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Summary. This paper addresses scalable, parallel hp-finite/infinite element-based
solution of time-harmonic acoustics problems in three-dimensions. We discuss the
application of FETI-DP, an iterative domain-decomposition scheme, to both interior
and exterior acoustics problems. We evaluate parallel scalability in terms of number
of iterations, wall-clock time, mesh size h, polynomial degree p, number of partitions,
and normalized wavenumber. We also discuss the impact of proper selection of the
coarse problem on the accuracy of the computed solutions.

1 Introduction

Time-harmonic problems in structural acoustics solve Helmholtz equation
in bounded (interior) and unbounded (exterior) domains. Examples include
propagation in bounded waveguides, scattering and radiation from structures
in an infinite fluid domain. Numerical solution of such problems in medium-
frequency regimes with p-version of finite/infinite elements have been shown to
be very effective [DSCO01]. p-refinement provides better control of the disper-
sion (pollution) error enabling increased rate of error convergence compared
to h-refinement. hp-approximations for three-dimensional problems in struc-
tural acoustics, at mid-to-high frequencies, results in large algebraic systems,
Ax = b, having millions of unknowns. The efficient solution of such problems
calls for the application of scalable parallel algorithms.

Due to the indefinite nature of the algebraic systems coupled with poor
conditioning from p-approximations and frequency-dependence, direct solu-
tion techniques have been favoured for such problems. Unfortunately, the par-
allelization of facorization-based direct solution strategies offer limited scala-
bility due to the high irregularity of matrix factoring. For large-scale problems
of our interest, parallel multi-frontal schemes do not scale well beyond 8 pro-
cessors. A class of domain-decomposition algorithms [SBG96] called FETI-DP
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(see [FLLPRO1] and references therein) have been shown to sustain scalability
for increasing number of processors.

Most existing research on applying FETI-type algorithms to exterior
acoutsics problems have used the so-called artificial boundary conditions and
low-degree h-approximations [FATLO05]. We evaluate FETI-DP applied to 3D
acoustics problems discretized by p-hierarchic finite and infinite elements
[DSCO01] and highlight the impact of proper selection of the so-called coarse
problem on solution accuracy.

2 Model Problem

Figure 1 shows the computational domain for a typical acoustics problem
where (24 denotes the exterior /interior fluid domain, I" denotes the boundary
of the obstacle with outward unit normal v, and I'p = 2, N {2_ is a separable
boundary of radius R. The pressure field ¢ satisfies

Q+ o

Fig. 1. Computational domain.

Ap+E’p=0 in g, (1)

where k = w/c is the acoustic wavenumber, w is the circular frequency of
excitation, and c is the speed of sound in the fluid. For exterior domains, we
consider the Neumann problem with the boundary conditions

%zg on I,

m 1|20 (re) — ikg(re)| =0 uniformly V[e| =1, (2)
v or

li
T—>00
where ¢ is the specified Neumann data and the second equation is the Som-
merfeld radiation condition prescribing the out-going asymptotic behavior of
¢. For problems in which an incident wave ¢ scatters from the rigid body
enclosed by I', we have g = —0¢o/Ov. For interior acoustic problems, we ap-
ply a Robin boundary condition d¢/dv —ik¢ = h on I'. Both the interior and
exterior problems are uniquely solvable for all wavenumbers.

Following standard Galerkin technique results in a weak (variational) form
of the interior acoustics problem: Find ¢ € H'(2_) such that
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B_(,¢) +C(¢,9) = Ln(¥)

forall yy € H'(2_), where B_(¢,9) = [, (V¢ - Vb — k2w)) d2_,C(¢, 1)) =

Jr¥M¢dI', and Ly (¥) = [, hpdI.

Similarly, for exterior problems, we seek test and trial functions ¢, €
H'(_), such that ¢ = ¢ and ¥ = ¢g on I. The functions ¢ and ¥
with support in QE satisfy the Sommerfeld radiation condition. Weak form
of the exterior problem satisfies

B—(¢7 ’lvb) + BR(¢R7¢R) = ﬁg(¢);
where £,(1) = [}. g9 dI'. The bilinear form By, is given by

Br(ér,¥r) = Sll_{féo l/ffr

RS

(Vén - Vibn — Kdpip) dbg — ik /F dnton AT

where Iy denotes a separable surface of radius S > R and (2} is the annular
domain bounded by I, and I§.

