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Summary. We consider a quasilinear elliptic transmission problem where the non-
linearity changes discontinuously across two subdomains. By a reformulation of the
problem via Kirchhoff transformation we first obtain linear problems on the subdo-
mains together with nonlinear transmission conditions and then a nonlinear Steklov–
Poincaré interface equation. We introduce a Dirichlet–Neumann iteration for this
problem and prove convergence to a unique solution in one space dimension. Finally
we present numerical results in two space dimensions suggesting that the algorithm
can be applied successfully in more general cases.

1 Introduction

Let Ω ⊂ R
n be a bounded Lipschitz domain divided into two non-overlapping

subdomains Ω1, Ω2 with the interface Γ = Ω1 ∩ Ω2.

n

Ω1

Ω2

Γ

Fig. 1. Non-overlapping partition of the domain Ω.

Given f ∈ L2(Ω), k1, k2 ∈ L∞(R) with ki ≥ α > 0 for i = 1, 2 we consider
the following quasilinear elliptic transmission problem:

Find a function p on Ω, p|Ωi
= pi ∈ H1(Ωi), i = 1, 2, p|∂Ω = 0, such that

− div(ki(pi)∇pi) = f on Ωi, i = 1, 2 (1)

p1 = p2 on Γ (2)

k1(p1)∇p1 · n = k2(p2)∇p2 · n on Γ . (3)
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Observe that the nonlinearities ki need not be differentiable. Hence,
Newton-type linearization suffers from a lack of smoothness. However, by
standard Kirchhoff transformation [1], we can reformulate the two nonlin-
ear pdes (1) as linear Poisson equations in each of the subdomains. Based
on this observation, we introduce a nonlinear Dirichlet–Neumann algorithm
for (1)–(3) which requires the solution of two linear problems in each itera-
tion step but does not involve any further linearization. We present a con-
vergence analysis including sufficient conditions for convergence in one space
dimension. As a by-product, we obtain an existence and uniqueness result
for (1)–(3). Numerical computations suggest that the algorithm can also be
applied successfully to higher-dimensional problems. Related Robin methods
will be treated in a forthcoming paper [3].

This paper is organized as follows. In Section 2 we apply the Kirchhoff
transformation to (1)–(3) in order to derive an interface problem with lin-
ear problems on the subdomains and nonlinear transmission conditions. The
transformed problem can be rewritten as a nonlinear Steklov–Poincaré inter-
face equation. In analogy to the linear case, the nonlinear Dirichlet–Neumann
algorithm can be regarded as a preconditioned Richardson iteration applied
to the nonlinear Steklov–Poincaré equation. In Section 3, we present a conver-
gence theorem in 1D generalizing related results in the linear case [5]. Finally,
in Section 4, we illustrate the numerical properties of the nonlinear Dirichlet–
Neumann method in a nontrivial two-dimensional setting.

2 An elliptic problem with jumping nonlinearities

We introduce (for i = 1, 2) the spaces

Vi := {vi ∈ H1(Ωi)| vi|∂Ω∩∂Ωi
= 0}, V 0

i := H1
0 (Ωi), Λ := H

1/2
00 (Γ )

and for wi, vi ∈ Vi the forms

ai(wi, vi) := (∇wi,∇vi)Ωi
, bi(wi, vi) := (k(wi)∇wi,∇vi)Ωi

,

where (·, ·)Ωi
stands for the L2 inner product on Ωi. The norm in H1(Ωi) will

be denoted by ‖ · ‖1,Ωi
, the norm in Λ with ‖ · ‖Λ. We point out that much

of what we present in the first two sections are generalizations of the linear
theory given in [5]. The notation here is used accordingly.

Let Ri, i = 1, 2, be any continuous extension operator from Λ to Vi. Then
the variational formulation of problem (1)–(3) reads as follows:

Find pi ∈ Vi, i = 1, 2, such that

bi(pi, vi) = (f, vi)Ωi
∀vi ∈ V 0

i , i = 1, 2 (4)

p1|Γ = p2|Γ in Λ (5)

b1(p1, R1µ) − (f, R1µ)Ω1
= −b2(p2, R2µ) + (f, R2µ)Ω2

∀µ ∈ Λ . (6)
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We now introduce new variables ui, i = 1, 2, by Kirchhoff transformation κi

(cf. [1]):

ui(x) := κi(pi(x)) =

∫ pi(x)

0

ki(q) dq a.e. in Ωi ,

which yields ki(pi)∇pi = ∇ui. Further properties of κi are listed in the fol-
lowing

Proposition 1. κi : R → R is a.e. differentiable with κ′
i = ki, strictly mono-

tonically increasing and Lipschitz continuous with Lipschitz constant ‖ki‖∞.
κ−1

i is Lipschitz continuous with Lipschitz constant ‖k−1
i ‖−1

∞ .
Furthermore there exist positive constants c, C with

c ‖pi‖1,Ωi
≤ ‖κi(pi)‖1,Ωi

≤ C ‖pi‖1,Ωi
and

c ‖pi|Γ ‖Λ ≤ ‖κi(pi)|Γ ‖Λ ≤ C ‖pi|Γ‖Λ .

