Performance Evaluation of a Multilevel
Sub-structuring Method for Sparse Eigenvalue
Problems*

Weiguo Gao!, Xiaoye S. Li!, Chao Yang!, and Zhaojun Bai?

! Computational Research Division, Lawrence Berkeley National Laboratory,
Berkeley, CA 94720. {wggao, xsli, cyang}@lbl.gov

? Department of Computer Science, University of California, Davis, CA 95616.
bai@cs.ucdavis.edu

1 Introduction

The automated multilevel sub-structuring (AMLS) method [2, 7, 3] is an ex-
tension of a simple sub-structuring method called component mode synthesis
(CMS) [6, 4] originally developed in the 1960s. The recent work by Bennighof
and Lehoucq [3] provides a high level mathematical description of the AMLS
method in a continuous variational setting, as well as a framework for de-
scribing AMLS in matrix algebra notations. The AMLS approach has been
successfully used in the vibration and acoustic analysis of very large scale fi-
nite element models of automobile bodies [7]. In this paper, we evaluate the
performance of AMLS on other types of applications.

Similar to the domain decomposition techniques used in solving linear sys-
tems, AMLS reduces a large-scale eigenvalue problem to a sequence of smaller
problems that are easier to solve. The method is amenable to an efficient par-
allel implementation. However, a few questions regarding the accuracy and
computational efficiency of the method remain to be carefully examined. Our
earlier paper [12] addressed some of these questions for a single-level algo-
rithm. We developed a simple criterion for choosing spectral components from
each sub-structure, performed algebraic analysis based on this mode selection
criterion, and derived the error bounds for the approximate eigenpair associ-
ated with the smallest eigenvalue. This paper focuses on the performance of
the multilevel algorithm.

* This work was supported by the Director, Office of Advanced Scientific Comput-
ing Research, Division of Mathematical, Information, and Computational Sciences
of the U.S. Department of Energy under contract number DE-AC03-76SF00098.
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2 The algorithmic view of AMLS

We are concerned with solving the following algebraic eigenvalue problem
Kz =Mz, (1)
where K is symmetric, M is symmetric positive definite, and both are sparse.

Using a graph partitioning software package such as Meris [8] we can permute
the matrix pencil (K, M) into a multilevel nested block structure shown below:

Ki1 Mi1
Koo sym. Moo sym.
K31K32K33 M3z1 M32 M33
K = Kaqa 7]\4' = Mya (2)
Kss M55
Kes Kes Koo Megs Mes Mes
K71 K72 K73 K74 K75 K6 K77 M1 M72 M73 M4 M75 M76 M77

Blocks K;; and M;; are of size n;-by-n;. A byproduct of this partitioning and
reordering algorithm is a separator tree depicted in Figure 1. The separator
tree can be used to succinctly describe the matrix structure (2), the computa-
tional tasks and their dependencies in the AMLS algorithm. The internal tree
nodes (marked by O) represent the separators (also known as the interface
blocks, e.g. K33, Kgs and K77), and the bottom leaf nodes (marked by Q)
represent the sub-structures (e.g. Ki1, Ka2, K44 and Kz5). The permutation

Fig. 1. Separator tree (left) and the reordered matrix (right) for a three-level dis-
section.

of the pencil (K, M) is followed by a block factorization of the K matrix, i.e.,
K = LDL", where

— — . 7> > = def >
D=L IKL T:dlag(Ku,K22,K33,K44,K55,K66,K77) :fK (3)

and L is given by:

I,
L I, ) sym.
K31 K" KsoK3'  Ing
L= In, P (4)
ng5
KeaKy,' KesKgy'  Ing

—1 -1 -1 -1 -1 -1
KnKyy KKy KrsKgg KraK, KrsKgg KreKgg Ing
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Applying the same congruence transformation defined by L~! to M yields:

M1
ST sym.
M3, Mszz Mss
_ _rdef 7>
LML T 3 = M . (5)
Mss

N N N M64 Mes Mes
Mry Mro Mz Mry Mes Mzg Mog

Note that M has the same block structure as M, and only the diagonal
blocks associated with the leaves of the separator tree are not altered; all
the other blocks are modified. Moreover, the altered blocks of M typically
contain more non-zero elements than those in M. The eigenvalues of (K M )
are identical to those of (K, M), and the corresponding eigenvectors T are
related to those of the original problem (1) through 7 = LT z.

