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In this paper we present a domain decomposition method for the solution
of a linear equation as a direct two-step procedure (in contrast to iterative-
based Schwarz and Aitken-Schwarz procedures): first, local solutions to the
nonhomogeneous equation are calculated on overlapping domains, and sec-
ond, connection functions, solutions to the homogeneous equation, are cal-
culated which satisfy the Cousin problem and correct for the initial solution
mismatch at interior boundaries. The procedure is applied to Poisson’s equa-
tion as a sample linear equation. The calculation of the connection functions
is achieved through a classical orthogonal decomposition of the solution to
Laplace’s equation and can be achieved through progressive solutions in each
direction for separable boundary conditions. The procedure is also applicable
to more complicated domains with non-separable boundary conditions. A few
examples will be given. The connection functions can be calculated to high
precision and require minimal overlap of the subdomains.

1 Introduction

In the classical Schwarz procedure applied to a domain decomposition with
overlapping subdomains the final solution is achieved through an iterative pro-
cedure updating the boundary conditions that are internal to the subdomains
[Sch70] (see also optimized variants [GHN01]). The classical Schwarz technique
is limited since the number of iterations scales geometrically with the number
of subdomains and the rate of convergence depends strongly on the overlap.
Recent work has shown that each successive iteration can be represented as a
linear operator on the solution and that the final solution can be determined
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from the extrapolation of the linear convergence rate. This Aitken-Schwarz
procedure has been extended to non-linear problems as a Steffensen-Schwarz
procedure [BGO03, GT02a, GT02b]. In this paper we consider Poisson’s equa-
tion in overlapped regular and irregular geometries as a model system for fu-
ture applications to the Navier-Stokes equations. The matching requirement
is based on equating the two local solutions functionally in the overlap region,
a stricter requirement than the Schwarz procedure. This formulation leads to
a Cousin like problem [GR65] and, for this linear problem, results in a con-
strained system for coupled solutions of the homogeneous form of the given
equation.

First, we require a local Poisson solve on each subdomain. The local solu-
tions in the overlapping regions pose a Cousin problem, and the difference in
the values of the two functions satisfies the homogeneous form of the equation.
Second, connection functions are calculated that satisfy the Cousin problem
and smoothly patch the local solutions together. The connection functions
are determined based on boundary information. This technique is similar to
the superposition, filtering, and patching technique of Israeli et al. [IVA93]
but uses an exact representation of the connection functions and results in a
fully coupled system. In two dimensions, for rectangular computational do-
mains, each connection function can be decomposed into the sum of four
separate connection functions. In each direction the solutions are coupled at
the local boundaries and lead to a set of simultaneous equations that can be
solved for the coefficients. Solutions in multiple dimensions can be achieved
by recursively treating the connection functions in each dimension. Hence a
three-dimensional solution requires three applications of the procedure.

2 Definitions, Cousin Problem, and Local Solutions

Let Ω be the domain of interest. Assume that the domain can be decomposed
into a finite set of open coverings Ωi such that each domain has a finite
overlap with its neighboring domains. In particular, we consider rectangular
and L-shaped domains.

We seek to solve the linear Poisson equation as a model problem ∆p = f
in Ω subject to B p = b on ∂Ω, with Dirichlet boundary values. We assume
f ∈ C(Ω) and b ∈ C(∂Ω) for n ≥ 2.

First, the local Poisson problem is solved

∆qi = f in Ωi with B qi = b̃i on ∂Ωi (1)

and second, a set of connection functions are generated

∆hi = 0 in Ωi with B hi = c̃i on ∂Ωi (2)

where hi satisfies a Cousin problem and is determined by boundary values.
Here b̃i is a continuous non-unique extension of the b on ∂Ωi. The c̃’s are
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determined by the mismatch in the local solutions as will be discussed in
section 3.

Cousin Problem: Suppose, for every pair of subdomains Ωα ∩ Ωβ 6= ∅,
we have hαβ such that ∆hαβ = 0 and hαβ = 0 on (∂Ωα ∩ ∂Ωβ) so that the
following cocycle properties are satisfied:

hα α = 0 hα β = −hβ α hα β + hβ γ = hα γ (3)

The additive Cousin Problem with data {hαβ} is the problem of finding func-
tions hα such that ∆hα = 0 in Ωα and hαβ = hβ − hα in Ωα ∩ Ωβ with
homogeneous Dirichlet boundary conditions on the boundary of ∂Ωα not in
∂Ωα ∩ ∂Ωβ [GR65].