Thus with this transformation problem (4)–(6) becomes:
Find ui ∈ Vi, i = 1, 2, such that

ai(ui, vi) = (f, vi)Ωi
∀vi ∈ V 0

i , i = 1, 2 (7)

κ−1
1 (u1|Γ ) = κ−1

2 (u2|Γ ) in Λ (8)

a1(u1, R1µ) − (f, R1µ)Ω1
= −a2(u2, R2µ) + (f, R2µ)Ω2

∀µ ∈ Λ . (9)

For given λ ∈ Λ we now consider for i = 1, 2 the harmonic extensions
u0

i = Hi(κi(λ)) ∈ Vi of the Dirichlet boundary value κi(λ) on Γ . (From now
on, the brackets are mostly skipped to simplify the notation.) Furthermore let
u∗

i = Gif be the solutions of the subproblems (9) with homogeneous Dirichlet
data u0

i|∂Ω = 0. Due to the linearity of the local problems (9) the functions

ui = Hiκiλ + Gif satisfy (9)–(11) if and only if

a1(H1κ1λ, R1µ) + a2(H2κ2λ, R2µ) =

(f, R1µ)Ω1
− a1(G1f, R1µ) + (f, R2µ)Ω2

− a2(G2f, R2µ) ∀µ ∈ Λ . (10)

Since the extension operators Ri, i = 1, 2, can be chosen arbitrarily, we
set Ri = Hi. Denoting by 〈·, ·〉 the duality pairing between Λ′ and Λ we recall
the definition of the Steklov–Poincaré operators Si : Λ → Λ′:

〈Siη, µ〉 = ai(Hiη, Hiµ) ∀η, µ ∈ Λ, i = 1, 2

and furthermore the functional χ = χ1 + χ2 ∈ Λ′:

〈χi, µ〉 = (f, Hiµ)Ωi
− ai(Gif, Hiµ) ∀µ ∈ Λ, i = 1, 2 .

Now (12) can be written as the nonlinear Steklov–Poincaré interface equa-
tion

find λ ∈ Λ : (S1κ1 + S2κ2)λ = χ (11)
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or equivalently

find λ2 ∈ Λ : (S1κ1κ
−1
2 + S2)λ2 = χ (12)

if we set λ2 = κ2λ. Note that if κ−1
2 : Λ → Λ is Lipschitz continuous the

convergence of a sequence of iterates λk
2 to λ2 implies the convergence of

λk = κ−1
2 λk

2 to λ. We state the main result of this section:

Proposition 2. Solving problem (4)–(6) is equivalent to solving the nonlinear
Steklov–Poincaré equations (15) or (16).

We point out at this stage that the reformulation of the problem (4)–(6)
by Kirchhoff transformation is not only a powerful tool for the analysis of
the problem that will be subject of the following two sections but also for
its numerical treatment due to the linearity of transformed subproblems. In
more complicated cases like the time-discretized Richards equation Kirchhoff
transformation allows a reformulation of the quasilinear subproblems as con-
vex minimization problems which can be solved efficiently and robustly using
monotone multigrid methods [4].

3 Nonlinear Dirichlet–Neumann iteration

Now we consider the Dirichlet–Neumann algorithm applied to our problem
(4)–(6). However, since it turns out that for a rigorous analysis the damp-
ing has to be carried out in the transformed variables, we state it for the
transformed version (9)–(11):

Given λ0
2 ∈ Λ, successively find uk+1

1 ∈ V1 and uk+1
2 ∈ V2 for each k ≥ 0

such that

a1(u
k+1
1 , v1) = (f, v1)Ω1

∀v1 ∈ V 0
1 (13)

uk+1
1|Γ = κ1κ

−1
2 (λk

2) in Λ (14)

a2(u
k+1
2 , v2) = (f, v2)Ω2

∀v2 ∈ V 0
2 (15)

a2(u
k+1
2 , H2µ) − (f, H2µ)Ω2

= −a1(u
k+1
1 , H1µ) + (f, H1µ)Ω1

∀µ ∈ Λ . (16)

Then, with some damping parameter θ ∈ (0, 1), the new iterate is

λk+1
2 := θ uk+1

2|Γ + (1 − θ)λk
2 . (17)

Considering the harmonic extensions Hiu
k+1
i|Γ and the solutions Gif of the

problems (9) with homogeneous boundary data for i = 1, 2 the intermediate
iterates are obtained by

uk+1
1 = H1κ1κ

−1
2 λk

2 + G1f and uk+1
2 = H2u

k+1
2|Γ + G2f .

