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Summary. We consider elliptic problems with discontinuous coefficients discretized
by FEM on non-matching triangulations across the interface using the mortar tech-
nique. The resulting discrete problem is solved by a FETI–DP method using a pre-
conditioner with special scaling described in Dokeva, Dryja and Proskurowski [to
appear]. Experiments performed on hundreds of processors show that this FETI–DP
mortar method exhibits good parallel scalability.

1 Introduction

Parallelization of finite element algorithms enables one to solve problems with
a large amount of degrees of freedom in a reasonable time, which becomes
possible if the method is scalable.

We adopt here the definition of scalability following Bhardwaj et al. [2000]
and Bhardwaj et al. [2002]: solving n-times larger problem using an n-times
larger number of processors in nearly constant cpu time. Domain decompo-
sition algorithms using FETI-DP solvers (Farhat et al. [2001], Farhat et al.
[2000], Klawonn, Widlund and Dryja [2002], Mandel and Tezaur [2001]) have
been demonstrated to provide scalable performance on massively parallel pro-
cessors, see Bhardwaj et al. [2002] and the references therein.

The aim of this paper is to experimentally demonstrate that a scalable per-
formance on hundreds of processors can be achieved for a mortar discretiza-
tion using FETI-DP solvers described in Dokeva, Dryja and Proskurowski [to
appear] and Dryja and Widlund [2002].

In view of the page limitation, Section 2 describing the FETI-DP method
and preconditioner is abbreviated to a minimum. For a complete presentation
refer to Dokeva, Dryja and Proskurowski [to appear]. Section 3 contains the
main results.
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2 FETI-DP equation and preconditioner

We consider the following differential problem.

Find u∗ ∈ H1
0 (Ω) such that

a(u∗, v) = f(v), v ∈ H1
0 (Ω), (1)

where
a(u, v) = (ρ(x)∇u,∇u)L2(Ω), f(v) = (f, v)L2(Ω).

We assume that Ω is a polygonal region and Ω =
⋃N

i=1 Ωi, Ωi are disjoint
polygonal subregions, ρ(x) = ρi is a positive constant on Ωi and f ∈ L2(Ω).
We solve (1) by the FEM on non–matching triangulation across ∂Ωi. To de-
scribe a discrete problem the mortar technique is used.

We impose on Ωi a triangulation with triangular elements and parameter
hi. The resulting triangulation in Ω is non-matching across ∂Ωi. Let Xi(Ωi)
be a finite element space of piecewise linear continuous functions defined on
the introduced triangulation. We assume that functions of Xi(Ωi) vanish on
∂Ωi ∩ ∂Ω.

Let Xh(Ω) = X1(Ω1)× . . .×XN (ΩN ) and V h(Ω) be a subspace of Xh(Ω)
of functions which satisfy the mortar condition

∫

δm

(ui − uj)ψds = 0, ψ ∈ M(δm). (2)

Here, ui ∈ Xi(Ωi) and uj ∈ Xj(Ωj) on Γij , an edge common to Ωi and Ωj

and M(δm) is a space of test (mortar) functions.
Let Γij = ∂Ωi ∩ ∂Ωj be a common edge of two substructures Ωi and Ωj .

Let Γij as an edge of Ωi be denoted by γm(i) and called mortar (master), and
let Γij as an edge of Ωj be denoted by δm(j) and called non-mortar (slave).

Denote by Wj

(
δm(j)

)
the restriction of Xj(Ωj) to δm(j).

