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Summary. The goal of this paper is the construction of a data-sparse approxima-
tion to the Schur complement on the interface corresponding to FEM and BEM
approximations of an elliptic equation by domain decomposition. Using the hierar-
chical (H-matrix) formats we elaborate the approximate Schur complement inverse

in an explicit form. The required cost O(NΓ logq NΓ ) is almost linear in NΓ – the
number of degrees of freedom on the interface. As input, we use the Schur comple-
ment matrices corresponding to subdomains and represented in the H-matrix for-
mat. In the case of piecewise constant coefficients these matrices can be computed
via the BEM representation with the cost O(NΓ logq NΓ ), while in the general case
the FEM discretisation leads to the complexity O(NΩ logq NΩ).

1 Introduction

In Hackbusch [2003], a direct domain decomposition method was described for
rather general elliptic equations based on a traditional FEM. Using H-matrix
techniques, almost linear4 cost in the number NΩ of degrees of freedom in
the computational domain could be achieved. Here we concentrate on the in-
version of the Schur complement matrix. We distinguish three approaches to
construct and approximate the Schur complement matrix: (a) Methods based
on a traditional FEM for rather general variable coefficients (cf. Hackbusch
[2003]); (b) Approximation by boundary concentrated FEM for smooth coef-
ficients in subdomains (cf. Khoromskij and Melenk [2003]); (c) BEM based
methods for piecewise constant coefficients (cf. Hsiao et al. [2001], Khoromskij
and Wittum [2004], Langer and Steinbach [2003]). Below we focus on the cases
(a) and (c). In the latter case, which is not covered by Hackbusch [2003], we
have the standard advantages of BEM compared to FEM. Furthermore, be-
sides the approximation theory (cf. Theorem 1), we can show (cf. Hackbusch

4 By “almost linear” we mean O(N logq N) for a fixed q.
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et al. [2003, submitted]) the approximability of the Schur complement in the
H-matrix format5. In both cases we give numerical results.

In a polygonal domain Ω ⊂ R
2, we consider the elliptic operator L : V →

V ′ for V = H1
0 (Ω) and V ′ = H−1(Ω), with the corresponding V -elliptic

bilinear form aΩ : V × V → R,

aΩ(u, v) =

∫

Ω

(

d
∑

i,j=1

aij∂ju∂iv + a0uv)dx, a0 > 0. (1)

The corresponding variational equation is: Find u ∈ V such that

aΩ(u, v) = 〈f, v〉 := (f, v)L2(Ω) for all v ∈ V, (2)

where f ∈ H−1(Ω). We suppose the domain Ω to be composed of M ≥
1 possibly matching, but non-overlapping polygonal subdomains Ωi, Ω =
∪M

i=1Ωi. We denote the interface (skeleton) of the decomposition of Ω by Γ =
∪Γi (Γi := ∂Ωi). Because we focus on the solution of an interface equation,
we suppose that the right-hand side f is supported only by the interface, such
that

〈f, v〉 =

M
∑

i=1

〈ψi, v〉Γi , ψi ∈ H−1/2(Γi). (3)

An equation with general f can be reduced to the case (3) by a subtraction
of particular solutions in the subdomains which can be performed in parallel.

We may write the bilinear form aΩ(·, ·) in (1) as a sum of local bilinear

forms, aΩ(u, v) =
M
∑

i=1

aΩi(Riu,Riv), where Ri : V → Vi := H1(Ωi) is the

restriction of functions onto Ωi and the integration in aΩi : Vi × Vi → R

is restricted to Ωi. Furthermore, aΩi is supposed to be Vi-elliptic for Vi :=
H1

0 (Ωi), i.e., there exist 0 < C1 ≤ C2 such that (for suitable constants µi > 0)

C1µi|u|
2
H1(Ωi)

≤ aΩi(u, u) ≤ C2µi|u|
2
H1(Ωi)

for all u ∈ H1(Ωi). (4)

We introduce the space VΓ ⊂ V of piecewise L-harmonic functions by VΓ :=
{v ∈ V : aΩ(v, z) = 0 for all z ∈ V0}, with V0 := {v ∈ V : v(x) =
0 for all x ∈ Γ}. Note that V = V0 + VΓ is the orthogonal splitting with
respect to scalar product aΩ(·, ·). The variational equation (2) with f satis-
fying (3), we next reduce to an interface equation (in fact, u ∈ VΓ ). To that
end, let us introduce the following trace space on Γ , YΓ := {u = z|Γ : z ∈ V },

||u||YΓ = inf
z∈V :z|Γ =u

||z||V , with the energy norm ||z||V =
√

aΩ(z, z). Next

we define the local Poincaré-Steklov operator (Dirichlet-Neumann map) on
Γi = ∂Ωi, Ti : H1/2(Γi) → H−1/2(Γi) by λ ∈ H1/2(Γi), Ti(λ) := γ1,iu.
Here γ1,iu is the conormal derivative of u on Γi and u solves (2) in Ωi such