Thus equation (20) provides
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a1(H1κ1κ
−1
2 λk

2 , H1µ) + a2(H2u
k+1
2|Γ , H2µ)

=

2
∑

i=1

(f, Hiµ)Ωi
− ai(Gif, Hiµ) ∀µ ∈ Λ ,

which is the same as

〈S2u
k+1
2|Γ , µ〉 = 〈−S1κ1κ

−1
2 λk

2 + χ, µ〉 ∀µ ∈ Λ

and regarding (21) altogether yields

S2(λ
k+1
2 − λk

2) = θ(χ − (S1κ1κ
−1
2 + S2)λ

k
2) in Λ . (18)

Consequently the damped Dirichlet–Neumann algorithm applied to (9)–(11)
is a preconditioned Richardson procedure for the nonlinear Steklov–Poincaré
formulation (16) with S2 as a preconditioner.

Note that an analogous formulation for the interface equation (15) can’t
be obtained due to the nonlinearity of S2κ2. However, (25) can be treated just
as in the linear case if we apply the following generalization of an abstract
convergence result in [5, pp. 118/9]. Let X be a Hilbert space, Q1 : X → X ′ a
not necessarily linear operator and let Q2 : X → X ′ be linear and invertible.
With the definition Q := Q1 + Q2 and for given G ∈ X ′ we consider the
problem

find λ ∈ X : Qλ = G (19)

together with the corresponding Richardson iteration

λk+1 = λk + θ(G − Qλk) . (20)

Theorem 1. Let Q2 be continuous and coercive, i.e. there are positive con-
stants β2 and α2 such that

〈Q2η, µ〉 ≤ β2‖η‖X‖µ‖X ∀η, µ ∈ X, 〈Q2η, η〉 ≥ α2‖η‖
2
X ∀η ∈ X .

Let Q1 be Lipschitz continuous, i.e. there is a constant β1 > 0 such that

〈Q1η − Q1µ, λ〉 ≤ β1‖η − µ‖X‖λ‖X ∀η, µ, λ ∈ X .

Suppose there exists a constant κ∗ > 0 such that

〈Q2(η − µ), Q−2(Qη − Qµ)〉 + 〈Qη − Qµ, η − µ〉 ≥ κ∗‖η − µ‖2
X ∀η, µ ∈ X .

Then (26) has a unique solution λ ∈ X. Furthermore for any given λ0 ∈ X

and any θ ∈ (0, θmax) with

θmax :=
κ∗α2

2

β2(β1 + β2)2

the sequence given by (27) converges in X to λ.
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The proof is an application of Banach’s fixed point theorem and can be
carried out along the lines of the one given in [5, pp. 118/9], see also [2].

Remark 1. Note that condition (30) reduces to a much simpler expression if
Q2 is symmetric. In the linear case (30) is just the coerciveness of Q1. In our
nonlinear case, (30) states a uniform monotonicity of Q1 of the form

〈Q1η − Q1µ, η − µ〉 ≥
κ∗

2
‖η − µ‖2

X ∀η, µ ∈ X . (21)

Now, it is well known that in the particular situation of (16) and (25) both
Steklov–Poincaré operators S1 and S2 are symmetric, continuous and coercive.
Thus in order to apply Theorem 1 to the case X = Λ, G = χ, Q2 = S2 and
Q1 = S1κ1κ

−1
2 we have to make sure that the conditions (29) and (32) are

satisfied for Q1 = S1κ1κ
−1
2 . So we arrive at the following

Theorem 2. The nonlinear Steklov–Poincaré equation (16) has a unique so-
lution λ2 in Λ to which the nonlinear Dirichlet–Neumann scheme (17)–(21)
converges for sufficiently small θ and any λ0

2 ∈ Λ if the following two condi-
tions are satisfied:
κ1κ

−1
2 : Λ → Λ is Lipschitz continuous, i.e., there is a constant L(κ1κ

−1
2 ) > 0

such that

‖κ1κ
−1
2 η − κ1κ

−1
2 µ‖Λ ≤ L(κ1κ

−1
2 )‖η − µ‖Λ ∀η, µ ∈ Λ , (22)

and S1κ1κ
−1
2 : Λ → Λ′ is a uniformly monotone operator, i.e. there is a

constant α1 > 0 such that

〈S1(κ1κ
−1
2 η − κ1κ

−1
2 µ), η − µ〉 ≥ α1‖η − µ‖2

Λ ∀η, µ ∈ Λ . (23)

Proposition 3. The conditions (33) and (34) are satisfied in one space di-
mension.

