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Summary. We present a new concept for the realization of finite element compu-
tations on parallel machines with distributed memory. The parallel programming
model is based on a dynamic data structure addressed by points. All geometric ob-
jects (cells, faces, edges) are referenced by their midpoints, and all algebraic data
structures (vectors and matrices) are tied to the nodal points of the finite elements.
The parallel distribution of all objects is determined by processor lists assigned to
the reference points.
Based on this new model for Distributed Point Objects (DPO) a first application
to a geotechnical application with Taylor-Hood elements on hexahedra has been
presented in Wieners et al. [2004]. Here, we consider the extension to parallel refine-
ment, curved boundaries, and multigrid preconditioners. Finally, we present parallel
results for a nonlinear model problem with isoparametric cubic elements.

1 Introduction

Many finite element applications require a fine mesh resolution or a huge num-
ber of time steps. Together with the increasing complexity of the considered
models, the solution of such problems is only possible with elaborated solvers
such as domain decomposition methods or multigrid preconditioners. In order
to obtain a reasonable computing time, very often this can be realized only
on a parallel machine.

For this purpose, large software developments are available, e. g., PLTMG

(Bank [1998]), PETSc (Balay et al. [2001]), and UG (Bastian et al. [1997]).
Now, a discussion starts, how such developments can be unified and combined
by a general framework Bastian et al. [2004], so that one is not fixed to the
underlying programming model of the software.

Here, we introduce a new parallel programming model which is specially
designed for the support of nonlinear engineering finite element applications,
and which provides a platform for the development of modern solvers and
their adaptation to such problems. The main features of the concept are flex-
ibility, transparence, and extensibility. It allows the realization of complex
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algorithms in a very compact form, and it reduces the implementation time
for new applications. In particular, this make the code attractive for educa-
tional purposes.

Our concept is based on long experiences with parallel software devel-
opment and parallel simulations for partial differential equations, cf. Bastian
et al. [1998, 1999, 2000], Lang et al. [2002]. It can be understood as an abstrac-
tion and simplification of our previous code. In terms of software engineering
this study describes the underlying structure of a prototype implementation
which provides optimal support for numerical experiments and numerical anal-
ysis in the investigation of new models, discretizations, and solvers.

This contribution is organized as follows. In Section 2, we introduce the
programming model for Point Objects, which is enhanced in Section 3 to par-
allel distributed objects. In addition, we define a parallel refinement process
leading to a hierarchical mesh structure. This is coupled in Section 4 with a
multilevel parallel linear algebra, where parallel multigrid methods can be de-
fined. In Section 5 this is combined with an abstract model for finite elements
(including the requirements for isoparametric elements). Finally, in Section 6
the application to a nonlinear model problem is presented.

2 Point Objects

Our geometry model is based on a finite set of points P ⊂ Rd. We consider
different types of points: corner points, edge midpoints, face midpoints, cell
midpoints, and the exception point P = ∞. A cell C = (P1, ..., PN ) is deter-
mined by a vector of N different corner points Pj ∈ P , and the convex hull of
the corner points is denoted by conv(C) ⊂ Rd. A face F = (Pleft, Pright) ∈ P2

is determined by a pair of points representing the midpoints of the cells Cleft

and Cright of the common face conv(Cleft) ∩ conv(Cright); boundary faces are
characterized by Pright = ∞. An edge E = (Pleft, Pright) ∈ P2 represents the
line from Pleft to Pright. Now, a mesh M = (C,F , E ,V ,B,G) is given by

• a cell mapping C : P −→
⋃

N

PN , which assigns every cell midpoint PC the

cell C = C(PC) represented by the vector of N corner points;
• a face mapping F : P −→ P2, which assigns every face midpoint PF the

two adjacent element midpoints;
• an edge mapping E : P −→ P2, which assigns every edge midpoint PE the

two adjacent vertices;
• a vertex mapping V representing a list of vertices;
• a boundary mapping B representing a list of boundary faces for the as-

signment of segment numbers specifying boundary conditions;
• a geometry mapping G : P −→ Rd, which assigns points P on the polyg-

onal boundary of
⋃

C conv(C) the projection onto the (possibly) curved
boundary of the computational domain Ω.
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All mappings return an empty object for points of wrong type. We use the
notation C ∈ C if C ∈ C(P), and P ∈ PC for the cell midpoints, etc.

