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MIG, Université P. Sabatier, 118, route de Narbonne, 31062 Toulouse cedex 4,
France <antoine@mip.ups-tlse.fr> (http://mip.ups-tlse.fr/~antoine/)

2 Laboratoire de Mathématiques Appliquées pour l’Industrie, Université de Pau et
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Summary. The construction of accurate generalized impedance boundary condi-
tions for the three-dimensional acoustic scattering problem by a homogeneous dissi-
pative medium is analyzed. The technique relies on an explicit computation of the
symbolic asymptotic expansion of the exact impedance operator in the interior do-
main. An efficient pseudolocalization of this operator based on Padé approximants is
then proposed. The condition can be easily integrated in an iterative finite element
solver without modifying its performances since the pseudolocal implementation
preserves the sparse structure of the linear system. Numerical results are given to
illustrate the method.

1 Introduction

The penetration of an acoustic field into a given medium can be approximately
modeled through a Fourier-Robin-type (also called impedance) boundary con-
dition (see for instance Senior and Volakis [1995]). To have both a larger
application range and a gain of accuracy of the model, a possible approach
consists in designing higher-order generalized impedance boundary conditions.
These conditions are often defined by a differential operator which describes
with some finer informations the behaviour of the transmitted acoustic field.
We present some new generalized impedance boundary conditions which ex-
tend the validity domain of the usual differential conditions for the scattering
problem of an acoustic wave by a three-dimensional homogeneous isotropic
scatterer. The proposed conditions have also the interest of not increasing the
total cost of a resolution by an iterative finite element solver (or possibly an
integral equation procedure). All these points are developed below.
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2 The acoustic transmission boundary value problem

Let Ω1 be a regular bounded domain embedded in R3 with a C∞ boundary
Γ . We set Ω2 as the associated infinite domain defined by Ω1 = R3/Ω2. We
assume that both media Ωj , j = 1, 2, are homogeneous and isotropic. Each
one is characterized by two positive real constants: the density ρj and the
sound velocity cj . We moreover suppose that Ω1 may be dissipative. This
aspect is modeled by the introduction of a damping parameter δ ≥ 0.

Consider now an incident wave u0 defined in the vicinity of Γ and which
satisfies the Helmholtz equation: ∆u0 + k2

2u0 = 0. We make the assumption
that the solution has a time-harmonic dependence of the form e−ik2t, where
k2 = ̟/c2 is the wave number in the unbounded domain of propagation,
setting ̟ as the frequency of the signal. We can then define the (possibly
complex) wave number k1 in Ω1 by: k2

1 = ̟2/c−2

1 (1+ iδ/̟). Two parameters
are usually introduced: the complex refraction index N = c−1

r (1 + iδ/̟)1/2

and the complex contrast coefficient α = ρ−1
r (1 + iδ/̟)−1, where cr and

ρr designate respectively the relative velocity and density. Finally, if z is a
complex number, we set z1/2 as the principal determination of the square
root with branch cut along the negative real axis.

We consider now the scattering problem of the wave u0 by Ω1 which con-
sists in computing the field v solution to the transmission problem





∆v2 + k2
2v2 = 0, in Ω2,

∆v1 + k2
1v1 = k2

2(1 −N2)u0, in Ω1,

[v] = 0 and [χ∂nv] = −[χ∂nu0], on Γ,

lim
|x|→+∞

|x|(∇v2 ·
x

|x| − ik2v2) = 0,

(1)

where χ is the piecewise constant function defined by χ = 1 in Ω2 and χ = α
in Ω1. The vector n stands for the outward unit normal vector to Ω1. The
restriction of the field v to Ωj , j = 1, 2, is denoted by vj = v|Ωj

; the jump
between the exterior and interior traces is given by: [v] = v1|Γ − v2|Γ . The

inner product of two complex vector fields a and b of C3 is: a ·b =
∑3

j=1 ajbj.
The operator ∇ is the gradient operator of a complex-valued vector field and
the Laplacian operator is defined by: ∆ = ∇2. The last equation of (1) is
the so-called Sommerfeld radiation condition at infinity which leads to the
uniqueness of the solution to the boundary value problem. We denote by SRC
the associated operator. The existence and uniqueness of the solution to (1)
can be proved in an adequate functional setting.