5 Details will be presented in the forthcoming paper (full version).
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that u|Γi = λ. Now we reduce (2) to the equivalent interface problem: Find
z = u|Γ ∈ YΓ such that

bΓ (z, v) :=

M
∑

i=1

〈Tizi, vi〉Γi = 〈ΨΓ , v〉 :=

M
∑

i=1

〈ψi, v〉Γi , ∀ v ∈ YΓ , (5)

where bΓ (·, ·) : YΓ × YΓ → R is a continuous bilinear form, ΨΓ ∈ Y ′Γ and
zi = z|Γi

, vi = v|Γi
.

To apply H-matrix approximations to the discrete version of (5), we
represent the inverse operator L−1 using the interface map BΓ defined by
〈BΓu, v〉Γ = bΓ (u, v) for all u, v ∈ YΓ . The following statement describes the
structure of the inverse L−1 : Y ′Γ → V .

Lemma 1. The representation L−1 = Eharm
Ω←ΓB

−1
Γ holds, where Eharm

Ω←Γ : YΓ →
VΓ is the L-harmonic extension from YΓ to VΓ .

Proof. The bilinear form bΓ (·, ·) : YΓ × YΓ → R is symmetric, continuous
and positive definite and thus the same holds for BΓ and B−1

Γ : Y ′Γ → YΓ .
Therefore the operator L−1 = Eharm

Ω←ΓB
−1
Γ is well-defined. Next, we check that

u = L−1ΨΓ solves (2). Green’s formula yields

aΩ(u, v) =

M
∑

i=1

aΩi(Riu,Riv) =

M
∑

i=1

〈Tiu, vi〉Γi =

M
∑

i=1

〈ψi, v〉Γi ∀v ∈ V. (6)

This also provides B−1
Γ ΨΓ = u|Γ completing the proof.

In the general case, we consider a conventional FEM approximation of (2)
by piecewise linear elements on a regular triangulation that aligns with Γ . Let

Ah ∈ R
IΩ×IΩ be the Galerkin-FEM stiffness matrix Ah =

(

AII AIIΓ

AIΓ I AIΓ IΓ

)

,

corresponding to the chosen FE space Vh ⊂ V . Here IΓ is the index set
corresponding to the interface degrees of freedom and I = IΩ \ IΓ is the
complementary one. Eliminating all interior degrees of freedom correspond-
ing to I, we obtain the so-called FEM Schur complement matrix BΓ,h :=
AIΓ IΓ − AIΓ IA

−1
II AIIΓ ∈ R

IΓ×IΓ , where AII = blockdiag{A1, ...,AM} is
the stiffness matrix for L subject to zero Dirichlet conditions on Γ , hence
A
−1
II = blockdiag{A−1

1 , ...,A−1
M } can be computed in parallel. In a standard

way, each of the “substructure” matrices A
−1
i can be represented by the H-

matrix format (cf. Hackbusch [2003]).
Using BΓ,h, the original FEM system AhU = F is reduced to the interface

equation

BΓ,hUΓ = FΓ , UΓ , FΓ ∈ R
IΓ , where UΓ = U |IΓ . (7)

We construct the approximate direct solver for the Schur complement sys-
tem (7) focusing on the cases of general and of piecewise constant coeffi-
cients. In the latter case, the matrix BΓ,h can be computed by BEM with
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cost O(NΓ logq NΓ ), where NΓ = card(IΓ ), while for general coefficients the
cost is O(NΩ logq NΩ) (cf. Hackbusch [2003]). Furthermore, BΓ,h is proved
to be of almost linear cost in NΓ concerning operations for storage and for
the matrix-by-vector multiplication. Due to the H-matrix arithmetic, our ap-
proximate Schur complement inverse matrix B

−1
Γ,h again needs almost linear

complexity O(NΓ logq NΓ ).
Notice that our approach can be also viewed as an approximate direct

parallel solver based on the domain decomposition Schur complement method.

