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1 Introduction

Additive Schwarz is a powerful preconditioner used in conjuction with Krylov
subspace methods (e.g., GMRES [7]) for the solution of linear systems of
equations of the form Au = f , especially those arising from discretizations of
differential equations on a domain divided into p (overlapping) subdomains
[5], [9], [10]. In this paper we consider right preconditioning, i.e., the equiv-
alent linear system is AM−1w = f , with Mu = w. The additive Schwarz
preconditioner is

M−1 =

p∑

i=1

RT
i A−1

i Ri, (1)

where Ri is a restriction operator and Ai = RiART
i is a restriction of A to

a subdomain. The strength of this preconditioner stems in part from having
overlap between the subdomains, and in part by the efficiency of local solvers,
i.e., solutions of the “local” problems

Aix = Riv. (2)

We also consider a weighted additive Schwarz preconditioner with harmonic
extension (WASH), a preconditioner in the family of restricted additive
Schwarz (RAS) preconditioners [3] of the form

M−1 =

p∑

i=1

RT
i A−1

i Rω
i , (3)

in which the restriction operator Rω
i is such that all variables corresponding

to a point in the overlap are weighted with weights that add up to one, i.e.,∑p

i=1
RT

i Rω
i = I [4].
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In this paper we consider the case when the local problems are either
too large or too expensive to be solved exactly. Thus, the systems (2) are
solved using an iterative method. Usually, one takes a fixed number of (inner)
iterations. We are interested instead in prescribing a certain (inner) tolerance
so that the iterative method for the solution of (2) stops when the local residual

si,k = Aixj − Rivk

has norm below the inner tolerance (j = j(i, k) being the index of the inner
iteration, and we write xj = Ã−1

i,kRivk, where the subscript in Ãi,k indicates
that the inexact local solvers changes also with k). Inexact local solvers have
been used extensively (see, e.g., [9]); what is new here is that the inexactness
changes as the (outer) iterations proceed. In this case, the (global) precondi-
tioner changes from step to step, i.e.,

M−1

k =

p∑

i=1

RT
i Ã−1

i,kRi, (4)

and one needs to use a flexible Krylov subspace method, such as FGMRES [6].
Recent results have shown that it is possible to vary how inexact a pre-

conditioner is without degradation of the overall performance of a Krylov
method; see [1], [8] and references therein, and in particular we mention [2]
where Schur complement methods were studied. More precisely, the precon-
ditioned system has to be solved more exactly at first, while the exactness
can be relaxed as the (outer) iterative method progresses. In this paper we
propose to apply these new ideas to additive Schwarz preconditioning and
its restricted variants, thus providing a way to dynamically choose the inner
tolerance for the local solvers in each step k of the (outer) iterative method.
Our proposed strategy is illustrated with numerical experiments, which show
that there is a great potential in savings while maintaining the performance
of the overall process.

2 Dynamic Stopping Criterion for the Local Solvers

The algorithmic setup is as follows, at each step k of the (outer) Krylov
subspace method for the solution of Au = f (we use FGMRES here), we
apply a preconditioner of the form (4), where the symbol Ãi,k indicates that
the solution of local problem (2) is approximated by a Krylov subspace method
(we use GMRES) iterated until ‖si,k‖ ≤ εi,k.

In this setup, at the kth iteration instead of the usual matrix-vector prod-
uct AM−1vk we have

AM−1

k vk = A

p∑

i=1

RT
i Ã−1

i,k Rivk



Dynamically Adapted Inexact Schwarz 3

= A

p∑

i=1

RT
i A−1

i Rivk + A

p∑

i=1

RT
i (Ã−1

i,k − A−1

i )Rivk

= AM−1vk + A

p∑

i=1

RT
i A−1

i si,k.

Thus, we can write AM−1

k vk = (AM−1 + Ek)vk , where Ek is the inex-
actness of the preconditioned matrix at the kth step, and fk = Ekvk =
A

∑p

i=1
RT

i A−1

i si,k, so that

‖fk‖ = ‖Ekvk‖ ≤

p∑

i=1

‖ART
i A−1

i ‖‖si,k‖. (5)

In the situation we are describing, namely of inexact preconditioner, the
inexact Arnoldi relation that holds is

AVm + [f1, f2, . . . , fm] = Vm+1Hm+1,m,

where the Vm = [v1, v2, . . . , vm] has orthonormal columns, and Hm+1,m is
upper Hessenberg. Let Wm = Vm+1Hm+1,m, and rk be the GMRES (outer)
residual at the kth step. It follows from [8, sections 4 and 5] that

‖W T
mrm‖ ≤ κ(Hm+1,m)

m∑

k=1

‖fk‖‖rk−1‖, (6)

‖rm − r̃m‖ ≤
1

σmin(Hm+1,m)

m∑

k=1

‖fk‖‖rk−1‖, (7)

where κ(Hm+1,m) = σmax(Hm+1,m)/σmin(Hm+1,m) is the condition number
of Hm+1,m, and r̃m = r0 − Vm+1Hm+1,mym is the computed residual. In the
exact case, i.e., when εi,k = 0, i = 1, . . . , p, k = 1, 2, . . ., then W T

mrm = 0.
Equation (6) indicates how far from that optimal situation one may be. The
residual gap (7) is the norm of the difference between the “true” residual
rm = f −AVmym and the computed one. As r̃m → 0, we have that if the right
hand side of (7) is of order ε, then ‖rm‖ → O(ε); cf. [8, Figure 9.1].