We consider only consistent meshes with admissible triangulations, i. e., we
assume that the cells define a polygonal approximation Ω̄C =

⋃

C∈C conv(C)

of a domain Ω ⊂ Rd, such that conv(C) ∩ conv(C′) = conv(C ∩ C′) for two
cells C, C′ ∈ C, i. e., the intersection is empty, a common vertex in V , a
common edge in E , or a common face in F . In general, we assume G(P ) = P

for the boundary vertices P ∈ PV ∩∂Ω, and G(P ) ∈ ∂Ω for the P ∈ PE ∩∂ΩC

and P ∈ PF ∩ ∂ΩC . The geometry mapping is used for the realization of
isoparametric elements and for the refinement algorithm (see below).

Example We illustrate the data structure for a mesh with two triangles
in R2. Inserting the first triangle C1 = (P1, P2, P3) in M results in the point
set P = {P1, P2, P3, P12 = 1

2 (P1 + P2), P13 = 1
2 (P1 + P3), P23 = 1

2 (P2 +
P3), P123 = 1

3 (P1 + P2 + P3)}, the edges E(P12) = (P1, P2), E(P23) = (P2, P3),
E(P13) = (P1, P3), and the faces F(P12) = (P123,∞), F(P23) = (P123,∞),
F(P13) = (P123,∞).

P3

P2

P1

P13

P12

P123
P23

Now, the second triangle C2 = (P2, P4, P3) is inserted, which adds the new
points P24 = 1

2 (P2 + P4), P34 = 1
2 (P3 + P4), P234 = 1

3 (P2 + P3 + P4) to the
points set P , new edges E(P24) = (P2, P4), E(P34) = (P3, P4), and the new
faces F(P24) = (P234,∞), F(P34) = (P234,∞); the face F(P23) := (P123, P234)
is now updated. P3

P2

P34

P1 P4

P24

P13

P12

P123
P23

P234

After inserting all cells, we can identify the neighborhood relationship by the
faces, where a boundary face can be identified by testing for Pright = ∞.
Then, for curved boundaries the projection of edge midpoints and face mid-
points onto the boundary can be computed. In general, this requires an ad-
ditional data structure for the boundary definition. In our application, where
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the boundary is defined by a periodic cubic spline which is uniquely defined by
the corner vertices, this can be realized without further geometry information.

3 Distributed Objects

A parallel distribution is determined by a partition map

π : P −→ 2{1,2,...,Nprocs}

assigning to every point P ∈ P the subset π(P ) ⊂ {1, 2, ..., Nprocs} of pro-
cessors, where this point is represented. This defines also a unique master
processor µ(P ) = minπ(P ) for every point, and it determines an overlapping
partition

P = P1 ∪ · · · ∪ PNprocs
, Pq = {P ∈ P : q ∈ π(P )}.

We obtain the local mesh Mq = (Cq,Fq, Eq,Vq,Bq, πq) on processor q by
restricting all mappings to Pq. Then, the parallel distribution is completely
determined by the partition map π. An admissible parallel distribution re-
quires that every cell can be represented at least on one processor q, i. e., for
C = (P1, ..., PN ) ∈ Cq we require P ∈ Pq. Moreover, for every face F ∈ F we
require F ∈

⋃

p,q∈π(PF )

Pp × Pq.

For the determination of an admissible distribution of the mesh M onto
Nprocs processors, we assign a destination processor dest(C) ∈ {1, 2, ..., Nprocs}
to every cell C ∈ C, defining a disjoint partition

C = C1 ∪ · · · ∪ CNprocs
, Cq = {C ∈ C : dest(C) = q}

and a domain decomposition

Ω̄C = Ω̄1 ∪ · · · ∪ Ω̄Nprocs
, Ω̄q =

⋃

C∈Cq

conv(C).

A corresponding compatible partition map is defined by

π(PC) = {dest(C)}, C ∈ C,

π(PF ) = {dest(C) : PC ∈ F}, F ∈ F ,

π(PE) = {dest(C) : E ⊂ C}, E ∈ E ,

π(P ) = {dest(C) : P ∈ C}, P ∈ V .

