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The Immersed Boundary Method (IBM), originally developed by C.S. Peskin
[Pes72], is a very practical method of simulating fluid-structure interactions.
It combines Eulerian and Lagrangian descriptions of flow and moving elas-
tic boundaries using Dirac delta functions. Incompressible Navier-Stokes and
Elasticity theory can be unified by the same set of equations to get a combined
model of the interaction.
There are numerous applications of the IBM in Bio-Engineering or in more
general Computational Fluid Dynamics applications.
We present a numerical study of the accuracy and computational cost of the
method, in the frame of finite-differences, based on the implementation of sev-
eral mathematical tools such as multigrid solvers, τ -extrapolation technique,
multilevel discretization and more generally numerical methods for differential
equations with singular source terms. These implementations are being made
on test-cases that are relevant for the IBM applications, keeping in mind that
we want to keep the simplicity of the method.

1 The IBM

While we are using a more sophisticated time stepping scheme [Pes02], let us
start with the basic projection scheme introduced by Chorin [Cho68] for the
incompressible Navier-Stokes equations:
1- Prediction step:

ρ

[
V ∗ − V n

∆t
+ (V n.∇) V n

]
− ν∆V ∗ = Fn, V ∗

∂Ω = V n+1
∂Ω ; (1)

2- Pressure correction step:

∆Pn+1 =
ρ

∆t
∇.V ∗,

(
∂Pn+1

∂η

)
|∂Ω

= 0; (2)
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3- Correction step:

ρ

[
V n+1 − V ∗

∆t

]
+∇Pn+1 = 0. (3)

The notations are as follow: V , P , ρ and ν are respectively the velocity, pres-
sure, uniform density and viscosity coefficient of the fluid. F is the force term,
∆t, the time step, Ω, the domain. η is the outward normal vector to ∂Ω, the
boundary of the domain.
In this scheme we have a non-conservative convection term, an explicit force
term and a semi-implicit diffusion term. Let f(s, t) be the elastic force density
along Γ . The boundary immersed in the fluid is represented in the Cartesian
mesh by X(s, t) where 0 ≤ s ≤ 1 is the curvilinear coordinate and 0 ≤ t ≤ T
is time. The force term F in Eq. 1 is obtained as follows:

F (x, t) =
∫

Γ

f(s, t)δ(x−X(s, t))ds, (x, t) ∈ Ω × [0, T ]. (4)

It is ideally zero everywhere except along Γ . In the computations, the δ func-
tion is regularized by a discrete Dirac delta function of compact support. Let
us describe the force term in the two-dimensional case after discretization of
the immersed boundary without considering the time dependency:

Fh(x) = hΓ

M∑
j=1

f(sj)δh(x −X(sj)), x ∈ Ω. (5)

The immersed boundary is then a one dimensional line with this discrete
mesh: sj = j−1

M−1 = (j − 1)hΓ , 1 ≤ j ≤M.
The Navier-Stokes equations implemented with a finite-difference method is of
order two in space because of the discretization error but the order is reduced
in the IBM by the discretization of the force term.
If we look at the prediction step (Eq. 1) of the projection scheme for the
Navier-Stokes equations, we have:

(I − ν∆t∆.)V ∗ = RHSn, (6)

where the right-hand side contains singular components essentially due to the
discrete force term that is a sum of discrete Dirac delta functions.
If we look at the pressure correction step (Eq. 2), we have:

∆(δP )n = RHS∗, (7)

where the right-hand side also contains singular components but in the form
of dipoles. Consequently we will focus our study on elliptic equations with
singular source terms and more specifically these two operators I−k2∆ (k > 0)
and ∆. The standard IBM is first order in space. Our main goal is to get an
order of accuracy larger than one and fast solvers for problems (6) and (7).



The Multigrid/τ -extrapolation technique applied to the IBM. 3

2 The discrete Dirac delta function δh

Let us introduce the discrete Dirac delta functions. They are usually written
in this form in 1D : δh(x) = 1

hφ(
x
h ). The function φ needs to satisfy several

compatibility conditions:

1. φ ∈ C0(IR).
2. φ has to be of finite support, knowing that the computational cost of the

method is proportional to its width.
3. If we are using the staggered mesh, as introduced by Harlow and Welch

[Har65], which requires a regular rather than a wide stencil for the Laplace
operator in the pressure equation, we just need to have:∑

i∈Z

φ(r − i) = 1 ∀r ∈ IR,

which guarantees that constant functions are interpolated exactly by δh.
If we are not using the staggered mesh we would have this condition:

∑
i(even)

φ(r − i) =
∑

i(odd)

φ(r − i) = 1
2

∀r ∈ IR.