Let A£ be the spatial discretization of the fluid domain {2_, with h repre-
senting a measure of the spatial mesh size. Let py > 1 and ¢y > 0 be polyno-
mial degrees of finite and radial degree of infinite fluid elements, respectively.
Our discrete interior and exterior problems consist of solving

B_(¢1P9) ) + C (8P ) = L1, (1) (3)
B_ ("0 ) + Br(¢w?"" ) = Ly(vr), (4)

respectively, where ¢{Ps), d)%l’p 7:45) belong to a finite-dimensional subset of

the admissible space of functions for a given h, py and gy (see [DSCO1]).

3 Review of FETI-DP

Let the domain {2_ be subdivided into N subdomains 2¢,i = 1,--- , N. Each
subdomain is discretized using finite elements and we get the system of equa-
tions K°u® = f%, where K?, u®, and f° are the finite element left-hand side
matrix, the solution and the right-hand side load vector, respectively, for (2.

This can be rewritten as
K:r K:c uf‘ — fﬁ (5)
KaT K |ud] TS

where the degrees of freedom of a subdomain are divided into two groups r and
¢ referred to as the “interior” and “corner” degrees of freedom, respectively.
The ¢ degrees of freedom are created at a global level such that we have

T 2T T
B ul =B? w2 =... = BN 4 = u,, where B maps the corner degrees of
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freedom of (25 to the set of global corner degrees of freedom. The subdomain
equations can now be written as

s s 8 s — s
KT‘Tu’I‘ + KchcuC - fr

s=N s=N s=N (6)
> BK:us+ Y BIKSBluc=Y B fi =1
s=1 s=1 s=1

At the interfaces of the subdomains, the continuity of subdomain solutions is
imposed by the following condition

up' —uy =0 on Iy, (7
with [, = 002™NONT for m,n = 1,..., N, and m # n. Note that index b (b C
r) denotes those degrees of freedom which lie on the interface boundary except
s=N
the corner degrees of freedom c. Recasting the above equation as Y Bius =0
s=1
where B is a signed boolean matrix such that Bju? = +u}, and letting A
denote the lagrange multipliers for enforcing the interface condition (7), leads
to the system of equations

Kjul + KpBiue + BT A = f7, ®)
s=N s=N s=N
S B K s+ Y BY'KSBu.= Y B fS = §., 9)
s=1 s=1 s=1

s=N
> Biui =0. (10)
s=1

Elimination of u$ and u. from the above equations gives the interface problem
in terms of the dual (lagrange multiplier) solution

(Frp + F K2 FO)N = d — Fo o K272 (11)
s=N s=N s=N
Here F,, = 21 B:!K: ‘BT F,. = 21 B:K: 'K:.B: KX = 21 B:TK? Bs—
s= s= s=
s Rs\T 17s —1lprs s s sgrs —1rs * s sT1rs Tyrs —1 ps
(KTCBC) Krr KchwdT = 2:1 BT‘KT‘T r7and fc = fC— Zl Bc KT‘C KT‘T fr‘
s= s=

*

* 1R T forms a

In equation (11) F,, forms a fine-level operator and F..K
coarse-level operator.

3.1 Coarse space for p-approximation and infinite element

Three-dimensional p-approximations offer multiple options for selecting the

“coarse” degrees of freedom. For a partitioned domain, let X = Uz,n=1 T,

m # n, denote the closure of the partition boundary as depicted in Figure
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2a. We consider as “coarse” candidates only those subdomain basis functions
which have support on mesh entities that belong to the boundary of at least
three partitions. This implies that only mesh edges and vertices contribute
to the coarse space. If M denotes the i-th mesh entity of dimension d then
Figure 2b depicts the closure of all the candidate mesh entities denoted by X.
Knowing that there are py — 1 edge modes in addition to the linear (vertex)
modes, suggests two schemes to pick coarse dofs:

C1 Consider only vertex modes. No edge modes.
C2 Consider vertex and edge p-modes.