3 Generalized impedance boundary conditions

When the interior wave number has a sufficiently large modulus |k1|, a reduc-
tion of the computational complexity in the practical solution of the boundary
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value problem (1) can be achieved by approximately modeling the penetra-
tion of the wave into the interior domain by a boundary condition set on Γ .
This approach is well-known in electromagnetism under the name of general-

ized impedance boundary condition method. The ideas have been introduced
during the second world war for modeling the interaction of an electromag-
netic field with an irregular terrain (see e.g. Senior and Volakis [1995]). The
resulting boundary condition for a given problem takes the form of a general-
ized mixed boundary condition defined by a differential or a pseudodifferential
operator. We give here an outline of the application of the theory of pseudod-
ifferential operators to derive a family of accurate boundary conditions for the
transmission problem.

The first point consists in considering the total field formulation of system
(1) setting u = v + u0. Therefore, we are led to compute u such that





∆u2 + k2
2u2 = −f, in Ω2,

∆u1 + k2
2N

2u1 = 0, in Ω1,

[u] = 0 and [χ∂nu] = 0, on Γ,

SRC(u2 − u0) = 0,

for an explicit source term f . Let us now assume that we can construct the
Dirichlet-Neumann (DN) operator for the interior problem

{
Z̃− : H1/2(Γ ) → H−1/2(Γ )

u1 7→ ∂nu1 = Z̃−u1

.

This operator, also called the Steklov-Poincaré operator, is a first-order pseu-
dodifferential operator. The determination of this operator yields an a priori

integro-differential computation of the internal solution from its Cauchy data.
Using the transmission conditions at the interface and considering the scat-
tered field formulation, we have to solve the exterior non-standard impedance
boundary value problem: find v2 such that





∆v2 + k2
2v2 = 0, in Ω2,

(∂n − αZ̃−)v2 = g, on Γ ,

SRC(v2) = 0,

with g = −(∂n−αZ̃−)u0. In the above system, the operator αZ̃− is generally
called the Exact Impedance Boundary Operator (EIBO).

To achieve an explicit computation of a non-local approximation of the DN
operator for an arbitrarily-shaped surface, we rewrite the Helmholtz equation
in a generalized coordinates system associated to the surface and next we com-
pute the two first terms of its asymptotic expansion in homogeneous complex
symbols. To this end, let us define the wave operator in the interior domain:
L1 = (∆ − ∂2

t ), where the exponential time dependence of the solution is
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e−ik1t. As a consequence, the multiplication by k1 must be understood as the
action of the first-order time derivative where we take the attenuation effects
into account. A calculation in the one-dimensional case in space naturally im-
poses the choice of k1. Furthermore, we can notice that we consider the same
asymptotic parameter as Senior and Volakis [1995] but without assuming a
particular analytical asymptotic form of the interior field. This hypothesis is
unnecessary here and yields some more accurate pseudodifferential approxi-
mations of the EIBO.

Let us express the operator L1 in a tubular neighborhood of Γ . Since Γ is
a compact submanifold of R3, we can choose a local coordinates system at any
point x0 of Γ . Let us designate by s = (s1, s2) the tangential variable and by r
the radial variable along the unit normal vector n at x0. Then, a point x near
the surface can be locally rewritten under the form: x = x0 + rn(x0), with
x0 ∈ Γ . Let us introduce Γr as the surface defined for a fixed value of r and let
us choose an orthogonal coordinates system on Γ . The covariant basis (τ 1, τ 2)
of the tangent plane Tx0

(Γ ) which is compatible with the orientation of n(x0)
is better known as the principal basis. Vectors τ 1 and τ 2 are the principal
directions of the curvatures to the surface. If we set R as the curvature tensor
of the tangent plane at a given point of the surface, then the diagonalization
of R yields the determination of the principal curvatures κ1 and κ2 of Γ which
fulfill: Rτ β = κβτ β for β = 1, 2, and the mean curvature H = (κ1 + κ2)/2.
Let hβ = 1 + rκβ , β = 1, 2. After a few calculations, we find the expression of
the Helmholtz operator in generalized coordinates

