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Summary. The main focus of this paper is to suggest a domain decomposition

method for mixed finite element approximations of elliptic problems with anisotropic

coefficients in domains. The theorems on traces of functions from Sobolev spaces

play an important role in studying boundary value problems of partial differential

equations. These theorems are commonly used for a priori estimates of the stability

with respect to boundary conditions, and also play very important role in con-

structing and studying effective domain decomposition methods. The trace theorem

for anisotropic rectangles with anisotropic grids is the main tool in this paper to

construct domain decomposition preconditioners.

1 Introduction

In order to present the basic idea of the algorithm, let us consider the following
simple model problem. Let a domain Ω be the union of two non-overlapping
subdomains which are rectangles, i.e., Ω = ∪2

i=1Ωi, where

Ωi = {(x, y)|i − 1 < x < i, 0 < y < 1}, i = 1, 2.

In Ω we consider the following problem. Find p such that

− div(a∇p) = f in Ω,

p = 0 on ∂Ω,
(1)

where the matrix a is given as follows: a =

(

ax 0
0 ay

)

with ax = ax
i and

ay = a
y
i being positive constants in each Ωi, i = 1, 2. Denote the interface by

γ = ∂Ω1 ∪ ∂Ω2 \ ∂Ω.
For the problem (1) we introduce a flux variable, u = −a∇p, which is of

interest in many applications. Writing α = a−1(x), the inverse matrix of a,
the problem (1) is equivalent to seeking (u, p) such that
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αu + ∇p = 0 in Ω,

div u = f in Ω,

p = 0 on ∂Ω.

(2)

Multiplying by test functions and integrating by parts we obtain the fol-
lowing weak formulation of problem (2)

(αu, v) − (div v, p) = 0, ∀v ∈ H(div; Ω),

−(div u, q) = −(f, q), ∀q ∈ L2(Ω),
(3)

where H(div; Ω) = {v ∈ L2(Ω)2 : div v ∈ L2(Ω)}.
The variational formulation (3) fits the abstract framework that is gener-

ally used for mixed methods. It is well known that under the LBB condition
the abstract framework is well-posed.

We consider the rectangular Raviart-Thomas mixed finite element spaces
Vh ⊂ H(div; Ω) and Qh ⊂ L2(Ω) associated with the triangulation Th of Ω.
The lowest order rectangular Raviart-Thomas elements are defined as follows:

RT (T ) = Q1,0(T ) × Q0,1(T ), Q(T ) = Q0,0(T ) for rectangle T.

Define
Vh = {v ∈ H(div; Ω) : v|T ∈ RT (T ), ∀T ∈ Th}

and
Qh =

{

q ∈ L2(Ω) : q|T ∈ Q(T ), ∀T ∈ Th

}

.

For simplicity, we will consider the uniform rectangular decomposition Th,
where mesh steps hx = 1

m
, hy = 1

n
for some positive integers m, n so that

Th = T1h ∪ T2h. For i = 1, 2

Vhi = {v ∈ H(div; Ωi) : v|T ∈ RT (T ), ∀T ∈ Tih} ,

Qhi =
{

q ∈ L2(Ωi) : q|T ∈ Q(T ), ∀T ∈ Tih

}

.
(4)

The standard mixed finite element approximation (uh, ph) ∈ Vh × Qh is
defined by

(αuh, v) − (div v, ph) = 0, ∀v ∈ Vh,

−(div uh, q) = −(f, q), ∀q ∈ Qh.
(5)

Note that the normal component of the members in Vh is continuous across
the interior boundaries in γ. We relax this constraint on Vh by introducing
Lagrange multipliers; see Arnold and Brezzi [1985]. Let Eh be the set of edges
which belongs to γ. The Lagrange multipliers space Λh to enforce the required
continuity on γ is defined by

Λh =

{

µ ∈ L2

(

⋃

e∈Eh

e

)

: µ|e ∈ Vh · ν|e for each e ∈ Eh

}

.
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Then, the hybridized form of domain decomposition method for mixed finite
elements is to find (uih, pih, λh) ∈ Vih × Wih × Λh such that

2
∑

i=1

(αuih, vi) −
2

∑

i=1

(div vi, pih) +

2
∑

i=1

< λh, vi · νi >= 0, ∀vi ∈ Vih

−
2

∑

i=1

(div uih, qi) = −(f, qi), ∀qi ∈ Wih

2
∑

i=1

< µ, uih · νi >= 0, ∀µ ∈ Λh.

(6)

With the standard ordering of the unknowns, the matrix equation for (6)
is given by









Ax 0 BT
x CT

0 Ay BT
y 0

Bx By 0 0
C 0 0 0

















Ux

Uy

P

Λ









=









0
0
F

0









. (7)

2 General Approach to Preconditioning Saddle Point

Problems

Let V and Q be Hilbert spaces. Let an operator A : V → V be linear,
symmetric, positive definite, bounded and let a linear operator B map V into
Q. Denote by BT the transpose operator for B. Let us consider the following
saddle point problem: find (u, p) ∈ V × Q such that

Aχ :=

[

A BT

B 0

] [

u

p

]

=

[

g

f

]

, g ∈ V, f ∈ Q.

