

-log summary Provides a breakdown by routine of each PETSc
routine

-log info Provides information on object use

-log trace Trace the execution of each PETSc routine

• Make sure that you use an optimized version of PETSc
(BOPT=O) and that you have avoided “cold start” problems.

– PETSc provides PreLoadBegin, PreLoadStage, and
PreLoadEnd to help. This make it easy to ensure that a test is
run once to get memory “warmed up” and that timings are
taking from a second test.

DD-15 July 2003 – p.129/148

Example log_summary Output I

/home/gropp/projects/software/petsc-tut/src/sles/poisson2 on a win32_gnu named GROPP-T2 with 4 processors, by gropp Wed Jul 16 10:45:06 2003

Using Petsc Version 2.1.5, Patch 0, Released Jan 27, 2002

Max Max/Min Avg Total

Time (sec): 7.709e-02 1.19728 6.854e-02

Objects: 0.000e+00 0.00000 0.000e+00

Flops: 1.735e+04 1.56176 1.422e+04 5.687e+04

Flops/sec: 2.694e+05 1.59360 2.073e+05 8.293e+05

Memory: 8.410e+04 1.06257 3.264e+05

MPI Messages: 3.000e+01 1.87500 2.350e+01 9.400e+01

MPI Message Lengths: 2.442e+03 1.90484 8.183e+01 7.692e+03

MPI Reductions: 4.450e+01 1.00000

DD-15 July 2003 – p.130/148

Example log_summary Output II

Max Ratio Max Ratio Max Ratio Mess Avg len Reduct %T %F %M %L %R %T %F %M %L %R Mflop/s
--

--- Event Stage 0: Main Stage

VecMDot 12 1.0 4.7554e-03 3.7 2.38e+06 3.7 0.0e+00 0.0e+00 1.2e+01 5 27 0 0 7 5 27 0 0 7 3
VecNorm 13 1.0 5.2183e-03 1.7 2.58e+05 2.6 0.0e+00 0.0e+00 1.3e+01 6 5 0 0 7 6 5 0 0 7 0
VecScale 13 1.0 4.4698e-05 1.3 1.13e+07 1.9 0.0e+00 0.0e+00 0.0e+00 0 2 0 0 0 0 2 0 0 0 29
VecSet 15 1.0 5.3079e-05 1.1 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
VecAXPY 1 1.0 1.0895e-05 1.6 8.95e+06 2.4 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 18
VecMAXPY 13 1.0 7.3752e-05 1.2 8.52e+07 1.7 0.0e+00 0.0e+00 0.0e+00 0 32 0 0 0 0 32 0 0 0 244
VecScatterBegin 13 1.0 1.4695e-04 1.3 0.00e+00 0.0 7.2e+01 8.0e+01 0.0e+00 0 0 77 75 0 0 0 77 75 0 0
VecScatterEnd 13 1.0 4.4182e-03 2.2 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 5 0 0 0 0 5 0 0 0 0 0
MatMult 12 1.0 4.7492e-03 2.0 1.23e+06 2.8 7.2e+01 8.0e+01 0.0e+00 5 17 77 75 0 5 17 77 75 0 2
MatSolve 13 1.0 1.1091e-04 1.3 2.56e+07 1.5 0.0e+00 0.0e+00 0.0e+00 0 16 0 0 0 0 16 0 0 0 82
MatLUFactorNum 1 1.0 3.5479e-05 1.3 5.46e+06 1.8 0.0e+00 0.0e+00 0.0e+00 0 1 0 0 0 0 1 0 0 0 15
MatILUFactorSym 1 1.0 1.9489e-03 1.9 0.00e+00 0.0 0.0e+00 0.0e+00 7.0e+00 2 0 0 0 4 2 0 0 0 4 0
MatAssemblyBegin 2 1.0 2.0382e-03 1.9 0.00e+00 0.0 0.0e+00 0.0e+00 4.0e+00 2 0 0 0 2 2 0 0 0 2 0
MatAssemblyEnd 2 1.0 4.9942e-03 1.3 0.00e+00 0.0 6.0e+00 4.0e+01 2.0e+01 6 0 6 3 11 6 0 6 3 11 0
MatGetOrdering 1 1.0 6.5651e-04 1.3 0.00e+00 0.0 0.0e+00 0.0e+00 4.0e+00 1 0 0 0 2 1 0 0 0 2 0
PCSetUp 2 1.0 5.7393e-03 1.2 3.24e+04 1.7 0.0e+00 0.0e+00 2.2e+01 8 1 0 0 12 8 1 0 0 12 0
PCSetUpOnBlocks 1 1.0 2.5428e-03 1.4 7.31e+04 1.6 0.0e+00 0.0e+00 1.1e+01 3 1 0 0 6 3 1 0 0 6 0
PCApply 13 1.0 6.9981e-04 1.1 4.51e+06 1.7 0.0e+00 0.0e+00 0.0e+00 1 16 0 0 0 1 16 0 0 0 13
KSPGMRESOrthog 12 1.0 4.9157e-03 3.4 4.21e+06 3.4 0.0e+00 0.0e+00 1.2e+01 5 54 0 0 7 5 54 0 0 7 6
SLESSetup 2 1.0 8.8296e-03 1.2 2.11e+04 1.7 0.0e+00 0.0e+00 3.2e+01 12 1 0 0 18 12 1 0 0 18 0
SLESSolve 1 1.0 1.8024e-02 1.0 9.83e+05 1.6 7.2e+01 8.0e+01 4.5e+01 26 99 77 75 25 26 99 77 75 25 3