Thus, the partition map can be computed in advance before the realization
of the parallel distribution.

Example (continued) The parallel distribution with dest(C1) = 1 and
dest(C2) = 2 results in π(P1) = π(P12) = π(P13) = π(P123) = {1}, π(P2) =
π(P3) = π(P23) = {1, 2}, and π(P4) = π(P24) = π(P34) = π(P234) = {2}.
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Parallel Refinement

A uniform refinement of a cell C = (P1, ..., PN ) in M is defined by a refinement
rule R = {rij : i = 1, ..., N, j = 1, ..., 2d}: let (P1, ..., PM ) = (VC , EC ,FC , PC)
be the vector of cell vertices, edge midpoints, face midpoints, and the cell
midpoint. Then, insert the cells Cj = (G(Pr1j

), ....,G(PrNj
)), j = 1, ..., 2d in

the new mesh N .
The new partition map is determined independently and can be computed

in advance before the refinement of the cells is realized:

πN (P ) = πM(P ) for all P ∈ PM,

πN (1

2
Pleft + 1

2
G(PE)) = πN (1

2
G(PE) + 1

2
Pright) = πM(PE)

for E = (Pleft, Pright) ∈ EM,

πN (G(PFj
)) = πM(PF ) for F ∈ FM, j = 1, .., 2d−1

πN (PCj
) = πN (PEk

) = πM(PC) for C ∈ CM, j = 1, .., 2d and inner edges,

where PFj
and PCj

are the midpoints of the refined face F or cell C.

Example (continued) The cell (P1, P2, P3) is refined (in case of no
boundary projections) to four cells C1 = (P1, P12, P31), C2 = (P2, P23, P12),
C3 = (P3, P31, P23), C4 = (P12, P23, P31), and we set πN (Pj) = πM(Pj),

πN (Pjk) = πN (1

2
Pj + 1

2
Pjk) = πN (1

2
Pjk + 1

2
Pk) = πM(Pjk), and finally

πN (PC1
) = πN (PC2

) = πN (PC3
) = πN (PC4

) = πN (1

2
Pij + 1

2
Pjk) = πM(PC).

4 Parallel Linear Algebra

We assign to every point P ∈ P the number of degrees of freedom NP ≥ 0,
where the point set P may be extended by nodal points of the finite element
discretization. Let NP =

∑

P∈P
NP be the total number of unknowns.

A vector u ∈ RNP ≃
∏

P∈P
RNP maps a point P to the vector u[P ] ∈ RNP of

unknowns associated to the point P ∈ P .
We use two different representation of distributed vectors (cf. Bastian [1996]):

• Solution vectors and correction vectors u are represented consistently in

V [M] :=
{

(u1, ..., uNprocs
) ∈

∏

RNPq : up[P ] = uq[P ], p, q ∈ π(P )
}

.

This defines a global vector u by u[P ] = uq[P ] for any q ∈ π(P ).
• Right-hand side vectors and residual vectors r are represented additively,

i. e., any additive vector (rq) ∈
∏

RNPq represents at P ∈ P the value
r[P ] =

∑

q∈π(P )

rq[P ]. Collecting the distributed values at the master points
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and replacing (rq) by rq [P ] = r[P ] for q = µ(P ) and rq[P ] = 0 else results
in a unique representation in

V (M) :=
{

(r1, ..., rNprocs
) ∈

∏

RNPq : rq[P ] = 0, q 6= µ(P )
}

.

This allows for the parallel evaluation of the norm
√

rT r =
√

∑

rT
q rq.

In our programming model we define the following parallel operators:

• The stiffness matrix corresponds to an operator A : V [M] −→ V (M). In
particular, for the solution vector (uq) ∈ V [M] and the right-hand side
(bq) ∈ V (M) the parallel residual (bq − Aquq) ∈ V (M) is independent

of the distribution. For any additive matrix (Aq) ∈
∏

RNPq × RNPq the
application of the parallel operator consists of two steps: compute an addi-
tive representation (Aquq) ∈

∏

RNPq by local matrix-vector multiplication
without parallel communication, and then collect the values on π(P ) for
all points P to obtain a vector in V (M).

