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Summary. This work is the first step towards a multiphysics strategy for free-
surface flows simulation. In particular, we present a strategy to couple one and
two-dimensional hydrostatic free surface flow models. We aim to reduce the compu-
tational cost required by a full 2D model. After introducing the two models along
with suitable a priori error estimates, we discuss the choice of convenient match-
ing conditions stemming from the results obtained in Formaggia et al. [2001]. The
numerical results in the last section confirm the soundness of our analysis.

1 Introduction

Final aim of our research is an efficient and accurate numerical simulation of
the motion of water in a complex system of channels such as, for instance,
the well-known Venice lagoon. A hydrodynamic configuration of this type
involves a wide spectrum of space and time scales related to the presence of
different physical phenomena. It is well known that in hydrodynamics there
exists a hierarchy of models derived from the Navier-Stokes equations for an
incompressible free-surface fluid. Essentially we can distinguish among 1D,
2D and 3D models of hydrostatic and non-hydrostatic type. In descending
order of complexity, for the 3D case we can consider either the free surface
Navier-Stokes or the hydrostatic 3D shallow water equations; concerning the
2D situation the Boussinesq, Serre or Saint-Venant equations can be adopted;
finally the 1D counterpart of these latter models can be used (see, e.g., Miglio
et al. [1999], Vreugdenhil [1998], Whitham [1974]). In particular, in this paper
we consider only shallow water models, suitable for configurations where the
vertical scales are much smaller than the corresponding horizontal ones.
Ideally one should use a full 3D model to capture all the physical features
of the problem at hand. However, this approach is characterized by a huge
computational effort. Thus, the basic idea is to reduce the computational cost
by solving the more expensive model only in some parts of the domain. In
this work we deal with the coupling of the 2D and 1D shallow water models.
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This choice turns out to be reasonable for instance in the presence of a river
bifurcation such as the one shown in Fig. 1 (right). We extend the analysis
provided in Formaggia et al. [2001], where the 3D Navier-Stokes equations
are coupled with a convenient 1D model for the description of blood flow in
a compliant vessel, to the case of free surface flows. Even if, in our case, the
dimension of the coupled models is different, we resort to a similar analysis
to derive the suitable coupling conditions.

The outline of the paper is as follows. Sect. 2 deals with the 2D model. In
Sect. 3, we provide the 1D model and a corresponding stability analysis. In
Sect. 4, a set of interface conditions for sub-critical flows is proposed in order
to couple the two models. Finally, numerical results are presented in Sect. 5.

2 The 2D Model

We consider the description of the motion of a free-surface viscous incom-
pressible fluid when the vertical scales are much smaller compared with the
corresponding horizontal ones. This allows us to consider the shallow water

theory whose leading hypothesis is the hydrostatic approximation of the pres-
sure, i.e., the pressure of the fluid is assumed to depend on the total water
depth only. Many of the 1D and 2D hydrodynamic models, successfully used
in practical applications, depart from this assumption.

The 2D model is represented by the Saint-Venant or shallow water equa-
tions whose conservative form reads as follows















∂(hU)

∂t
+ ∇ · (hU⊗ U) + g h∇h = 0 with x ∈ Ω and t > 0,

∂h

∂t
+ ∇ · (hU) = 0 with x ∈ Ω and t > 0,

(1)

where x = (x, y)T , U = (u, v)T is the average velocity, h denotes the total
water depth and Ω ⊂ R

2 is a bounded open set. Of course, system (1) has to
be provided with suitable initial and boundary conditions (see, e.g., Agoshkov
et al. [1993]). We assume to be in the presence of a flat bottom and the effect
of the friction is neglected. Moreover, we are interested in sub-critical flow
regimes. The theory on hyperbolic systems can be applied to compute the
eigenvalues and eigenfunctions of (1). With this aim, by considering a region
of smooth flow, we can obtain the quasi-linear form of (1)

∂W

∂t
+A (W)

∂W

∂x
+B (W)

∂W

∂y
= 0 ,

where W = (u, v, h)T ,

A =





u 0 g
0 u 0
h 0 u



 and B =





v 0 0
0 v g
0 h v



 .
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It is well known that the eigenvalues of system (1) are

µ1 = −(cos(φ)u + sin(φ) v), µ2, 3 = −(cos(φ)u + sin(φ) v) ±
√

g h ,

φ being the direction of the characteristic lines, while the associated eigen-
functions are given by

w1 =







sin(φ)

− cos(φ)

0






, w2, 3 =







±
√

g/h cos(φ)

±
√

g/h sin(φ)

1






.

Concerning the stability analysis, a priori results are available in the literature
for the Saint-Venant equations in the conservative form and provided with
suitable boundary conditions (see, for instance, Agoshkov et al. [1993]).