DD-15 July 2003 – p.131/148

Adding User Events

It is easy to add user defined events to PETSc
int USER_EVENT;

PetscLogEventRegister(&USER_EVENT,"User event");

PetscLogEventBegin(USER_EVENT,0,0,0,0);

[code segment to monitor]

PetscLogFlops(user_flops)

PetscLogEventEnd(USER_EVENT,0,0,0,0);

“USER_EVENT” is returned by PETSc (instead of allowing
you to define it) so that many routines can define user
events without any possibility of two routines unintentionall
using the same event value.

DD-15 July 2003 – p.132/148

Obtaining Higher Performance with
PETSc

• Often, the most important step is to make use of “aggregate operations” wherever
possible. That is, use one routine that performs multiple operations, instead of
multiple calls to a single routine.

– For setting the elements of a matrix or vector, use MatSetValues and
VecSetValues instead of MatSetValue and VecSetValue

– MatSetValuesBlocked inserts submatrices

– Same technique uses in parallel programming (both message-passing and
shared-memory)

• Consider other sparse data structures, particularly BAIJ and Bdiag

• Those mysterious parameters (like DIFFERENT_NONZERO_PATTERN) can be very
important. PETSc tries to provide a correct solution first

– As a result, PETSc is more cautious that other environments

– Setting these parameters correctly can make a huge difference in
performance

DD-15 July 2003 – p.133/148

Setting Multiple Matrix Values

Petsc provides several routines to add multiple entries at a time
to a matrix:
MatSetValues(Mat mat, int nrows, int rowidx[],

int ncols, int colidx[], PetscScalar vals[],

INSERT_VALUES or ADD_VALUES)

MatSetValuesBlocked(...) same, but for blocked matrices

DD-15 July 2003 – p.134/148

Matrix Memory Preallocation

• PETSc sparse matrices are dynamic data
structures. Can add additional nonzeros
freely

• Dynamically adding many nonzeros
– requires additional memory allocations
– requires copies
– can kill performance

• Memory pre-allocation provides the freedom
of dynamic data structures plus good
performance

DD-15 July 2003 – p.135/148

Indicating Expected Nonzeros

• For parallel sparse matrices

MatCreateMPIAIJ(..., int d_nz,

const int d_nnz[], int o_nz,

const int o_nnz[], Mat *A)

where

d nnz expected number of nonzeros per row in diagonal

portion of local submatrix. The “diagonal portion” is the

square diagonal block of the rows owned by this process.

o nnz expected number of nonzeros per row in off-diagonal

portion of local submatrix

DD-15 July 2003 – p.136/148

Verifying Predictions

Use runtime option: -log_info

[0]MatSetUpPreallocation: Warning not preallocating matrix storage

[0]MatAssemblyBegin_MPIAIJ:Stash has 0 entries, uses 0 mallocs.