If {qα} is a complete set of exact solutions to the subdomain problems (1),
then the functions generated from the difference of local solutions,

hαβ = qα − qβ , (4)

satisfy ∆hαβ = 0, and the cocycle properties (3) are trivially verified. Once
the functions {hα} are found, by rearranging

qα − qβ = hαβ = hβ − hα (5)

we get pα = qα+hα = pβ = qβ+hβ in Ωα∩Ωβ and the global solution becomes
p =

⋃
pα in Ω. The key to the procedure is the computational simplicity of

the computation of the homogeneous solutions and the superposition of the
local solutions and connection functions.

Generation of accurate local solutions is critical to overall accuracy of the
technique and may limit the final order of accuracy. We use two methods for
calculating the local solutions: first, a direction solution via a Schur decom-
position [Can88], and second a pseudo-spectral Fourier method in combina-
tion with a boundary regularization procedure to subtract aperiodicity in the
boundary conditions [ZFC]. The local solutions can be difficult to compute in
that they arise from local problems that are nonperiodic and are subject to
the interpolated boundary conditions. A range of spectral methods has been
developed to approach this problem [AIV98, Sko75].

In the first method the solution is determined by the finite difference ex-
pansion and, in this case, results in a second order truncation error and a sec-
ond order accurate solution. The second method is outlined in Zarantonello,
Fabris, and Chiappari [ZFC]. In this approach the right hand side is pre-
conditioned by removing aperiodic behavior in the harmonic extension of f .
This technique has been introduced by Sköllermo [Sko75] and implemented
by Averbuch et al. [AIV98].

3 Examples and Results

Let {Ωn} be a finite set of open coverings of Ω, a rectangular domain (a, b)×
(c, d) =

{
(x, y) ∈ R2 | a < x < b , c < y < d

}
, such that Ωn = (an, bn)×(c, d)
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and an < bn−1 < an+1 < bn. We refer to this set as a rectangular domain
decomposition of Ω and note that the domains have a finite overlap and are
horizontally aligned, Figure 1. This decomposition can be extended into a two
or three dimensional array of overlapping domains in a similar manner.
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Fig. 1. Two subdomains and a row of subdomains.

With two overlapping domains consider ΓL
2 and ΓR

1 to be the interior
boundaries of Ω2 and Ω1 as shown in Figure 1. The Cousin data consists of
the single function h12 = q1−q2 defined on Ω1∩Ω2. The connection functions,
h1 and h2, are solutions to ∆h = 0 and can be generated from boundary con-
ditions expressed in an orthogonal basis appropriate to the specific domain,
in this case an expansion in sines and hyperbolic sines. Since the initial local
solutions, qα, satisfy homogeneous global boundary conditions that are ex-
tended to homogeneous boundary conditions on ΓL

2 and ΓR
1 , the connection

functions each have only one non-homogeneous boundary conditions. For the
purpose of illustration

h1(x, y) =
∞∑

k=1

Rk
sinh kπ(x− a1)
sinh kπ(b1 − a1)

sin kπy (6)

and

h2(x, y) =
∞∑

k=1

Lk
sinh kπ(b2 − x)
sinh kπ(b2 − a2)

sin kπy (7)

in the rectangular domain. Here {Lk} and {Rk} are the coefficients derived
from the sine expansions of the boundary data on the left and right edges of
each rectangular domain. Now, equation 5 is used to identify the boundary
data

q1 |Γ L
2
− q2 |Γ L

2
= h12 |Γ L

2
= h2 |Γ L

2
− h1 |Γ L

2
(8)

and
q2 |Γ R

1
− q1 |Γ R

1
= h12 |Γ R

1
= h1 |Γ R

1
− h2 |Γ R

1
. (9)

Using the data from q1 and q2, we expand h12 on the same sine basis as (6)
and (7)
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h12(x, y) =
∞∑

k=1

[
Tk

sinh kπ(x− a2)
sinh kπ(b1 − a2)

− Sk
sinh kπ(b1 − x)
sinh kπ(b1 − a2)

]
sin kπy. (10)

Using the eigenexpansions in (6), (7), and (10), equations (8) and (9) decou-
ple in each wave number and can be solved simultaneously for each pair of
expansion coefficients, Lk and Rk, independently.