Instead of computing eigenvalues of (K, M) directly, AMLS solves a num-
ber of subproblems defined by the diagonal blocks of K and M. Suppose S;
contains eigenvectors associated with k; desired eigenvectors of (K;;, My;) (or
(I?ii, ]\//.7”)), then, AMLS constructs a subspace in the form of

S:diag(Sl,Sz,...,SN) . (6)

The eigenvectors associated with (K;, M;;) will be referred to as the sub-
structure modes, and those associated with (I?u, ]\/Z”) will be referred to as
the coupling modes. The approximation to the desired eigenpairs of the pen-
cil (K M ) are obtained by projecting the pencil (K M ) onto the subspace
spanned by S, i.e., we seek 6 and q € IRk where k = E 1 ki, such that

(STKS)q=0(STMS)q. (7)

It follows from the Rayleigh-Ritz theory [11, page 213] that 6 serves as an
approximation to an eigenvalue of (K, M), and the vector formed by z =
L~TSq is the approximation to the corresponding eigenvector. Algorithm 1
summarizes the major steps of the AMLS algorithm.

Note that when the interface blocks are much smaller than the sub-
structures, we can include all the coupling modes by replacing S; with I,,,
n (6). As a result, the projected problem (7) is simplified while its dimension
is still kept small.

A straightforward implementation of Algorithm 1 is not very cost-effective.
The amount of memory required to store the block eliminator L and the
matrix M = LML~ is typically high due to fill-ins. We used the following
strategies to reduce this cost: (1) Since computing the desired eigenvalues
and the eigenvectors does not require M explicitly, we project M into the
subspace spanned by the columns of LTS incrementally as L and S are
being computed in an order defined by a bottom-up traversal of the separator
tree. In another word, we interleave Steps (2) to (5) of Algorithm 1; (2) We
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use a semi-implicit scheme to store L. We only explicitly compute and store
the blocks in the columns associated with the separator nodes. The blocks
in the columns associated with the leaf nodes are not computed explicitly.
Whenever needed, K;; K;; ! is applied to a matrix block directly through a
sequence of sparse triangular solves and matrix-matrix multiplications.

More implementation details can be found in our longer report [5].

Algorithm 1 Algebraic Multilevel Sub-structuring (AMLS)

Input: A matrix pencil (K, M), where K is symmetric and nonsingular
and M is symmetric positive definite

Output: 0; € R' and z; € R", (j = 1,2, ...,k) such that Kz; ~ 0; Mz,

(1) Partition and reorder K and M to be in the form of (2)

(2) Perform block factorization K = LDLT

(3) Apply the congruence transformation defined by L~ to (K, M)
to obtain (I?, ]/\4\) defined by (3) and (5)

(4) Compute a subset of the eigenpairs of interest for the subproblems
(Kii; Mu) (OI‘ (I?”, Mu)) Then, form the matrix S in (6)

(5) Project the matrix pencil (I? , M ) into the subspace span{S}

(6) Compute k desired eigenpairs (6;,¢;) from (STKS)q =

0(STMS)q, and set z; = L-TSq; for j = 1,2,.... k

3 Performance evaluation

We evaluate the performance of AMLS on two applications. Our first problem
arises from a finite element model of a six-cell damped detuned accelerator
structure [9]. The eigenvalues of this generalized eigenvalue problem corre-
spond to the cavity resonance frequencies and the eigenvectors represent the
electromagnetic accelerating field. We will refer to this problem as DDS6. Our
second problem arises from the normal mode vibrational analysis of a 3000-
atom polyethylene (PE) particle [13]. In this application, we are interested in
the low frequency vibrations of the PE molecule. We will refer to this problem
as PE3K.

Our platform is a single Power3 processor with a clock speed of 375Mhz
and 2 MB of level-2 cache. We use nev to denote the number of wanted
eigenvalues. The accuracy tolerance for each subproblem is denoted by Ty,
and the accuracy tolerance for the projected problem is denoted by 7,.,;. We
use nmodes to denote the number of modes chosen from each sub-structure.

DDS6

The dimension of this problem is 65740, and the number of non-zero entries
in K + M is 1455772. Table 1 shows the AMLS timing and memory usage
measurements. We experimented with different partitioning levels. For a single
level partitioning, we set nmodes to 100. When we increase the number of
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levels by one, we reduce nmodes by half to keep the total number of sub-
structure modes roughly a constant. Since the separators in this problem
are small, all the coupling modes are included in the subspace (6). Column 3
shows that the total memory usage does not increase too much with increasing
number of levels. By using the semi-implicit representation for L, we save some
memory but need extra time for recomputing some off-diagonal blocks. This
tradeoff between memory reduction and extra runtime is shown in Columns
4 and 5, which indicate that we save up to 50% of the memory with only
10-15% extra runtime. This is very attractive when memory is at a premium.
Column 6 shows the time spent in the first phase of AMLS, which consists of
various transformations (Steps (2)-(5) of Algorithm 1). The time spent in the
second phase of the algorithm, Step (6), is reported in Column 7. The total
time is reported in the last column. As the number of levels increases, the
transformation time decreases, whereas the projected problem becomes larger
and hence requires more time to solve. The variation of the total CPU time
is small with respect to the number of levels.