Additional care is needed when considering a coarse problem space for an
exterior discretization consisting of both finite and infinite elements as shown
in Figure 2c. Let M ]3 be a mesh region in {2_ and let M? be a corresponding
mesh face on the infinite boundary implying M7 = M3 N I'g. The finite ele-
ment approximation spaces consist of S, - the space of degree p polynomials
assiociated with closure of mesh region M ]3 The infinite element approxima-
tion [DSCO01] consists of the tensor-product space S’;z_ ®S?2+ where gl;)_ is the
subset of ¥, with nonzero support on M} and S?br is a space of degree gy +1
polynomials in 1/p which satisfy the Sommerfeld condition. When selecting
the dofs for the a mesh vertex that lies on the intersection of I'g and X, as
depicted in Figure 2d, the additional g¢ 4+ 1 radial dofs must also be included.

Fig. 2. (a) Partition boundary. (b) Closure of mesh entities for coarse problem. (c)
Discretization using finite and infinite elements (d) Mesh vertex belonging to infinite
element as well as X..

4 Numerical Examples

This section gives several numerical examples to evaluate the performance of
FETI-DP for helmholtz problem in 3D for various ka, p, and meshes. In the
implementation of FETI-DP within STARS3D, the sub-domain matrices K.
and the coarse problem matrix K, are assembled in a sparse representation
and factored using a sparse multi-frontal solver. For the interface problem (11),
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a GMRES based iterative solver [FGGLO03] is used with a lumped precondi-
tioner [FLLPRO1]. The parallel implementation within STARS3D is based on
MPL

Interior Helmholtz problem: Consider the solution of the interior problem
in 2 =[-1,—-4,-1]x[1,4, 1] with Robin data data h = 0¢,, /Ov—ikd,, where
Dox = exp(ik|r —ry])/|r —ry| is a point source located at r, = (0,—5,0)
outside of 2_. Three hexahedral meshes, Mesh A, Mesh B and Mesh C,
with 8192, 65,536, and 262,144 hexahedrons, respectively, with p = 1,2,3,4
are used. Table 1 gives the iteration counts M. Table 2 lists the wall-clock

Table 1. Iteration counts for interior helmholtz problem for Mesh A.

p=1 p=2 p=3 p=4
ka\N248163264248163264248163264248163264
10 [5[6]4] 6 [10] 9 |6]6]5] 7 [11]126]6|5] 7 [12[13]6]6]5] 7 [13]16
14 |7|7|5| 8 |12(12|7|8|6| 9 |15]19|7|8|6| 9 |17|22|7|8|6] 9 |20|29
18 |7(8/6]10|22|23|9(9|8|11|35|55(9|9(8|11|38|58|9|9|8|11|40|62

Table 2. Parallel scalability for interior helmholtz problem with ka = 10.

Mesh B,p=3 | Mesh B,p=4| Mesh C,p=2 | Mesh C,p=3
M| Time(Eff.)|M|Time(Eff.)|M|STime(Eff.)|M| Time(Eff.)
6 656.8 6 3346.0 7 3697.0 - -
9 |148.2 (221%)| 9 [631.7 (265%)| 9 |1061.8 (174%)| 9|  3849.5

8| 48.8 (336%) | 8 |175.4 (477%)| 8 | 298.9 (309%) | 9 |1375.3 (140%)
24| 30.2 (136%) |25| 75.6 (276%) (25| 141.1 (163%) |25| 319.9 (154%)

&0k |2

time ¢ty and parallel efficiency Ex = g—t]\f x 100. These computations were
done on a SGI-Altix. As expected, scalability improves as the problem size
grows. Note that Mesh C, with p = 3, has 1.98 million complex degrees of
freedom. More than 100% parallel efficiency is observed because of significant
drop in total time to factor K?. as the domain is divided into subdomains.
Exterior Helmholtz problem: This example considers scattering of plane
wave by a rigid obstacle. The incident-wave ¢, is along (0,0, —1). Two differ-
ent shapes for the obstacle are considered: (1) a sphere of radius a, and (2) a
submarine-like structure. The sphere mesh is partitioned based on the coor-
dinate planes, while the mock-submarine (shown in Figure 3) is partitioned
using METIS (www-users.cs.umn.edu/ karypis/metis/).