2 FEM- and BEM-Galerkin Approximations

Introduce the FE trace space YN := Vh|Γ ⊂ YΓ with N = NΓ = dimYN .
Based on the representation in Lemma 1 and using the H-matrix approxima-
tion to the operators involved, we can construct an approximate direct solver
of almost linear complexity in NΓ that realises the action B−1

Γ ΨΓ . For this
purpose we split the numerical realisation of L−1 = Eharm

Ω←ΓB
−1
Γ into three in-

dependent steps: (i) Computation of a functional ΨΓ,h ∈ Y ′Γ approximating
ΨΓ ; (ii) An H-matrix approximation to the discrete interface operator B−1

Γ ;
(iii) Implementation of a discrete L-harmonic extension operator Eharm

Ω←Γ .

In Step (i) we define ΨΓ,h ∈ Y ′N by 〈ΨΓ,h, v〉Γ :=
M
∑

i=1

〈ψih, v〉Γi ∀v ∈ YN .

Given ΨΓ,h ∈ Y ′N , we consider the Schur complement system approximating
the interface equation (5). Let us define the local Schur complement operator
Ti,N corresponding to the discrete Li-harmonic extension based on the FEM
Galerkin space Vih := Vh|Ωi , by λ, v ∈ YN |Γi : 〈Ti,Nλ, v〉Γi = AΩi(ui, v),
where ui ∈ Vih, AΩi(ui, z) = 0 for all z ∈ Vih ∩H1

0 (Ωi) and with an arbitrary
v ∈ Vih such that v|Γi = v. With the aid of the local FEM-Galerkin discreti-
sations Ti,N of the Poincaré-Steklov maps Ti, the discrete operator BΓ,N and
the corresponding interface equation are given by

z ∈ YN : 〈BΓ,Nz, v〉Γ :=

M
∑

i=1

〈Ti,Nzi, vi〉Γi = 〈ΨΓ,h, v〉Γ for all v ∈ YN ,

where vi := v|Γi and z is a desired approximation to the trace u|Γ . The
corresponding matrix representation to the interface operator BΓ,N reads as

〈BΓ,NU,Z〉IΓ =

M
∑

i=1

〈Ti,NUi, Zi〉IΓi
:= 〈BΓ,NJU,JZ〉Γ , BΓ,N ∈ R

IΓ×IΓ ,

(8)
where J : R

IΓ → YN is the natural bijection from the coefficient vectors
into the FE functions. Ti,N is the local FEM Schur complement matrix and
Ui, Zi ∈ R

IΓi , i = 1, ...,M , are the local vector components defined by Ui =
RΓiU, Zi = RΓiZ, where the connectivity matrix RΓi ∈ R

IΓi
×IΓ provides the

restriction of the vector Z ∈ R
IΓ onto the index set IΓi . Let Ai be the local

stiffness matrix corresponding to aΩi(·, ·), Ai =

(

AII AIΓi

AΓiI AΓiΓi

)

, where I and
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Γi correspond to the interior and boundary index sets in Ωi, respectively. Then
we obtain the FEM Schur complement matrix Ti,N := AΓiΓi −AΓiIA

−1
II AIΓi ,

(AII : stiffness matrix for Li subject to zero Dirichlet conditions on Γi). Thus,
A
−1
II can be represented in the H-matrix format (cf. Hackbusch [2003]).
Let us consider the explicit representation of BΓ,N in (8) using the BEM-

Galerkin approximation with Lagrange multipliers (cf. Hsiao et al. [2001]).
Introduce the classical boundary integral representations involving operators
Vi, Di and Ki, defined by

(Viu)(x) =

∫

Γi

g(x, y)u(y)dy, (Kiu)(x) =

∫

Γi

∂

∂ny
g(x, y)u(y)dy,

(K′iu)(x) =

∫

Γi

∂

∂nx
g(x, y)u(y)dy, (Diu)(x) = −

∂

∂nx

∫

Γi

∂

∂ny
g(x, y)u(y)dy ,

where g(x, y) is the corresponding singularity function (cf. Hackbusch [1995]).
In the following, we consider the model case aΩi(u, v) := µi

∫

Ωi
∇u∇vdx, µi >

0. Introduce the modified Calderon projection CΓi by

CΓi

(

ui

δi

)

:=

(

µiD
1
2I + K′i

− 1
2I −Ki µ−1

i Vi

) (

ui

δi

)

=

(

δi
0

)

(9)

(cf. Khoromskij and Wittum [2004] and references therein), applied to the
Li-harmonic function u which satisfies −∆u = 0 in Ωi with u|Γi

= ui and
δi = µi∂u/∂n (see also Costabel [1988], Hackbusch [1995], Wendland [1987]).
Note that the Schur complement equation corresponding to (9) reads as

Tiui := µi

(

Di +
(

1
2I + K′i

)

V−1
i

(

1
2I + Ki

))

ui = δi, (10)

providing an explicit symmetric representation to the Poincaré-Steklov map
in terms of boundary integral operators.