Using the nodal basis functions ϕ
(l)
δm(i)

∈ Wi

(
δm(i)

)
, ϕ

(k)
γm(j)

∈ Wj

(
γm(j)

)

and ψ
(p)
δm(i)

∈ M
(
δm(i)

)
, the matrix formulation of (2) is

Bδm(i)
uiδm(i)

− Bγm(j)
ujγm(j)

= 0, (3)

where uiδm(i)
and ujγm(j)

are vectors which represent ui

∣∣
δm(i)

∈ Wi

(
δm(i)

)
and

uj

∣∣
γm(j)

∈ Wj

(
γm(j)

)
, and

Bδm(i)
=

{
(ψ

(p)
δm(i)

, ϕ
(k)
δm(i)

)L2(δm(i))

}
, p = 1, . . . , nδ(i), k = 0, . . . , nδ(i) + 1,

Bγm(j)
=

{
(ψ

(p)
δm(i)

, ϕ
(l)
γm(j)

)L2(γm(j))

}
, p = 1, . . . , nδ(i), l = 0, . . . , nγ(j)

+ 1.

We rewrite the discrete problem for (1) in V h as a saddle-point problem

using Lagrange multipliers, λ. Its solution is (u∗

h, λ∗

h) ∈ X̃h(Ω)×M(Γ ), where
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X̃h(Ω) denotes a subspace of Xh(Ω) of functions which are continuous at
common vertices of substructures. We partition u∗

h =
(
u(i), u(c), u(r)

)
into

vectors containing the interior nodal points of Ωl, vertices of Ωl, and the
remaining nodal points of ∂Ωl\∂Ω, respectively.

Let K(l) be the stiffness matrix of al( · , · ). It is represented as

K(l) =




K
(l)
ii K

(l)
ic K

(l)
ir

K
(l)
ci K

(l)
cc K

(l)
cr

K
(l)
ri K

(l)
rc K

(l)
rr


 , (4)

where the rows correspond to the interior unknowns, its vertices and its edges.
Using this notation and the assumption of continuity of u∗

h at the vertices
of ∂Ωl, the saddle point problem can be written as




Kii Kic Kir 0

Kci K̃cc Kcr BT
c

Kri Krc Krr BT
r

0 Bc Br 0







u(i)

u(c)

u(r)

λ̃∗


 =




f (i)

f (c)

f (r)

0


 . (5)

Here, the matrices Kii, Krr and K̃cc are diagonal block-matrices of K
(l)
ii ,

K
(l)
rr and K

(l)
cc , where the last one uses the fact that u(c) are the same at the

common vertices of substructures. The mortar condition is represented by the
global diagonal matrices B = (Bc, Br).

In the system (5) we eliminate the unknowns u(i) and u(c) to obtain

(
S̃ B̃T

B̃ S̃cc

)(
u(r)

λ̃∗

)
=

(
f̃r

f̃c

)
, (6)

where (since Kic = 0 = Kci in the case of triangle elements and a piecewise
linear continuous finite element space used in the implementation):

S̃ = Krr−KriK
−1
ii Kir−KrcK̃

−1
cc Kcr, f̃r = f (r)−KriK

−1
ii f (i)−KrcK̃

−1
cc f (c)

B̃ = Br − BcK̃
−1
cc Kcr, S̃cc = −BcK̃

−1
cc BT

c , and f̃c = −BcK̃
−1
cc fc.

We next eliminate the unknown u(r) to get for λ̃∗ ∈ M(Γ )

Fλ̃∗ = d, (7)

where
F = B̃S̃−1B̃T − S̃cc, and d = B̃S̃−1f̃r − f̃c. (8)

This is the FETI-DP equation for Lagrange multipliers. Since F is positive
definite, the problem has a unique solution. This problem can be solved by
conjugate gradient iterations with a preconditioner discussed below.
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Let S(l) denote the Schur complement of K(l), see (4), with respect to
unknowns at the nodal points of ∂Ωl. This matrix is represented as

S(l) =

(
S

(l)
rr S

(l)
rc

S
(l)
cr S

(l)
cc

)
, (9)

where the second row corresponds to unknowns at the vertices of ∂Ωl while
the first one corresponds to the remaining unknowns of ∂Ωl. Note that Br is a
matrix obtained from B defined on functions with zero values at the vertices
of Ωl and let

Srr = diag
{

S(l)
rr

}N

l=1
, Scc = diag

{
S(l)

cc

}N

l=1
, Scr =

(
S(1)

cr , . . . , S(N)
cr

)
. (10)