For the operator A we search for a preconditioner R in the block-diagonal
form

R =

[

A 0
0 Σ

]

,

where Σ maps Q to Q.
Consider the spectral problem

Aχ = λRχ

with Σ = BA−1BT . Then the eigenvalues of the problem belongs to the set

{1 −
√

5

2
, 1,

1 +
√

5

2
}.

According to Rusten and Winther [1992] and Kuznetsov and Wheeler
[1995], we have
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Lemma 1. Let R̂ be a symmetric operator. If there are positive constants c1

and c2 such that

c1(Rχ, χ) ≤ (R̂χ, χ) ≤ c2(Rχ, χ), ∀χ ∈ V × Q,

then the eigenvalues λ of R̂−1A belong to two segments

λ ∈ [−d1,−d2] ∪ [d3, d4],

where

d1 =
1

c1
(

√
5 − 1

2
), d2 =

1

c2
(

√
5 − 1

2
),

d3 =
1

c2
, d4 =

1

c1
(

√
5 + 1

2
).

To solve the problem Aχ = b, we use the Lanczos method with a precondi-
tioner R̂ satisfying the lemma. Denote

θ =
max{d1, d4}
min{d2, d3}

, q =
θ − 1

θ + 1
.

Then, from general theory of iterative methods, if χ0 is an initial vector and
χn is an approximation after n iterations by the Lanczos method, the following
estimate holds:

‖χn − χ‖
R̂
≤ 2qn‖χ0 − χ‖

R̂
,

where
‖χ‖

R̂
= (R̂χ, χ)

1

2 .

It means that the construction of an effective preconditioner for A has been
reduced to the construction of an effective preconditioner for the Schur com-
plement BA−1BT .

Remark 1. If the cost of the multiplication of A−1 by a vector is small (for
example if A is a diagonal matrix), then instead of solving the system with A
by the Lanczos method, we can solve the system with the Schur complement
BA−1BT by a preconditioned conjugate gradient method.

3 Preconditioning for the Schur complement

Let us denote by p̂ , q̂ ∈ R(n·m+n+n·m) vectors in block form:

p̂ = [p1 λ p2]
T , q̂ = [q1 µ q2]

T

where

p1 = [p1,1 p1,2 · · · p1,n p2,1 p2,2 · · · pm,1 pm,2 · · · pm,n]T ,
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λ = [λ1 λ2 · · λn]T ,

p2 = [pm+1,1 pm+2,2 · · · pm+1,n pm+2,1 pm+2,2 · · · p2m,1 · · · · p2m,n]T ,

and q̂ is similarly denoted.
Elimination of the flux variables in (7) reduces to the Schur complement

which we denote by the matrix S according to the ordering of unknowns
[p1 λ p2]

T . Let

ãx
i = ax

i

hy

hx

, ã
y
i = a

y
i

hx

hy

, i = 1, 2.

Then we define the (n ·m + n + n ·m)× (n ·m + n + n ·m) matrix S̃ so that

S̃p̂ = q̂,

where

−ãx
1pi−1,j − ãx

1pi+1,j − ã
y
1pi,j−1 − ã

y
1pi,j+1 + 2(ãx

1 + ã
y
1)pi,j = qi,j ,

i = 1, 2, · · ·, m, j = 1, 2, · · ·, n,

−ãx
2pi−1,j − ãx

2pi+1,j − ã
y
2pi,j−1 − ã

y
2pi,j+1 + 2(ãx

2 + ã
y
2)pi,j = qi,j ,

i = m + 1, m + 2, · · ·, 2m, j = 1, 2, · · ·, n,

−ãx
1pm,j − ãx

2pm+1,j + (ãx
1 + ãx

2)λj = µj ,

j = 1, 2, · · ·, n.

Here
p0,j = 0, p2m+1,j = 0, j = 1, 2, · · ·, n,

pi,0 = 0, pi,n+1 = 0, i = 1, 2, · · ·, 2m.

The following is an analogue of Cowsar et al. [1995] and Kwak et al. [2003]
for anisotropic case:

Lemma 2. There exist constant c1, c2, independent of ax, ay, hx, hy, such that

for any p̂

c1(Sp̂, p̂) ≤ (S̃p̂, p̂) ≤ c2(Sp̂, p̂).

With the block representation of p̂, we can consider a block form of S̃p̂

S̃p̂ =





B1 B10 0

B01 (B
(1)
0 + B

(2)
0 ) B02

0 B20 B2









p1

λ

p2





= (





B1 B10 0

B01 B
(1)
0 0

0 0 0



 +





0 0 0

0 B
(2)
0 B02

0 B20 B2



)





p1

λ

p2





= (S̃1 + S̃2)p̂.
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According to the Additive Schwarz Method; see Matsokin and Nepom-

nyaschikh [1989], we can define a preconditioner ˜̃
S for S̃ as

˜̃
S−1 =





B̃−1
1 0 0
0 0 0

0 0 B̃−1
2



 +





0 t1 0
tT1 Σ−1 tT2
0 t2 0



 .