Let us consider the skew-symmetric interface problem for M > 1 (see (11)

below). Introducing the trace space ΣΓ := YΓ ×ΛΓ with ΛΓ :=
M
∏

i=1

H−1/2(Γi)

and the weighted norm ‖P‖2
ΣΓ

= ‖u‖2
YΓ

+
M
∑

j=1

µ−1
j ‖λj‖

2
H−1/2(Γj)

, P = (u, λ) ∈

ΣΓ , λ = (λ1, . . . , λM ), we define the interface bilinear form cΓ : ΣΓ ×ΣΓ → R

by cΓ (P,Q) :=
M
∑

i=1

〈CΓiPi, Qi〉Γi for all P = (u, λ), Q = (v, η) ∈ ΣΓ , with CΓi

given by (9). Using the representation 〈CΓiPi, Qi〉Γi := µi(Diu, v)+
((1

2I + K′i)λ, v) − ((1
2I + Ki)u, η) + µ−1

i (Viλ, η) in each subdomain, the orig-
inal equation for u (cf. (2)) will be reduced to the skew-symmetric interface
equation: Given ΨΓ ∈ Y ′Γ , find P ∈ ΣΓ such that

cΓ (P,Q) = 〈ΨΓ , v〉Γ for all Q = (v, η) ∈ ΣΓ . (11)

Let Λh :=
M
∏

i=1

Λih, where Λih is the FE space of piecewise linear functions.

Introducing the FE Galerkin ansatz space Σh := YN × Λh, we arrive at the
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corresponding BEM-Galerkin saddle-point system of equations: Given ΨΓ ∈
Y ′Γ , find Ph = (uh, λh) ∈ YN × Λh such that

cΓ (Ph, Q) = 〈ΨΓ , v〉Γ for all Q = (v, η) ∈ YN × Λh. (12)

We further assume Vi, i = 1, ...,M , to be positive definite.

Theorem 1. (i) The bilinear form cΓ : ΣΓ × ΣΓ → R is continuous and
ΣΓ -elliptic. (ii) Let Ph solve (12), then the optimal error estimate holds:

‖Ph−P‖
2
ΣΓ

≤ c inf
(w,µ)∈Σh

[

M
∑

i=1

µi‖ui − wi‖
2
H1/2(Γi)

+

M
∑

i=1

µ−1
i ‖λi − µi‖

2
H−1/2(Γi)

]

.

(iii) Let Ti,BEM be the local BEM Schur complement given by

Ti,BEM := µi

(

Dih +
(

1
2Iih + K

′
ih

)

V
−1
ih

(

1
2Iih + Kih

))

, (13)

where Dih, Kih, Vih are the Galerkin stiffness matrices of the boundary inte-
gral operators and Iih is the corresponding mass matrix. Then the BEM Schur

complement takes the explicit form BΓ,N =
M
∑

i=1

R
⊤
Γi

Ti,BEMRΓi ∈ R
IΓ×IΓ due

to 〈BΓ,NZ, V 〉IΓ =
M
∑

i=1

〈Ti,BEMZi, Vi〉IΓi
=

M
∑

i=1

〈R⊤Γi
Ti,BEMRΓiZ, V 〉IΓ .

Proof. Statements (i), (ii) are proven in Theorems 2, 3 in Hsiao et al. [2001],
while (iii) is the direct consequence of the BEM-Galerkin approximation (12).

3 H-Matrix Approximation to B
−1

Γ,N and Numerics

Now we discuss the H-matrix approximation to Ti,N and B
−1
Γ,N . In the FEM

case let AII be presented in the hierarchical format. Then we need the for-
matted multiplication and addition to obtain Ti,N = AΓiΓi −AΓiIA

−1
II AIΓi ,

leading to the cost O(NΩi logq NΩi). The matrix Ti,BEM can be computed in
O(NΓi logq NΓi) operations. Note that the H-matrix representations of Ti,N

and T
−1
i,N can be applied within the so-called BETI iterative method Langer

and Steinbach [2003].
Our goal is an algorithm of almost linear complexity in NΓ := dimYN real-

ising the matrix-by-vector multiplication by B
−1
Γ,N . Having all local H-matrices

Ti,N available, we first compute the H-matrix representation of BΓ,N . To that
end, we construct an admissible hierarchical partitioning P2(IΓ ×IΓ ) based on
the cluster tree TIΓ of the skeleton index set IΓ (cf. Figure 1, left). After some
levels the clusters correspond to one-dimensional manifolds. Since a lower
spatial dimension leads to better constants in the complexity estimates (cf.
Grasedyck and Hackbusch [2003], Hackbusch et al. [2003, submitted]), this
property makes the algorithm faster.