Table 3 gives the iteration counts for the sphere problem for a mesh with
7896 mesh regions. Here, unconjugated infinite elements with radial degree
g5 = 2 were used. Similar results for the mock-submarine are given in Table 4.
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Fig. 3. Partitions for mock-submarine. (a) N =4, (b) N = 32.

Table 3. Iteration counts for the sphere problem.

p=1l|p=2|p=3|p=14
ka\N248248248248
5

13|5(3(15|6(7(16|7|7|12|8|10
10 (16(5(3|21|7|7]|20|8|7|12|9|11

5 6 8
5 7 9

Table 4. Iteration counts for exterior scattering from a rigid mock submarine.
Mesh Hy (Mesh H3) has 19024 (60819) regions.

Mesh Hy,p=1|Mesh Ha,p =1|Mesh Hi,p=2|Mesh Hy,p =2
N\ka 15 10 1|5 10 1|5 10 1|5 10

4 (19| 64 415  |20(40 162 24(121) 236 (23|93 386
8 [21|93| 771 |2167| 272 |26|190| 383 |24|140{ 863
16 |21|132| 2457 (22|92 347 |27|243| 970 |28]|169| 1403
32 |22(153| 1906 |22|68| 716 (31293 2480 |30({126| 2955

Impact of coarse problem selection To evaluate the impact of the choice
of method to select the degrees of freedom for the coarse problem outlined in
Section 3.1, we consider the sphere problem. Consider a finite element approx-
imation with py = 3 and infinite element radial degree gy = 2. We compare
the number of iterations needed to converge to a given tolerance. The impact
on the accuracy is evaluated by computing the pointwise maximum (L) rel-
ative error in the real and the imaginary parts of the computed scattered field
as:

max; |R(u;) — R(uf o~ max; [(u;) — S(uf
|§R(€)|oo = axnla}i |§)?E(u?)|( )|a |\$(€)|oo = 2 n’la:f, |é(u?)|( )l (12)

where, 40 is a globally C° solution obtained by a direct multi-frontal scheme.

From Table 5 we note that use of all the edge modes from ¥, (C2) makes
the approximate FETI-DP solution to converge to the globally C° solution
within the tolerance used in the iterative solution of the interface problem
11. In contrast, use of only vertex (linear) modes (C1) make the FETI-DP
solution to have errors that significantly exceed the convergence tolerance used
in the iterative solver.
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Table 5. Impact of coarse space selection on iteration counts and accuracy for
scattering from rigid sphere at ka = 1,10. Lumped preconditioner and a tolerance
1.0e — 09 is used for iterative solve. n. denotes the number of coarse dofs.

N=4 N =28
M (1) [ [oa] S (@en | M (1) [R5
ka =1, C1 40 (16) | 8.34e-3 |3.71e-3| 40 (48) |8.33e-3 | 6.21e-3
ka =1, C2 |40 (36) | 2.83e-8 | 1.54e-8 | 37 (108) |9.13e-9 | 9.75¢e-9
ka =10, C1|100 (16) 1.26e-2 [ 1.59e-2 | 110 (48) 2.64e-2 | 2.38e-2
ka =10, C2|100 (36) 9.08e-9 | 1.11e-8 [102 (108) 8.73e-9 | 8.31e-9

5 Discussion and Conclusion

We have successfully applied the FETI-DP algorithm to hp-finite/infinite ele-
ment discretization of both interior and exterior acoustics problems. We show
super-linear scalability for a set of interior acoustics problems. For exterior
problems, we demonstrate excellent scalability of FETI-DP except at very
high ka values. The lack of better scalability at higher wavenumber is tied to
numerically dispersive nature of these approximations and will be addressed
with effective augmentation strategies that accelarate convergence further. We
have also discussed strategies for selecting the coarse problem space and show
that for p-approximations it is impertative to include all the high-order mesh
edge modes to ensure expected accuracy of the subdomain solutions.
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