Here B̃1, B̃2 are spectrally equivalent to B1, B2 and Σ is spectrally equivalent
to the Schur complements for S̃1 + S̃2 :

(B
(1)
0 − B01B

−1
1 B10) + (B

(2)
0 − B02B

−1
2 B20) = Σ1 + Σ2

and t1, t2 extension operators of functions from γ to Ω1 and Ω2 respectively
such that

c1(Σ1λ, λ) ≤ (S̃1t1λ, t1λ) ≤ c2(Σ1λ, λ),

c1(Σ2λ, λ) ≤ (S̃2t2λ, t2λ) ≤ c2(Σ2λ, λ),

for any λ.

For optimal convergence of the corresponding iterative method, all con-
stants of spectral equivalence should be independent of ax, ay, hx, hy.

Now we consider only one subdomain Ω1. We omit subindex for the sub-
domain and denote by p̂

p̂ = [p1 λ]T

with block vectors p1, λ defined as before and denote by A0 the n×n matrix

A0 =

















2 −1
−1 2 −1

−1 2 −1
−1 2

















and by I the n×n identity matrix. Consider the following (n·m+n)×(n·m+n)
matrix S̃

S̃ = ãx

















(σA0 + 2I) −I

−I (σA0 + 2I) −I

−I (σA0 + 2I) −I

−I I

















:= ãx

[

B11 B12

B21 B22

]

where

σ =
ãy

ãx
, ãx = ax hy

hx

, ãy = ay hx

hy

, B22 = I.

Using the eigenvectors and eigenvalues of A0
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A0qi = λiqi, i = 1, · · · , n,

qi =













qi(1)
qi(2)
·
·

qi(n)













, qi(j) =

√

2

n + 1
sin

iπj

n + 1
, j = 1, 2, · · · , n,

λi = 4 sin2 πi

2(n + 1)
,

we have
A0 = QΛQT (8)

Q = QT = [q1, · · ·, qn], Λ = diag{λ1, · · ·, λn}.
To compute the Schur complement for S̃

Σ = ãx(B22 − B21B
−1
11 B12)

we can use (8) and find a diagonal matrix D such that

Σ = QDQT .

Using the technique from Matsokin and Nepomnyaschikh [1989], we have

Lemma 3. The diagonal matrix D has the following elements.

D = diag{µ1(Σ), µ2(Σ), · · ·, µn(Σ)}

µi(Σ) = ãx(1 − Um−1(βi)

Um(βi)
),

where βi = 1
2σλi + 1 and Uj is the Chebyshev polynomial of the second kind

of degree j so that

Uj(x) =
1

2
√

x2 − 1
((x +

√

x2 − 1)j+1 − (x +
√

x2 − 1)−(j+1)).

Using the lemma for both subdomains Ω1 and Ω2, we can define

Σ1 = QD1Q
T for subdomain Ω1

and
Σ2 = QD2Q

T for subdomain Ω2.

Then, put
Σ = Q(D1 + D2)Q

T

and so
Σ−1 = Q(D1 + D2)

−1QT .

Hence, finally we have the following theorem:
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Theorem 1. Let preconditioner
˜̃
S be defined as

˜̃
S−1 =





B̃−1
1 0 0
0 0 0

0 0 B̃−1
2



 +





0 t1 0
tT1 Σ−1 tT2
0 t2 0,





with Σ defined as above. Then, there exist constant c1, c2, independent of

ax, ay, hx, hy, such that for any p̂

c1(Sp̂, p̂) ≤ ( ˜̃
Sp̂, p̂) ≤ c2(Sp̂, p̂).

To summarize, we have presented an optimal algorithm for a model
anisotropic problem such that a condition number of the preconditioned prob-
lem is independent of parameters coefficients, grid sizes and the arithmetical
cost of implementation of this algorithm is proportional to the number of
degrees of freedom.

Acknowledgement. This work was supported by the Brain Korea 21 Project through

Department of Mathematics, Yonsei University. EJP was supported in part by

Com2MaC-KOSEF.

References

D. N. Arnold and F. Brezzi. Mixed and nonconforming finite element methods:
implementation, postprocessing and error estimates. RAIRO Math. Model.

Numer. Anal., 19:7–32, 1985.
L. C. Cowsar, J. Mandel, and M. F. Wheeler. Balancing domain decomposition

for mixed finite elements. Math. Comp., 64(211):989–1015, July 1995.
Y. A. Kuznetsov and M. F. Wheeler. Optimal order substructuring precondi-

tioners for mixed finite element methods on nonmatching grids. East-West

J. Numer. Math., 3(2):127–143, 1995.
D. Kwak, S. Nepomnyaschikh, and H. Pyo. Domain decomposition for model

heterogeneous anisotropic problem. Numer. Linear Algebra, 10:129–157,
2003.

A. M. Matsokin and S. V. Nepomnyaschikh. On using the bordering method
for solving systems of mesh equations. Sov. J. Numer. Anal. Math. Model-

ing, 4:487–492, 1989.
T. Rusten and R. Winther. A preconditioned iterative method for saddle

point problems. SIAM J. Matrix Anal., 13:887–904, 1992.