To calculate a low-rank approximation of blocks in the hierarchical par-
titioning P2(IΓ × IΓ ), we propose an SVD recompression of any block b ∈



Direct Schur Complement Method by Hierarchical Matrix Techniques 587

Rank
1 3 5 7 9 11 13 15 17 19

1e−11

1e−9

1e−7

1e−5

1e−3

1e−1

1e1 n = 66049
n = 263169
n = 1050625

Fig. 1. Clustertree TIΓ (left); adaptive choice of the local rank (right).

P2(IΓ × IΓ ) obtained as a sum of fixed number of subblocks extracted as
rank-k submatrices in the local Schur complements. This fast algorithm (of
almost linear cost) exploits the hierarchical format of the local matrices Ti,N

(same for Ti,BEM ) and will be presented in the next example. The following
tables show numerical results for the scaled Laplacian in Ωi with randomly
chosen coefficients µi ∈ (0, 1] (cf. (4)). Presented are the times for computing
Ti,N , Ti,BEM , for the inversion of B = BΓ,N and for its matrix-by-vector
multiplication (MV) as well as for the accuracy of this inversion (computed
on a SunFire 6800 (900 MHz)). The computing times Ti,BEM for NΩ ≈ 4 ·106

and NΩ ≈ 16 · 106 are 13.7 s and 36.8 s, respectively6. The results correspond
to a decomposition of a square into 6× 6 subsquares. One can see the almost
linear complexity of the inversion algorithm. If we are interested in an effi-
cient preconditioning, the local rank k can be chosen adaptively to achieve
the required accuracy ε (cf. Fig. 1 (right) represents ε depending on k).

6 × 6 domains (k = 9)

NΩ NΓ t(Ti,N ) t(Ti,BEM ) t(B−1
Γ,N ) t(MV ) ‖I −BB−1

H ‖2

16 641 1 245 0.6 s 0.06 s 10.7 s 1.3610-2 s 7.710-6
66 049 2 525 12.2 s 0.5 s 30.3 s 3.9810-2 s 8.010-6

263 169 5 085 105.1 s 1.7 s 94.2 s 9.4310-2 s 4.610-5
1 050 625 10 205 696.2 s 4.9 s 218.1 s 1.8510-1 s 7.110-5

We present numerical results illustrating an acceleration factor of a direct
multilevel DDM due to the recursive Schur complement evaluation (see §5.2 in
Hackbusch [2003]). To reduce the cost of the local Schur complement matrices
Ti,N in each subdomain Ωi, one can apply the same domain decomposition
algorithm as in §3 to the local inverse A

−1
i . This leads to a reduction of the

computational time. The following table corresponds to a 4×4 decomposition.
We consider q + 1 ≥ 1 grids Ni = N04

i with the problem size Ni = N04
i, i =

0, 1, ..., q, and with N0 = 16641, so that N3 = 1050625. On each subdomain of
level ℓ = 2, ..., q one has the matrix size Nℓ−2, thus one can recursively apply

6 t(Ti,BEM ) includes only the dominating cost of two matrix-matrix multiplications
and one matrix inversion in the H-matrix format (cf. (13)).
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the algorithm on level ℓ− 2 to compute the local inverse matrix A−1
i,ℓ on level

ℓ. The complexity bound satisfies the recursion W (A−1
i,ℓ ) = 16W (A−1

i,ℓ−2) +

W (B−1
Γ,ℓ−2), W (·): cost of the corresponding matrix operation. Based on the

table below, the simple calculation WML(A−1
4,ℓ) = 16(16× 0.1 + 0.8) + 16.9 ≈

1min shows an acceleration factor about 33 compared with 2020 sec depicted
in the last line of our table. Similarly, an extrapolation using the two smaller
grids exhibits that our direct solver applied to the problems with nΩ = 4 ·106

and nΩ = 16 · 106 would take about 113 sec. and 1080 sec., respectively, for
each subdomain.

4 × 4 domains (k = 9)

NΩ NΓ t(Ti,N ) t(B−1
Γ,N ) t(MV ) ‖I −BB−1

H ‖2

16 641 753 3.8 s 3.7 s 3.2010-3 s 4.210-6
66 049 1 521 43.2 s 16.9 s 9.1010-3 s 7.710-6

263 169 3 057 317.4 s 48.3 s 4.1810-2 s 1.310-5
1 050 625 6 129 2 020.1 s 118.8 s 8.9210-1 s 2.110-5
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