4.
∑

i∈Z
[φ(r − i)]2 = C ∀r ∈ IR where C is a constant. That ensures that

∑
i∈Z

φ(r1 − i)φ(r2 − 1) ≤ C ∀(r1, r2) ∈ IR2.

J. M. Stockie wrote [Sto97] that it ”is analogous to the physically reason-
able requirement that when two fibre points interacts, the effect of one
boundary point on the other is maximized when the points coincide”.

5.
∑

i∈Z
(r − i)φ(r − i) = 0 ∀r, which ensures along with property 3 that

linear functions are interpolated exactly by δh.

The minimal width support of a function satisfying these requirements on a
traditional mesh is 2h. It is then defined uniquely, as presented by Peskin
[Pes02]. For the staggered mesh a function with support 3

2h is uniquely deter-
mined too [Rom96]:

φ(r) =




1
6 (5− 3|r| − √−3(1− |r|)2 + 1, 0.5 ≤ |r| ≤ 1.5;

1
3 (1 +

√−3r2 + 1), |r| ≤ 0.5;
0, otherwise.

(8)

This function described in Eq. 8 gives an IBM that is somewhat faster com-
putationally due to the fact that the support is 3

2h instead of 2h. Engquist
and Tornberg showed [Eng04] that the discretization error is proportional
to the number of moment conditions satisfied by the function. But adding
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some moment conditions requires increasing the support. If we keep a dis-
crete delta function that has a 2h support with the staggered mesh instead
of a 3

2h [Rom96], we can then increase the accuracy of the method using this
piecewise cubic function [Eng04]:

φ(r) =




1− 1
2 |r| − |r|2 + 1

2 |r|3, 0 ≤ |r| ≤ 1;
1− 11

6 |r|+ |r|2 − 1
6 |r|3, 1 < |r| ≤ 2;

0, otherwise.
(9)

This function satisfies the properties above as well as these extra moment
properties:

∑
i∈Z

(r − i)2φ(r − i) = 0 ∀r ∈ IR,
∑
i∈Z

(r − i)3φ(r − i) = 0 ∀r ∈ IR (10)

Our numerical experiment will use extensively this new discretization of the
δ function, adapted to the staggered meshes.

3 The multigrid τ–extrapolation

The τ–extrapolation [Ber97, Rud04] is a modified multigrid method that im-
proves the convergence order of a discrete problem. It is based on the Richard-
son extrapolation technique. It combines two solutions obtained on different
grids in order to correct the fine grid solution but requires the knowledge of
the order of the first asymptotic expansion term, which can be evaluated ex-
perimentally. If this order is α, we combine the fine solution uh and the coarse
solution uH with this linear combination (u∗ is the analytic solution):

ûh =
(

2α

2α − 1

)
uh +

(
1− 2α

2α − 1

)
uH = u∗ + o(hα). (11)

Here is the τ–extrapolation multigrid algorithm for the problem Au = f :

• 1 - pre-smoothing step : uh = Sν1(Ah, uh, fh),
• 2 - uh = uh+Ih

HA
−1
H

((
2α

2α−1

)
ÎH
h (fh −Ahuh) +

(
1− 2α

2α−1

)
(fH −AHI

H
h uh)

)
,

• 3 - post-smoothing step : uh = Sν2(Ah, uh, fh),

with these characteristics in most cases:
- Ih

H is a trilinear interpolation prolongation operator,
- ÎH

h is a full weighting restriction operator,
- IH

h is a full injection prolongation operator,
- (ν1, ν2), the number of smoothing steps per iteration, are small (≤ 2).

The good convergence order property of the multigrid methods is due to the
fact that the smoothing iterations improves the high frequency modes of the
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discrete solution while the coarse grid correction improves its low frequency
modes. This is especially true for the stiff elliptic problems solved in the IBM.
In the τ–extrapolation technique, the Richardson extrapolation linear combi-
nation significantly improves the discretization order of the coarse grid correc-
tion. This is the idea of the double discretization. A high order discretization
scheme is used on the coarse grid, different from the scheme used for calculat-
ing the residuals transferred to the coarse grid. The smoothing process uses
the low order discretization scheme too, which implies that two discrete prob-
lems with slightly different fixed points are solved. The τ–extrapolation is a
special case of the double discretization method where we use the Richardson
extrapolation technique to change the discretization order of the coarse grid.
The analytic solution needs to be smooth enough and the restrictions operator
needs to be chosen carefully enough, for the τ–extrapolation to improve the
regular multigrid method.
A specificity of the τ–extrapolation applied to problems with singular source
points is that we use fH instead of ÎH

h fh at the coarse grid correction step.
fH is the discretization of the right-hand side using the discrete Dirac delta
functions that have a 2H = 4h support, while fh is evaluated using the same
kind of delta function but with a 2h support. This is easy to implement and
saves an interpolation process per multigrid iteration.