• A parallel preconditioner corresponds to an operator B : V (M) −→ V [M].

E. g., B[P, P ] =
(

∑

q∈π(P )

Aq[P, P ] ∈ RNP×NP

)−1

defines the block-Jacobi

preconditioner. For the application, in the first step the local computation
results in an additive result (Bqrq) without parallel communication. Then,
this is accumulated on all processors in π(P ) to obtain a vector in V [M].

• We consider transfer operators I = INM : V [M] −→ V [N ] prolongating
values on a coarse mesh M to a fine mesh N . For the application, in the
first step the local application results in (Iquq) without parallel commu-
nication. For conforming discretizations and uniform parallel refinement
described in the previous section, the result is consistent in V [N ]; in gen-
eral, this requires local communication.
The adjoined operator IT : V (N ) −→ V (M) restricts values by first com-
puting an additive result (IT

q rq) without parallel communication and then
collecting the values on π(P ) for all points P to obtain a vector in V (M).

Together with the dual pairing in V [M]×V (M), this allows for a general for-
mulation of parallel iterative solvers such as Krylov methods with multigrid
preconditioner, where global communication is restricted to the inner prod-
ucts and the application of the parallel operators.

5 Parallel Finite Elements

Corresponding to cell based finite element discretizations we define the cell
nodal points by PC := {P ∈ P ∩ conv(C) : NP > 0}, the cell vector
u[C] =

(

x[P ]
)

P∈PC
∈ RNC with NC =

∑

P∈PC

NP , and the cell matrix

A[C] =
(

A[P, Q]
)

P,Q∈PC
∈ RNC ,NC . In the case of cubic triangular elements

we have NC = 10. Again, the isoparametric transformation is determined by
the application of the geometry mapping G to the nodal points.
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A nonlinear finite element problem is given by the following assembling
routines DC , RC , JC , running in parallel over all cells C ∈ Cq of a mesh M:

• Essential boundary conditions are assigned by a Dirichlet routine DC(u[C])
to the corresponding indices i = 1, ..., NP , P ∈ PC ; after the assembling
it has to be guaranteed that this results in parallel consistent Dirichlet
values respecting (uq) ∈ V [M].

• The additive residual r[C] = RC(u[C]) is computed depending on the
actual solution vector u[C]; after the assembling the residual values at
the distributed points P have to be collected on µ(P ) to obtain a unique
additive representation in V (M).

• If the residual norm is not small enough, the Jacobian A[C] = JC(u[C]) is
assembled additively; in every nonlinear step a consistent correction vector
c ∈ V [M] is computed by solving the linear equation Ac = r iteratively
up to a given accuracy, and the solution vector is updated by u := u + c.

6 A Numerical Experiment

We present a numerical approximation of the quasi-linear model problem

u ∈ H1
0 (Ω) : − ∆u = λ exp(u)

(Gelfand-Bratu problem) with cubic isoparametric finite elements. It is well
known that this equation admits at least two solutions for λ ∈ (0, λ∗), with a
turning point at the critical parameter λ∗ (see, e. g., Lions [1982]).

Fig. 1. A nonconvex domain Ω,
where the boundary ∂Ω is of class
C

2,1 (represented by a cubic spline).

While analytical tools provide the existence of only two solutions, it could
be shown by a computer assisted existence proof in Plum and Wieners [2002]
for a special nonconvex domain, that a further (symmetry breaking) solution
branch exists. Such a solution is illustrated in Fig. 2. For this method (show-
ing the existence of a continuous solution via Schauders fixpoint theorem),
extremely smooth and accurate approximations are required.

Fig. 2. Symmetry breaking solution
of the Gelfand problem for λ = 0.45,
computed in parallel with isopara-
metric cubic elements after 6 geome-
try preserving refinement steps of the
mesh in Fig. 1.

This example is realized (by the extended use of the standard template
library) within ca. 10000 lines of code (and ca. 100 lines for the definition of
the boundary value problem). The solution is computed on a Linux cluster
with 36 processors in less than 5 minutes.
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