L1 = ∂2
r + 2Hr∂r + h−1

1 h−1

2 ∂s · (h2h
−1

1 ∂s1
, h1h

−1

2 ∂s2
) − ∂2

t ,

setting Hr = (h−2

1 κ1 + h−2

2 κ2)/2.
To construct the approximation of the EIBO, we have to introduce some

tools available from the theory of pseudodifferential operators. Let A =
A(x,Dx) be a pseudodifferential operator of OPSj , j ∈ Z, σ(A) = σ(A)(x, η)
its symbol and σj(A) its principal symbol. A symbol σ(A) admits a symbolic
asymptotic expansion in homogeneous symbols if it can be written on the form
σ(A) ∼ ∑+∞

m=−j σ−m(A), where functions σ−m(A) are some homogeneous
functions of degree −m with respect to η, with m ≥ −j, which continuously
depend on x. The above equality holds in the sense of pseudodifferential opera-
tors (see Treves [1980]). The partial symbol L1 of L1, according to s = (s1, s2)
and t and their respective covariables ξ = (ξ1, ξ2) and Nω, smoothly depends
on r. This symbol can be expressed as

L1 = ∂2
r + 2Hr∂r − |ξ|2 + ih−1

1 h−1

2 (∂s1
h2h

−1

1 , ∂s2
h1h

−1

2 ) · ξ +N2ω2,

where the length of ξ is defined by: |ξ| = (
∑2

β=1
h−2

β ξ2β)1/2. Since N is a
complex number, L1 is a complex symbol. Therefore, the operator L1 can be
factorized since its characteristic equation: z2 + N2ω2 − |ξ|2 = 0 admits two
distinct complex conjugate roots. These two solutions z±1 = ±i(N2ω2−|ξ|2)1/2

are first-order homogeneous complex functions according to (ξ,Nω). For a
dissipative medium, we remark that: ℜz−

1
> 0 and ℜz+

1
< 0.
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According to Antoine et al. [2001], the following proposition holds.

Proposition 1. There exist two classical pseudodifferential operators Z− and

Z+ of OPS1, which continuously depend on r and such that

L1 = (∂r − Z+)(∂r − Z−) mod C∞,

with σ1(Z
±) = z±1 . Moreover, the uniqueness of the decomposition is satis-

fied by the following characterization. Let z± be the symbol of Z±. From the

definition of pseudodifferential operators in OPS1, symbols z± are some el-

ements of the symbol class S1 and admit the following asymptotic expansion

z± ∼ ∑+∞
j=−1

z±−j, where z±−j are some homogeneous complex valued functions

of degree −j with respect to (ξ,Nω).

In the case of a non-dissipative medium with ℑN = 0, it can be proved that
the factorization is only valid in the cone of propagation {(ξ,Nω), z+

1 z
−
1 > 0}.

Using the calculus rules of classical pseudodifferential operators, one can
obtain an explicit recursive and constructive algorithm to compute each ho-
mogeneous symbol. We refer to Antoine et al. [2001] for further details. We
restrict ourselves to the presentation of the effect of the first two terms of the
asymptotic expansion (m = 0), taking more terms leading to more complicate
formulations. The first symbol z−

1
= −i(N2ω2−|ξ|2)1/2 has already been com-

puted. Concerning the zeroth-order symbol, one gets the explicit expression
z−0 = −H−

∑2

l=1
κlξ

2
l /(2(z−1 )2). From the analysis developed in Antoine et al.

[2001], the EIBO can be suitably approximated by the following generalized
Fourier-Robin boundary condition

(∂n − α
m∑

j=−1

Z̃−
−j)v2 = g̃ ≡ −(∂n − α

m∑

j=−1

Z̃−
−j)u0, (2)

with the classical pseudodifferential operator: Z̃−
−j = Op(z−−j|r=0

).

The resulting approximate boundary condition (2) is not yet completely
satisfactory for a numerical treatment. Indeed, the condition is still defined by
a non-local pseudodifferential operator. If we approach the numerical solution
by a volume finite element method, then we have to consider the following
variational formulation: find v2 ∈ H1(Ωb) such that

∫

Ωb

∇v2 · ∇ϕ− k2
2v2ϕdΩb +

∫

Σ

Mv2ϕdΣ + α

∫

Γ

0∑

j=−1

Z̃−
−jv2ϕdΓ

= −
∫

Γ

g̃ϕdΓ.