We employ special scaling appropriate for problems with discontinuous
coefficients. The preconditioner M for (7) is defined as, see Dokeva, Dryja
and Proskurowski [to appear]

M−1 = B̂rŜrrB̂
T
r , (11)

where Ŝrr = diag
{

Ŝ
(i)
rr

}N

i=1
, Ŝ

(i)
rr = S

(i)
rr for ρi = 1 and we define

B̂
∣∣
δm(i)

=

(
ρ
1/2
i Iδm(i)

,−
hδm(i)

hγm(j)

ρi

ρj
ρ
1/2
i B−1

δm(i)
Bγm(j)

)
, for δm(i) ⊂ ∂Ωi, i =

1, . . . , N ; hδm(i)
and hγm(j)

are the step parameters on δm(i) and γm(j), re-
spectively.

Following Dokeva, Dryja and Proskurowski [to appear] we have

Theorem 1. Let the mortar side be chosen where the coefficient ρi is larger.
Then for λ ∈ M(Γ ) the following holds

c0

(
1 + log

H

h

)
−2

〈Mλ,λ〉 ≤ 〈Fλ, λ〉 ≤ c1

(
1 + log

H

h

)2

〈Mλ,λ〉, (12)

where c0 and c1 are positive constants independent of hi,Hi, and the jumps
of ρi; h = mini hi,H = maxi Hi.

This estimate allows us to achieve numerical scalability, an essential ingre-
dient in a successful parallel implementation.

3 Parallel implementation and results

Our parallel implementation problem is divided into three types of tasks:
solvers on the subdomains (with different meshes of discretization) which run
individually and in parallel, a problem on the interfaces between the subdo-
mains which can be solved in parallel with only a few global communications,
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and a ”coarse” problem on the vertices between the subdomains which is a
global task. A proper implementation of the coarse problem is crucial when
the number of processors/subdomains is large.

We discuss some details of the implementation and present experimen-
tal results demonstrating that this method is well scalable. The numerical
experiments were performed on up to 484 processors provided by the Uni-
versity of Southern California Center for High Performance Computing and
Communications (http://www.usc.edu/hpcc). All jobs were run on identi-
cally configured nodes equipped with dual Intel Pentium 4 Xeon 3.06 GHz
processors, 2 GB of RAM and low latency Myrinet networking. Our code was
written in C and MPI, using the PETSc toolkit (see Balay et al. [2001]) which
interfaces many different solvers.

The test example for our experiments is the weak formulation of

−div(ρ(x)∇u) = f(x) in Ω, (13)

with the homogenous Dirichlet boundary conditions on ∂Ω, where Ω = (0, 1)×
(0, 1) is a union of N = n2 disjoint square subregions Ωi, i = 1, . . . , N and
ρ(x) = ρi is a positive constant in each Ωi. The coefficients ρ(x) are chosen
larger on the mortar sides of the interfaces, see Theorem 1.

The distribution of the coefficients ρi and grids hi in Ωi, i = 1, . . . , 4 with
max grid ratio 8 : 1 used in our tests (for larger number of subregions, this

pattern of coefficients is repeated) is here with h =
1

32n
:

(
1e6 1e4
1e2 1

)
,

(
h/8 h/4
h/2 h

)
. (14)

Each of the N processors works on a given subdomain and communicates
mostly with the processors working on the neighboring subdomains.

For the subdomain solvers, we employ a symmetric block sparse Cholesky
solver provided by the SPOOLES library (see Ashcraft and Grimes [1999]).
The matrices are decomposed during the first solve and afterwards only a
forward and backward substitutions are needed.

At each preconditioned conjugate gradient (PCG) iteration to solve the
FETI-DP equation (7) for Lagrange multipliers, there are two main opera-
tions:

1. multiplication by the preconditioner M−1 = B̂rŜrrB̂
T
r which involves

solving N Dirichlet problems that are uncoupled, and some operations on the
interfaces between the neighboring subdomains.