Table 1. Problem DDS6, nev = 100, 75y = 10_107 Tproj = 105,

levelsinmodes|| mem mem-saved recompute|phase 1 phase 2 total
(MB) (MB) (sec) (sec)  (sec) (sec)
100 319 199 (38.4%) 9.2 (1.5%)|| 457.7 137.2 594.8
50 263 263 (50.0%) 51.5 (11.0%)|| 287.7 178.8 466.5
25 325 248 (43.3%) 60.7 (13.3%)|| 220.2 235.4 455.6
12 392 228 (36.8%) 64.0 (13.2%)|| 194.0 291.9 485.9
6 480 192 (28.6%) 55.3 (10.9%)|| 151.9 352.4 504.2

OO | W N

As a comparison, it took about 407 seconds and 308 Megabytes memory
to compute the smallest 100 eigenpairs by a shift-and-invert Lanczos (SIL)
method (using ARPACK and SuperLLT packages [10] with METIS reorder-
ing.) Thus when nev = 100, AMLS and SIL are comparable in both speed
and memory usage. However, Figure 2 shows that AMLS is more efficient
than SIL when more eigenvalues are needed. In AMLS, the time consumed by
phase 1 (transformations) is roughly the same for different nevs. The increase
in the total CPU time for a larger nev is mainly due to the increased cost
associated with solving a larger projected problem (labeled as “AMLS-Ritz”
in Figure 2), but the this increase is far below linear. Linear increase in to-
tal CPU time is expected in SIL because multiple shifts may be required to
compute eigenvalues that are far part. In our experiment, we set the number
of eigenvalues to be computed by a single-shift SIL run to 100. Since the cost
associated with each single-shift SIL run is roughly the same for each shift,
the total cost for a multi-shift SIL run increases linearly with respect to newv.

Figure 3 shows the relative error of the smallest 100 eigenvalues returned
from the AMLS calculation. As shown in the left figure, the accuracy dete-
riorates with increasing number of levels, which is true even for the first few
eigenvalues. This is due to the limited number of modes selected in the sub-
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Fig. 2. Runtime of AMLS and SIL with increasing nev. Problem DDS6, levels = 4,
nmodes = 25.

structures. In the right figure, we show the results with fixed number of levels
(5 here) but different nmodes. Although the accuracy increases with more
modes selected, as expected, this increase is very gradual. For example, the
bottom curve is only about 1 digit more accurate than the top one, but the
size of the projected problem (see (7) for the bottom curve is almost twice as
large as that of the top curve.
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Fig. 3. Eigenvalue accuracy of DDS6. Left: increasing levels. Right: Fixed level,
increasing nmodes.

PE3K

The low frequency vibrational modes of the PE molecule can be solved by
computing the eigenvalues and eigenvectors associated with the Hessian of a
potential function that describes the interaction between different atoms. For
a 3000-atom molecule, the dimension of the Hessian matrix is 9000. Figure 4
shows the molecular structure of the PE particle and the sparsity pattern
of the Hessian matrix after it is permuted by METIS. We observe that PE3K
contains separators of large dimensions, resulting in excessive fills. This makes
the SIL calculation memory intensive [13]. Our semi-implicit representation
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Fig. 4. The molecular structure of PE3K and the sparsity pattern of the Hessian
after it is permuted by METIS.

Level - 3, Nmode - 100

Relative Error

+ Full
© _Partial(20%)

) 100 200 300 400 500
Eigenvalue

Fig. 5. Eigenvalue accuracy of PE3K, full or partial selection of interface modes.

of L greatly reduced the memory required in the AMLS calculation (saving
35% of memory). By choosing only a fraction of the coupling modes from
each separator, we also reduced the dimension of the projected problem (7).
In Figure 5, we compared the accuracy of a 3-level AMLS calculation in which
20% of coupling modes are computed and chosen from each separator with a
3-level calculation in which all coupling modes are selected. Both calculations
used nmodes = 100 for each sub-structure. Figure 5 shows that the partial
selection of the coupling modes does not affect the accuracy of the AMLS
calculation significantly for this problem. It is important to note that choosing
20% of coupling modes enables us to reduce the AMLS runtime from 1776 to
581 seconds.

4 Conclusions and related work

When a large number of eigenvalues with a few digits of accuracy are wanted,
the multilevel sub-structuring method is computationally more advantageous
than the conventional shift-and-invert Lanczos algorithm. This is due to the
fact that AMLS does not have the bottlenecks associated with the reorthog-
nalization and triangular solve. However, when the accuracy requirement is
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high, AMLS becomes less appealing. Some research is underway to address the
accuracy issue. We are developing better mode selection criteria so that the
projected subspace retains better spectral information from (K, M) while its
size is still restricted. Bekas and Saad [1] suggests to enhance the algorithm by
using spectral Schur complements with higher order approximations. Further
evaluation is needed to determine the effectiveness of these strategies.
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