[0]MatAssemblyEnd_SeqAIJ:Matrix size: 50 X 50; storage space: 50 unneeded,200 used

[0]MatAssemblyEnd_SeqAIJ:Number of mallocs during MatSetValues() is 0

[0]MatAssemblyEnd_SeqAIJ:Most nonzeros in any row is 5

[0]Mat_AIJ_CheckInode: Found 50 nodes out of 50 rows. Not using Inode routines

[1]MatAssemblyBegin_MPIAIJ:Stash has 0 entries, uses 0 mallocs.

[1]MatAssemblyEnd_SeqAIJ:Matrix size: 50 X 50; storage space: 50 unneeded,200 used

[1]MatAssemblyEnd_SeqAIJ:Number of mallocs during MatSetValues() is 0

[1]MatAssemblyEnd_SeqAIJ:Most nonzeros in any row is 5

[1]Mat_AIJ_CheckInode: Found 50 nodes out of 50 rows. Not using Inode routines

[1]MatAssemblyEnd_SeqAIJ:Matrix size: 50 X 10; storage space: 90 unneeded,10 used

[1]MatAssemblyEnd_SeqAIJ:Number of mallocs during MatSetValues() is 0

[1]MatAssemblyEnd_SeqAIJ:Most nonzeros in any row is 1

[1]Mat_AIJ_CheckInode: Found 18 nodes of 50. Limit used: 5. Using Inode routines

[0]MatAssemblyEnd_SeqAIJ:Matrix size: 50 X 10; storage space: 90 unneeded,10 used

[0]MatAssemblyEnd_SeqAIJ:Number of mallocs during MatSetValues() is 0

[0]MatAssemblyEnd_SeqAIJ:Most nonzeros in any row is 1

[0]Mat_AIJ_CheckInode: Found 18 nodes of 50. Limit used: 5. Using Inode routines

DD-15 July 2003 – p.137/148

Making the Best Use of C

• C2000 has features to allow compiles to optimize memory

use

const Data is constant (cannot change because of a store

through another pointer)

restrict Data is accessed only through this pointer

• These allow Fortran-like argument semantics, allowing a
sophisticated compiler to produce code as good as Fortran
allows

int dadd(double * restrict a,

const double * restrict b, int n)

• Benefit depends on compiler and system. Small on most

PC’s; factor of ten (!) on one vector machine.

DD-15 July 2003 – p.138/148

Making the Best Use of Fortran

• Order array elements so that related
references are first

double precision vars(2,100,100)

not

double precision u(100,100), v(100,100)

DD-15 July 2003 – p.139/148

Benefit of Reordering

For the Fun3d CFD code, changing the order of arrays provided

a factor of seven (!) improvement

Time on an IBM SP with different orderings, starting with original

(Basic) code.

Basic Interlaced Interlaced Blocking Interlaced Reordered All

103.8 45.9 32 26.9 14.9

DD-15 July 2003 – p.140/148

Conclusion

• PETSc provides a powerful framework for

– Developing applications

– Experimenting with different algorithms

– Using abstractions to simplify parallel programming

• PETSc continues to grow and develop

– New routines added as needed and understood

– PETSc 3 will provide a more powerful framework for
combining tools written in different programming
languages

DD-15 July 2003 – p.141/148

References

• Documentation www.mcs.anl.gov/petsc/docs

– PETSc Users Manual

– Manual pages (the most up-to-date)

– Many hyperlinked examples

– FAQ, Troubleshooting info, installation info, etc.

• Publications www.mcs.anl.gov/petsc/publications

– Research and publications that make use of PETSc

• MPI information www.mpi-forum.org

• Using MPI (2nd Edition), by Gropp, Lusk, and Skjellum

• Domain Decomposition, by Smith, Björstad, and Gropp

DD-15 July 2003 – p.142/148

www.mcs.anl.gov/petsc/docs
www.mcs.anl.gov/petsc/publications
www.mpi-forum.org

Topics Not Covered

• PETSc contains many features, each
introduced to provide a necessary feature for
an application or researcher
– Unstructured Meshes
– Matrix free methods
– Access to other packages
– Using different preconditioner matrices
– Others