2. multiplication by F = B̃S̃−1B̃T − S̃cc which involves solving N coupled
Neumann problems connected through the vertices.

The latter task involves solving a system with the global stiffness matrix
K, see (5), of the form:




Kii 0 Kir

0 K̃cc Kcr

Kri Krc Krr







vi

vc

vr


 =




0
0
p


 . (15)
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Its Schur complement matrix C with respect to the vertices is

C = K̃cc − (0, Kcr)

(
Kii Kir

Kri Krr

)
−1 (

0
Krc

)
. (16)

C is a sparse, 9-diagonal, (n − 1)2 × (n − 1)2 matrix. Solving a ”coarse”
problem with C is a global task while the subdomain solvers are local and run
in parallel.

Proper implementation of the coarse system solving is important for the
scalability especially when the number of processors/subdomains, N is large.
Without assembling C, the coarse system could be solved iteratively (for ex-
ample, with PCG using symmetric Gauss-Seidel preconditioner). Since the
cpu cost then depends on N , it is preferable to assemble C.

We implemented two approaches discussed in Bhardwaj et al. [2002]. In
the case of relatively small C studied here one can invert C in parallel by
duplicating it across a group of processors so that each computes a column of
C−1 by a direct solver, for which we employed SPOOLES.

When C is larger the above may not be efficient or even possible; in that
case one can use distributed storage for C and then a parallel direct solver. In
a second implementation we employed the block sparse Cholesky solver from
the MUMPS package (see Amestoy et al. [2000] and Amestoy et al. [2001])
interfaced through PETSc. For simplicity, the matrix C was stored on n − 1
or (n − 1)2 processors, with the first choice yielding better performance.

In the tests run on up to (the maximum available to us) N = 484 processors
the two implementations performed almost identically. In Table 1 and Fig.
1 and 2 we present results from our first implementation when the coarse
problem is solved by inverting the matrix C.
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Fig. 1. Iterations and cpu time vs number of processors

Fig. 1 shows that the number of PCG iterations remains constant after
N = 36 when the number of subdomains/processors is increased. The graph of
the execution time (on the right) has a similar pattern. Although the number
of degrees of freedom is increasing, the cpu time remains almost constant, see
Table 1.
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N # it d.o.f. cpu time

4 6 87037 15.41
16 13 350057 18.03
36 16 789061 19.14
64 16 1404049 19.19

100 16 2195021 19.23
144 16 3161977 19.37
196 16 4304917 19.49
256 16 5623841 19.66
324 16 7118749 19.85
400 16 8789641 20.01
484 16 10636517 20.22

Table 1. Cpu time, iterations and d.o.f.

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500

number of processors N

sp
ee

d−
up

Fig. 2. Speed-up

Fig. 2 shows the speed-up of the algorithm, where the dashed line repre-
sents the ideal and the solid line the actual speed-up respectively.

We adopt the definition of the speed-up following Bhardwaj et al. [2000].
Here, it is adjusted to N0 = 36 as a reference point, after which the number
of iterations remains constant, see Table 1:

Sp =
36 × T36

TNp

×
NdofNs

Ndof36

,

where T36 and TNp
denote the CPU time corresponding to 36 and Np pro-

cessors, respectively, and Ndof36
and NdofNs

denote the sizes (in d.o.f.) of the
global problems corresponding to 36 and Ns subdomains, respectively.

This definition accounts both for the numerical and parallel scalability.

4 Conclusions

In this paper we study the parallel performance of the FETI–DP mortar
preconditioner developed in Dokeva, Dryja and Proskurowski [to appear] for
elliptic 2D problems with discontinuous coefficients. Computational evidence
presented illustrates a good parallel scalability of the method.

We would like to thank Max Dryja for the collaboration throughout. The
first author would like to thank Panayot Vassilevski for the guidance during
her summer internship at the Lawrence Livermore National Laboratory. The
USC Center for High Performance Computing and Communications (HPCC)
is acknowledged for generously providing us with the use of the Linux com-
puter cluster.
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