(3)

In the above formulation, the unbounded domain has been truncated by the
introduction of a non-reflecting boundary condition of the form: ∂nv2+Mv2 =
0, where M is a local differential operator defined on a fictitious boundary Σ
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enclosing the scatterer. The resulting finite domain of computation is denoted
here by Ωb with a boundary ∂Ωb := Γ ∪ Σ. Generally, such a linear system
is solved by an iterative solver (see e.g. Tezaur et al. [2002]). Therefore, we
can assume that v2 is a given entry at the k-th step of the algorithm and we
want to evaluate the action of the operator defined by the left-hand side of
Eq.(3). The first two terms are actually classical to compute (Antoine [2001],
Tezaur et al. [2002]). This is not the case of the third one which involves two
pseudodifferential operators leading to a high computational cost similar to
the one involved in an integral equation approach. If we stop at this level,
the method is inefficient. However, one can overcome this problem using some
suitable Padé approximants. To fix the ideas, let us consider the first-order
homogeneous pseudodifferential operator and let us introduce the classical
Padé approximants of the square root with branch cut along the negative
real line from z = −1:

√
1 + z ≈ RM (z) = c0 +

∑M
j=1

ajz(1 + bjz)
−1. The

coefficients c0 and (aj , bj)j=1,...,M are expressed as c0 = 1, aj = 2/(2M +
1) sin2(jπ/(2M + 1)) and bj = cos2(jπ/(2M + 1)), for j = 1, ...,M . Then,

the evaluation of Z̃−
1 applied to a given surface field v2 is realized by first

computing the solution φj to the surface PDE
∫

Γ

bj∇Γφj · ∇Γψ − k2
1φjψdΓ =

∫

Γ

v2ψdΓ, for j = 1, ...,M,

and then evaluating

∫

Γ

Z̃−
1 v2ψdΓ = −ik1

∫

Γ

v2ψdΓ + ik1

M∑

j=1

aj

∫

Γ

∇Γφj · ∇ΓψdΓ,

for any test function ψ in H1(Γ ). The operator ∇Γ is the surfacic gradient
operator of a scalar surface field. If the interior medium is weakly dissipative or
non-dissipative, the approximation of the square root can require a large num-
ber M of PDEs to solve. A modified version of the square root approximation
should be preferred as for instance by using the rotating branch cut approxi-
mation of Milinazzo et al. [1997]. This new approximation has been introduced
within the context of underwater acoustic wave propagation problems resolved
by the wide-angle parabolic equations approach. The technique consists of
replacing the usual coefficients by the new ones C0 = eiθ/2RM (e−iθ − 1),
Aj = e−iθ/2aj((1 + bj(e

−iθ − 1))−2 and Bj = e−iθbj(1 + bj(e
−iθ − 1))−1,for

j = 1, ...,M . An optimal experimental value for the free rotation angle is
θ = π/4 and M = 4 for the number of equations (to a priori choose with
respect to the interior frequency).

4 Numerical performance

To evaluate the efficiency of the pseudolocal impedance boundary condition,
we represent both the surface field and the far field pattern which is given by
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RCS(ϑ) = 10 log10(limr→+∞ 2πr|v2(r, ϑ)|2) (db). We compare it to the local
impedance boundary condition developed in Antoine et al. [2001] using some
second-order Taylor expansions of the first four symbols. This latter condi-
tion has a wider validity domain than the usual Fourier-Robin condition. We
consider an incident plane wave of frequency k2 = 25 and with a null inci-
dence angle illuminating the unit circular cylinder. The physical parameters
are ρr = 1.3, cr = 1.05 and δ = 5 (|N | = 0.96 and ℑk1 = 2.3). As it can be
seen on Fig. 1, the surface field is accurately computed with the new condi-
tion compared to the second-order condition. This remark also holds for the
bistatic RCS. A more complete analysis shows that it is always preferable to
use the Padé approximation than the second-order Taylor expansion without
affecting the total computational cost of the iterative procedure.
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Fig. 1. Surface fields and bistatic RCS computations for the proposed test case.
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