DD-15 July 2003 – p.143/148

Using PETSc with Other Packages

• Linear solvers

– AMG
www.mgnet.org/mgnet-codes-gmd.html

– BlockSolve95
www.mcs.anl.gov/BlockSolve95

– ILUTP
www.cs.umn.edu/~saad

– LUSOL
www.sbsi-sol-optimize.com

– SPAI
www.sam.math.ethz.ch/~grote/spai

– SuperLU
www.nersc.gov/~xiaoye/SuperLU

• Optimization software

– TAO
www.mcs.anl.gov/tao

– Veltisto
www.cs.nyu.edu/~biros/veltisto

• Mesh and discretization tools

– Overture
www.llnl.gov/CASC/Overture

– SAMRAI
www.llnl.gov/CASC/SAMRAI

– SUMAA3d
www.mcs.anl.gov/sumaa3d

• ODE solvers

– PVODE
www.llnl.gov/CASC/PVODE

• Others

– Matlab www.mathworks.com

– ParMETIS
www.cs.umn.edu/~karypis/metis/parmetis

DD-15 July 2003 – p.144/148

www.mgnet.org/mgnet-codes-gmd.html
www.mcs.anl.gov/BlockSolve95
www.cs.umn.edu/~saad
www.sbsi-sol-optimize.com
www.sam.math.ethz.ch/~grote/spai
www.nersc.gov/~xiaoye/SuperLU
www.mcs.anl.gov/tao
www.cs.nyu.edu/~biros/veltisto
www.llnl.gov/CASC/Overture
www.llnl.gov/CASC/SAMRAI
www.mcs.anl.gov/sumaa3d
www.llnl.gov/CASC/PVODE
www.mathworks.com
www.cs.umn.edu/~karypis/metis/parmetis

Changing the Behavior of Viewer

• Change the standard viewer to output in cannonical order

(independent of the number of processes)

• Change the behavior of the standard viewer Danger!

PetscViewerSetFormat(PETSC_VIEWER_STDOUT_WORLD,

PETSC_VIEWER_ASCII_COMMON);

VecView(vec, PETSC_VIEWER_STDOUT_WORLD)

• Change temporarily the behavior of the standard viewer

PetscViewerPushFormat(PETSC_VIEWER_STDOUT_WORLD,

PETSC_VIEWER_ASCII_COMMON);

VecView(vec, PETSC_VIEWER_STDOUT_WORLD)

PetscViewerPopFormat(PETSC_VIEWER_STDOUT_WORLD);

DD-15 July 2003 – p.145/148

Procedural Interface for Options

• All PETSc features that can be set with
command-line options can be controlled from
within a program.

• Routines to do so are often named
<Object>Set<feature>, as in
KSPSetMonitor or PCLUSetMatOrdering

DD-15 July 2003 – p.146/148

Some Vector Operations

Function Operation

VecAXPY(Scalar *a, Vec x, Vec y) y ← y + ax

VecAYPX(Scalar *a, Vec x, Vec y) y ← x+ ay

VecWAXPY(Scalar *a, Vec x, Vec y, Vec w) w ← ax+ y

VecScale(Scalar *a, Vec x) x← ax

VecCopy(Vec x, Vec y) y ← x

VecPointwiseMult(Vec x, Vec y, Vec w) wi ← xiyi

VecMax(Vec x, int *idx, Scalar *r) r ← maxi(xi)

VecNorm(Vec x, NormType type, double *r) r ← ‖x‖normtype

VecSet(Scalar *a, Vec x) xi = a

This is just a sample; there are more. Check the manual page index
under “V”.

DD-15 July 2003 – p.147/148

PETSc Components

Nonlinear Solvers

Newton-based Methods Other

Line Search Trust Region

Time Steppers

Euler Backward Euler

Pseudo
Time
Stepping

Other

Krylov Subspace Methods

GMRES CG CGS Bi-CG-STAB TFQMR Richardson Chebychev Other

Preconditioners
Additive
Schwarz

BlockJacobi Jacobi ILU ICC LU(Sequential only) Others

Matrics

Compressed
Sparse Row
(AIJ)

Blocked
Compressed
Sparse Row
(BAIJ)

Block
Diagonal
(BDIAG)