Proof. Let Ω1 = [a, b], Ω2 = [b, c], with Γ = {b} and a < b < c. Then we

have Λ = H
1/2
00 (Γ ) = H1/2(Γ ) ∼= (R, | · |) and condition (33) follows from

Proposition 1.
Let L(κ−1

1 ) and L(κ2) be the Lipschitz constants of the real functions κ−1
1

and κ2 according to Proposition 1. In order to prove (34), let η, µ, λ ∈ R. The
harmonic extension H1(λ) is the affine function x 7→ λ

b−a x − λ
b−a a. As κ−1

1

and κ2 are monotonically increasing, we then have

〈S1(κ1κ
−1
2 η − κ1κ

−1
2 µ), η − µ〉

=

∫ b

a

∇H1(κ1κ
−1
2 η − κ1κ

−1
2 µ)∇H1(η − µ) dx

=

∫ b

a

κ1κ
−1
2 η − κ1κ

−1
2 µ

b − a
·
η − µ

b − a
dx

=
(κ1κ

−1
2 η − κ1κ

−1
2 µ)(η − µ)

b − a

≥
1

(b − a)L(κ−1
1 )L(κ2)

|η − µ|2 .
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Remark 2. Unfortunately, in higher dimensions condition (34) is violated to
the extend that 〈S1(κ1κ

−1
2 η − κ1κ

−1
2 µ), η − µ〉 can be negative. A counterex-

ample in 2D is easily obtained by considering a harmonic function u with
∂u
∂n

· u ≤ c < 0 on a subset of Γ with positive Hausdorff measure (see [2]).

4 Numerical example

In this section we apply our nonlinear Dirichlet–Neumann method to a prob-
lem in two space dimensions: We consider the transmission problem (1)–(3)
on the Yin Yang domain Ω as shown in Figure 2. We denote the white sub-
domain together with the grey circle B1 by Ω1 and the grey subdomain with
the white circle B2 by Ω2.

Fig. 2. Yin Yang domain Ω.
Fig. 3. Solution p on Ω with
free boundary (black line).

We select the data

f(x) = (−1)i on Bi, i = 1, 2, f(x) = 0 elsewhere

and the nonlinearities

ki(pi) =

{

Kh max{p3λi+2
i , c} for pi ≤ −1

1 for pi ≥ −1 .

This choice is motivated by the well-known state equations of Brooks–Corey
and Burdine (cf. [6]) for the hydraulic conductivity of a saturated/unsaturated
porous media with different soils. In this way, our model problem can be
regarded as a stationary Richards equation. Note that pi < −1 characterizes
the unsaturated region which is separated by a free boundary from the linear,
saturated regime occuring for pi ≥ −1. The parameters λ1 and λ2 in Ω1 resp.
Ω2 are called pore size distribution factors. We chose them in an extreme
manner as λ1 = 1.0 (very coarse sand) and λ2 = 0.1 (fine clay). The factor
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Kh = 0.002 is a realistic hydraulic conductivity in the case of full saturation.
The parameter c = 0.1 > 0 is introduced to enforce ellipticity.

The choice of the data f which result in a strong sink on B1 and a strong
source on B2 and our special choice of Ω1 and Ω2 ensure that the free bound-
ary has a nontrivial intersection with the interface Γ = Ω1 ∩ Ω2 (see the nu-
merical solution as shown in Figure 3). Since we apply the Dirichlet–Neumann
scheme (17)–(21) we hereby make sure that step (18) is nonlinear.

We discretize the problem on the two subdomains using piecewise linear
finite element spaces. The linear problems on the subdomains are solved by a
linear multigrid method. Figure 4 shows the convergence rate ρ measured in
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Fig. 4. ρ vs. damping parameter θ.
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Fig. 5. ρ vs. refinement level.

the energy norm (for the transformed variables uk
i ) with respect to the damp-

ing parameter θ. We use a grid hierarchy of six levels as resulting from uniform
mesh refinement of the coarse grid depicted in Figure 2. In this way, we obtain
about 235.000 nodes on the finest mesh. Figure 5 shows the convergence rate
over the refinement levels. The damping parameter θopt = 0.175 is obtained
from Figure 4. For this optimal choice, we observe mesh-independence of the
convergence speed.
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