Using (5) we obtain the following result.

Proposition 1. If the local residuals satisfy ‖si,k‖ ≤ εk, i = 1, . . . , p, then
the kth GMRES (outer) residual satisfies the following two relations:

‖W T
mrm‖ ≤ κ(Hm+1,m)

p∑

i=1

‖ART
i A−1

i ‖

m∑

k=1

εk‖rk−1‖, (8)

‖rm − r̃m‖ ≤
1

σmin(Hm+1,m)

p∑

i=1

‖ART
i A−1

i ‖
m∑

k=1

εk‖rk−1‖. (9)
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One can then conclude an a posteriori result.

Proposition 2. If εk, the bound of the local residual norms, satisfy

εk ≤ Km

1

‖rk−1‖
ε, (10)

with

Km = 1/mκ(Hm+1,m)

p∑

i=1

‖ART
i A−1

i ‖, (11)

then ‖W T
mrm‖ ≤ ε, and if (10) holds with

Km = σmin(Hm+1,m)/m

p∑

i=1

‖ART
i A−1

i ‖, (12)

then ‖rm − r̃m‖ ≤ ε.

We mention that these results apply to the case of inexact WASH precon-
ditioning as well, where the restriction Ri on the right of each addend in (4)
is replaced with Rω

i .

3 Implementation Considerations

The power of Proposition 2 is to point out that one can relax the local residual
norms in a way inversely proportional to the norm of the (outer or global)
residual from the previous step; cf. [1], [8]. The constants Km as stated in (11)
and (12), which do not depend on k, depend in part on A, i.e., on the problem
to be solved, the preconditioner, through the locals problems represented by
Ai, as well as on how the inexact strategy is implemented, through Hm+1,m.
Observe that since mκ(Hm+1,m) � 1 it is natural from (11) to expect Km ≤ 1.

Depending on the problem, on could obtain an a priori bound for Km

which would not depend on the specifics of the inexact strategy, for example
by setting κ(Hm+1,m) ≈ γκ(AM−1), for some fixed number γ, or similarly
σmin(Hm+1,m) ≈ γσmin(AM−1). While this may appear as an oversimplifica-
tion, one is justified in part because the bounds (8) and (9) are very far from
being tight.

In many problems though, the value of Km may not be known in advance,
or it may be hard to estimate, and one can just try some number, say 1,
and decrease it until a good convergence behavior is achieved. One could also
use the information from a first run, to estimate some value of Km. In our
preliminary experiments, reported in the next section, we have used the value
of Km = 1.
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4 Numerical Experiments

We present numerical experiments on finite difference discretizations of two
partial differential equations with Dirichlet boundary conditions on the two-
dimensional unit square: the Laplacian −∆u = f , and a convection diffusion
equation −∆u + b.∇u = f , with bT = [10, 20], where upwind differences are
used, and f is random, uniformly distributed between 0 and 1. We use an
uniform discretization in each direction of 128 points, so the matrices are of
order 16129, i.e., 16129 nodes in the grid. We partition the grid into 8 × 8
subdomains. In Table 1 we report experiments with varying degree of overlap:
no overlap (0), one or two lines of overlap (1,2). Our (global) tolerance is
ε = 10−6. We compare the performance of using a fixed inner tolerance in
each local solve, εk = 10−4 for k = 1, . . ., with the dynamic choice (10) using
K = Km = 1. We remark that both of these strategies correspond to varying
the degree of inexactness and are expressed by the preconditioner (4). We
run our experiments with the Additive Schwarz preconditioner (4) (ASM)
and with weighted additive Schwarz preconditioner with harmonic extension
(WASH). We used a minimum of five (inner) iterations in each of the local
solvers. We report the average number of inner iterations, which in this case
well reflects the total work in each case, and in parenthesis the number of
outer FGMRES iterations needed for convergence.

Table 1. Average number of inner iterations (and number of outer iterations). Fixed
or dynamic inner tolerance (K = 1).

problem Laplacian Convection Diffusion

overlap 0 1 2 0 1 2

ASM Fixed 10−4 1923(64) 1536(46) 1388(38) 1825(60) 1458(43) 1295(35)
Dynamic 1557(73) 1316(60) 1201(53) 1762(66) 1434(51) 1288(44)

WASH Fixed 10−4 1692(56) 1317(40) 1100(31) 1601(53) 1220(37) 1020(29)
Dynamic 1387(61) 1089(45) 948(38) 1570(56) 1216(40) 1060(35)

As it can be appreciated from Table 1, the proposed dynamic strategy for
the inexact local solvers can reach the same (outer) tolerance using up to 20%
less work. We point out that we have used the same value of K = 1 for all
overlaps, although the preconditioners certainly change. A better estimate of
K as a function of the overlap is expected to produce better results. We also
mention that both the fixed inner tolerance and the dynamically chosen one
usually require less storage than the exact local solvers (1) and (3).
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