3 The 1D Model

In the case Ω is an open channel, the 2D Saint-Venant equations (1) can
be replaced by a 1D shallow water model, by assuming that the velocity is
uniform over any cross section, that the channel is sufficiently straight and
its slope sufficiently mild and uniform throughout the region. Moreover, the
streamwise bottom slope and the lateral inflow are assumed equal to zero and
the bottom friction is neglected as in the 2D model.

We focus on the case of one-dimensional channels with a rectangular cross-
section. This choice turns out not to be so restrictive in realistic situations.
Indeed, even if the cross-section is irregular, a sophisticated channel schema-
tization can be employed by resorting to rectangular sections (see Schulz and
Steinebach [2002]). In such a case the 1D model reduces to the system















∂A

∂t
+
∂Q

∂x
= 0 with x ∈ (a, b) and t > 0,

∂Q

∂t
+

∂

∂x

(

Q2

A

)

+ gA
∂h

∂x
= 0 with x ∈ (a, b) and t > 0,

(2)

where A is the area of the wet cross-section, Q is the discharge and h denotes
the total water depth. System (2) has to be supplied with proper boundary
conditions. Without reducing the generality of our analysis, we assume that
the algebraic relation

h = ψ(A) + h0, with
∂ψ

∂A
> 0 and ψ(A0) = 0, (3)

holds between the total water depth and the area. Here h0 stands for the
constant undisturbed water depth, A0 is the area of the corresponding wet
section while ψ(A) = (A−A0)/L, L being the width of the section.
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Assumption (3) allows us to rewrite (2) as














∂A

∂t
+
∂Q

∂x
= 0 with x ∈ (a, b) and t > 0,

∂Q

∂t
+ 2

Q

A

∂Q

∂x
+

(

g A
∂h

∂A
− Q2

A2

)

∂A

∂x
= 0 with x ∈ (a, b) and t > 0.

(4)
We start from the quasi-linear form (4) to study the mathematical properties
of the solutions of the 1D model. Under the assumption (3), it can be proved
that system (2) is hyperbolic since it has two real eigenvalues λ1,2 = u ± c,
where u = Q/A while

c(A) =

√

g A
∂ψ(A)

∂A
=

√

gh

is the celerity of the system. In such a case it is also possible to compute the
characteristic variables given by

W1,2 = u±
∫ A

A0

c(τ)

τ
dτ = u±

∫ A

A0

√

gτ

L

1

τ
dτ = u± 2

√

g

L

[√
A−

√

A0

]

.

3.1 Stability Analysis

In this section we provide an a priori estimate for system (2).
We assume that, for any time t > 0, the area A remains positive and that
the eigenvalues λ1 and λ2 are of opposite sign (λ1 > 0, λ2 < 0), that is we
consider a sub-critical and unidirectional flux. This is the most interesting
situation in view of the coupling with the 2D model. We endow system (2)
with the following general initial and boundary conditions:

A(x, 0) = A∗(x), Q(x, 0) = Q∗(x) with a < x < b,

W1 = g1(t) at x = a, W2 = g2(t) at x = b, with t > 0.
(5)

Let us introduce the energy associated with model (2), defined, for any t > 0,
as

E(t) =
1

2g

∫ b

a

A(x, t)u2(x, t) dx +

∫ b

a

Ψ(A(x, t)) dx,

with Ψ(A) =
∫ A

A0

ψ(τ) dτ . Thanks to (3), we can guarantee that Ψ(A) and the

energy E(t) are positive functions, for any t > 0 and for any Q and A strictly
positive.

Thus, the following conservation property can be proved.

Lemma 1. Let us assume that relation (3) holds. Then for any T > 0, we

have

E(T ) +

∫ T

0

Q
(

(h− h0) +
1

2 g
u2

)∣

∣

∣

b

a
dt = E(0), (6)

E(0) depending only on the initial values A∗ and Q∗.
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We refer to Miglio et al. [2003] for the proof of this result as well as for
inequality (7). Result (6) can be used to derive an energy estimate for the 1D
problem (2).

Proposition 1. Let us assume that the boundary data g1 and g2 satisfy the

following restrictions

g1(t) > −2

√

gA0

L
and g2(t) < 2

√

gA0

L
.

Then, there exists a positive function F = F
(

g1, g2,
A0

L

)

such that

E(T ) ≤ E(0) +

∫ T

0

F

(

g1(t), g2(t),
A0

L

)

dt , (7)

i.e., the 1D model problem (2) provided with conditions (5) is stable.

Remark 1. If homogeneous boundary conditions are chosen in (5), estimate
(7) simplifies to E(T ) ≤ E(0) , provided that 2

√
A0/3 <

√
A < 2

√
A0.

We remark that no energy estimate is available for a general cross-section.