Dense Matrix-free Other

DD-15 July 2003 – p.148/148

	Introduction
	PETSc Team
	PETSc at Scale
	Performance of Fun3D/PETSc
	Tutorial Overview
	A Few Comments Before We Start
	
	Prerequisites
	A First PETSc Program
	Hello World
	Understanding the Code
	Hello World in Fortran
	Understanding the Code
	How To Compile, Link, and Run
	A Sample Makefile
	Using PETSc at This Tutorial
	A Parallel Program
	Hello World Revisited
	Understanding the Program
	PETSc and PDEs
	Poisson Problem
	Schematic for Example
	Creating the Matrix
	Creating the Matrix II
	Understanding the Code I
	Understanding the Code II
	Data Structure Neutral Design
	Data Decomposition in PETSc
	Why Are PETSc Matrices The Way They Are?
	Vectors In PETSc
	Creating the Vectors I
	Creating the Vectors II
	Understanding the Code
	Solving a Poisson Problem I
	Solving a Poisson Problem II
	Understanding the Code
	Objects in PETSc
	Operations in PETSc
	Context Variables in PETSc
	SLES Structure
	Available Methods
	Using the Command Line Interface
	Monitoring Convergence
	Accessing the Solution
	PETSc Viewers
	Working With Vectors
	Example: Computing $|x-y|$
	Computing $|x-y|$ I
	Computing $|x-y|$ II
	Computing $|x-y|$ III
	Computing $|x-y|$ IV
	Distributed Arrays in PETSc
	Layout Of Distributed Arrays
	Distributed Arrays
	Setting the Vector Values I
	Setting the Vector Values II
	Understanding the Code
	Setting the Matrix Elements I
	Setting the Matrix Elements II
	Setting the Matrix Elements III
	Understanding the Code
	Poisson Solver Revisited
	Poisson Solver Revisited II
	Poisson Solver Revisited III
	Scaling Studies
	Incremental Application Improvement
	Examples of Linear Solves
	More Preconditioners
	PETSc's Automatic ASM
	Flow of Information
	Aside: Error Handling in PETSc
	Solving Nonlinear Equations
	Newton-based Methods
	PDE Jacobian
	A Simple Nonlinear PDE
	Evaluating the Function
	Stencils
	Global and Local Representations
	Using Ghost Points with DAs
	small Moving Data Between the Global and Local Representations
	Parallel Evaluation of the Function
	Providing the Function and Jacobian
	Specifying Callbacks
	Forming the Function I
	Forming the Function II
	Forming the Function III
	Understanding the Code
	Forming the Jacobian I
	Forming the Jacobian II
	Forming the Jacobian III
	Forming the Jacobian IV
	Bratu Example I
	Bratu Example II
	Bratu Example III
	Understanding the Code
	Using the Command Line Interface
	Convenience Functions
	Example Local Function I
	Example Local Function II
	Time Stepping Solvers
	Features of Timestepping Solvers
	Key Routines
	Extending PETSc
	Changing the Convergence Test
	Weighted Convergence Test I
	Weighted Convergence Test II
	Weighted Convergence Test III
	Matrix-Free Solvers
	Creating A New Preconditioner for SLES
	Example PC I
	Example PC II
	Adding Your Precondioner to PETSc
	Use the Source!
	Some Applications
	Nonlinear Solvers Examples
	Driven Cavity
	Notes on the Discretization
	Driven Cavity Example I
	Driven Cavity Example II
	PETSc Programming Aids
	Debugging Tools
	Performance Tuning
	Limits of Performance
	Sparse Matrix-Vector Product
	Simple Performance Analysis
	More Performance Analysis
	Why use BAIJ?
	Finding Performance Problems
	Example log_summary Output I
	Example log_summary Output II
	Adding User Events
	Obtaining Higher Performance with PETSc
	Setting Multiple Matrix Values
	Matrix Memory Preallocation
	Indicating Expected Nonzeros
	Verifying Predictions
	Making the Best Use of C
	Making the Best Use of Fortran
	Benefit of Reordering
	Conclusion
	References
	Topics Not Covered
	Using PETSc with Other Packages
	Changing the Behavior of Viewer
	Procedural Interface for Options
	Some Vector Operations
	PETSc Components