4 Numerical results

4.1 The 1D Helmholtz operator

Let us compare the different behaviors of both elliptic operators introduced
in Sec. 1 with a singular source point at the right-hand side. We solve at first
the 1D problem [Wal99]:

d2u

dx2
(x)− α2u(x) = −2αδ(x− x0), x ∈ [−0.5, 0.5], α ∈ IR∗

+; (12)

x0 ∈ [−0.5, 0.5]; u(−0.5) = e−α|−0.5−x0| and u(0.5) = e−α|0.5−x0|.

The domain is divided in N equidistant intervals. Finite-differences and a
classic stencil for the second order derivative are implemented in all of our
computations. The computed solution is compared to the exact solution:
uex(x) = e−α|x−x0|, taking x0 = 0 and α = 60.
The number of operations represents the number of time the values at the
nodes are updated but does not take into account the extrapolation and in-
terpolation operations made in the multigrid algorithms in order to switch
from one grid to another. The multigrid algorithm implemented is a classic
V shaped algorithm with only two levels. We can see on Fig. 2 that the τ–
extrapolation significantly improves the convergence order for this 1D problem
with Dirac point load.
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Fig. 1. Error in L2-norm with re-
spect to the number of operations with
the 4 solvers S.O.R., Multigrid V2,
Multigrid V2/ τ ex. and Gauss-Seidel.
N = 1000, x0 = 0 and we use the piec.
cub. delta func.
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Fig. 2. Error in L2-norm of the
method for the multigrid algo. with or
without the τ–extrapolation. and using
the piec. cub. delta func. The order is
improved from 2.0 to 3.4.

Since the point loads in the IBM can be located anywhere in a cell, it is
relevant to study the behavior of the error depending on the distance between
the point load and the nodes of the mesh. In the following graph, the error
relative to the exact solution is plotted as a function of d, the minimum
distance between x0 and the nodes of the mesh , from 0 to h

2 :

d(x0) = mini=1,..,N+1 |(−0.5 + (i− 1)h)− x0| . (13)
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Fig. 3. Error in L2-norm with re-
spect to d(x0), the min. distance be-
tween x0 and the nodes of the mesh,
using the piec. cub. delta func. and the
multigrid solver with or without the τ–
extrapolation. N = 800, x0 = 0.
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Fig. 4. Error in L2-norm of the
method using the multigrid algorithm
with or without the τ–extrapolation
and using the piec. cub. delta func.
centered in the middle of a cells. The
order is then 1.4



The Multigrid/τ -extrapolation technique applied to the IBM. 7

We can see on Fig. 3 that the accuracy strongly depends on the distance d(x0).
If we measure the convergence order of the method when d(x0) = h

2 , using
the L2-norm, we get only 1.4 (Fig. 4).

4.2 The 2D Laplace operator

Let us study the following benchmark problem:

−∆u(x, y) = δ(x, y, Γ ), (x, y) ∈ Ω = [−1, 1]2; (14)

Γ =
{
(x, y) ∈ Ω/x2 + y2 = r2

}
, r < 1, u|∂Ω = uex|∂Ω

uex(x, y) =

{
1− 1

2 ln
(

1
r

√
x2 + y2

)
, if x2 + y2 > r2;

1, if x2 + y2 ≤ r2.

In this case the source term is distributed along a circle centered at the origin
and with radius r < 1, which makes this problem closer to those in the IBM.
This time we need to use a discrete collection ofM Dirac delta functions along
the line Γ . M is usually a large number so that the discretization error of the
delta functions along Γ is minimized:

δh(x, y, Γ ) =
1
M

M∑
i=1

δh

(
x− r cos

(
2(i− 1)π

M

))
δh

(
y − r sin

(
2(i− 1)π

M

))
(15)

The error between the computed and analytic solutions is measured along the
x-axis in the L2-norm. We get, for the convergence order using the L2-norm,
2.0 without the τ–extrapolation and 2.8 with. Since the discrete Dirac delta
functions are located along the circle, the distance between them and the
nodes of the mesh varies between 0 and h√

2
. The error is an average of the

errors we would get with the delta functions centered at the nodes or at the
mesh cell center.

5 Conclusion

We have shown that one can improve dramatically the accuracy of the IBM
solvers by combining the τ–extrapolation technique with the piecewise cubic
discrete Dirac delta function presented by Engquist and Tornberg [Eng04].
Our current experiments with fluid-structure interactions extends these pre-
liminary results using the IBM on staggered grid meshes.
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