4 Coupling of the Two Models

After having proved the well-posedness of both the 1D and the 2D problems,
we can analyze the coupling of the two models.

Let us consider the coupling sketched on the left of Fig. 1. We denote with
a the matching point of the two models. The cross-section at x = a is assumed
to be a rectangle and its outward normal is along the x-direction. At the right-
hand side of a, i.e., in ω, we solve the 1D model (2) which provides the physical
quantities A1D, Q1D and h1D (and, as a consequence, u1D = Q1D/A1D). At
the left-hand side of a, that is in Ω, the 2D Saint-Venant equations (1) are
solved and the associated physical quantities are A2D, Q2D and h2D to be
defined shortly.

L/2

−L/2

Ω
ωa

ω

ω
a

1

2

2

a1

Ω

Fig. 1. Coupling of 2D with 1D models
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As we are linking quantities of different dimension, we can, for instance, reduce
the 2D ones to one-dimensional information by averaging the two-dimensional
terms. With this aim, let us introduce

u2D =
1

L

∫ L

2

−
L

2

u(a, y) dy , h2D =
1

L

∫ L

2

−
L

2

h(a, y) dy =
A2D

L
, Q2D = A2D u2D ,

i.e., the mean velocity, the mean total water depth and the mean discharge,

where A2D =
∫

L

2

−
L

2

h(a, y) dy. Due to the unidirectional flow assumption, from

the 2D to the 1D model, we have a subcritical outflow for the 2D system (with
two outgoing characteristics) and a subcritical inflow for the one-dimensional
problem (with an incoming characteristic). It seems reasonable from a physical
view-point to demand the continuity of the following quantities at the interface
x = a:

• C1. cross-section area: A2D = A1D, with A1D = h2DL;
• C2. discharge: Q2D = Q1D;

• C3. entering characteristic: 2
√
h2D g + u2D = 2

√
h1D g +

Q1D

A1D

.

Notice that all the mean variables are considered in an average form on the 2D
problem. On the other hand, concerning the choice of the matching conditions,
we remark that C1. and C3. would suffice as C2. is automatically guaranteed
when C1. and C3. are satisfied.

4.1 The Sub-Domain Iteration Algorithm

To develop a splitting procedure to solve the coupled 1D-2D problem, we en-
force at the matching point x = a only those conditions which guarantee the
well-posedness of each subproblem in Ω and ω. With this aim, we exploit the
results of the stability analysis above. In particular,

• C1. is used for imposing the total depth at the outflow of the 2D model;
• C3. is used at the inflow of the 1D model.

Then each subproblem is completed with other boundary conditions:

• condition a: at the inflow of the 2D model we assign the total water depth

h(t) as a function of time;
• condition b: at the outflow of the 1D model a non-reflecting boundary con-

dition is employed.

Moreover, we recall that on the rigid walls of the channel, no slip boundary
conditions are assigned.
Thus the main steps of the algorithm are: given the solution of the coupled
problem at time tn, for k = 1, 2, . . .

1. solve the 2D problem with C1. plus condition a in order to obtain hn+1

k ,
Un+1

k ;
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2. compute 2
√

hn+1

k g + U
n+1

k , that is an approximation for the left-hand

side of C3.;
3. solve the 1D problem with C3. plus condition b.

We iterate until the coupling conditions are satisfied within a fixed tolerance.
In practice, it can be verified that, after 2 or 3 iterations, the difference be-
tween the 1D and averaged 2D values is very small.

5 Numerical Assessment

To test the effectiveness of the proposed algorithm we consider the case of a
river bifurcation as sketched on the right of Fig. 1. We want to solve the 2D
model only in Ω, i.e., near the bifurcation while the one-dimensional problem
is solved in ω1 and ω2. The numerical solution of the 2D model is obtained
by using the 2D counterpart of the approach proposed in Miglio et al. [1999].
As for the 1D model a finite volume method is employed. As initial condition
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Fig. 2. Initial elevation profile

for the elevation we choose the profile shown in Fig. 2, while the time step is
chosen equal to ∆t = 0.1s and for the space discretization of both the 1D and
2D models a mesh size h = 0.1m is used. In Fig. 3 we show two snapshots of the
approximate elevations provided by the full 2D shallow water model (on the
left) and by the coupled 2D-1D one (on the right), respectively, corresponding
to two different times (t = 250s and t = 300s). These results confirm the
soundness of the algorithm proposed in Sect. 4.1. The wave travels from the
2D to the 1D model without any significant distortion: no wave amplitude
reduction and no phase difference is evident.
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Fig. 3. Approximate elevation for the full 2D model (on the left) and for the coupled
2D-1D model (on the right) corresponding to t = 250s (top) and to t = 300s

(bottom)
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