In the more general case of multiple domains, Ωn, connected in a row with
only overlap of two adjacent domains the simultaneous system reduces to

D1,k 1 0 0 0 . . 0
1 A2,k B2,k 0 0 . . 0
0 C2,k D2,k 1 0 . . 0
0 0 1 A3,k B3,k . . 0
0 0 0 C3,k D3,k . . 0
. . . . . . . .
0 0 0 . . . 1 An,k





R1,k

L2,k

R2,k

L3,k

R3,k

...
Ln,k


=



S1,k

T2,k

S2,k

T3,k

S3,k

...
Tn,k,


(11)

where

An,k = − sinh kπ(bn − bn−1)
sinh kπ(bn − an)

, Dn,k = − sinh kπ(an+1 − an)
sinh kπ(bn − an)

, (12)

Bn,k = − sinh kπ(bn−1 − an)
sinh kπ(bn − an)

, Cn,k = − sinh kπ(bn − an+1)
sinh kπ(bn − an)

.

In this system each row is normalized by the hyperbolic sine factors in equation
(10). In the internal subdomains, the subdomains that overlap with two other
subdomains, the connection function contains both left and right coefficients.

Since the subdomains overlap, the determinant of (11) is strictly positive
and uniformly bounded away from zero. The solution {hn} depends continu-
ously on the data {hn,n−1}, and the procedure for solving the Cousin Problem
is stable. The elements, equation (12), of the matrix in equation (11) are de-
termined purely by the nature of the overlap, and the connection function
in any one subdomain depends only on the local solutions in all of the other
subdomains, but not on the other connection functions, Rj,k = fj({Sk}, {Tk})
and Lj,k = gj({Sk}, {Tk}). In essence this reduces the iterative problem to a
two-step direct solution.

In a computational framework using a finite expansion each function
hn,n−1 = qn − qn−1 is defined on a collocation grid of dimensions Mx;n,n−1 ×
My, the sine series (6), (7), and (10) become sine polynomials of order My, the
sine coefficients are calculated via a Fast Sine Transform, the equation coeffi-
cients (12) are precalculated, and (11) reduces to My systems of tridiagonal
equations in 2N − 2 unknowns.

We consider two test cases to demonstrate the method. In [GT02a] Garbey
and Tromeur-Dervout proposed the problem f(x, y) = 2y(y − 1) + 2x2 −
0.5, with exact solution p(x, y) = (x2 − 0.25)y(y − 1) defined on the unit
square. This particular case allows an exact solution to be computed with a
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second order discretization. Results are given in Table 1. Our L∞ errors are
comparable to those of Garbey and Tromeur-Dervout and are on the order of
machine precision. In this case the truncation error is exactly zero for the 2nd

order technique.

Table 1. First case considered, L2 and L∞ relative to the same norms for the
solution.

total nodes spectral 2nd order 2nd order errL∞ , Garbey &
(subdomains) errL2 errL2 errL∞ Tromeur-Dervout

66×66 (2 × 2) 7.8501e-10 4.7668e-14 4.3161e-14 3.8589e-13
66×66 (4 × 4) 4.2206e-9 4.7668e-14 4.9009e-14 4.2577e-14
66×66 (8 × 8) 1.8064e-8 9.5740e-14 6.0633e-14 2.2204e-15
66×66 (16 × 16) 7.2144e-8 2.2889e-13 1.1517e-13 1.1380e-15
258×258 (2 × 2) 3.0977e-12 7.5506e-13 5.6097e-13 1.3513e-11
258×258 (4 × 4 1.6964e-11 1.1543e-12 9.0958e-13 2.8467e-12
258×258 (8 × 8) 7.3314e-11 1.4259e-12 1.1116e-12 1.3563e-12
258×258 (16 × 16) 2.9883e-10 9.0078e-13 6.5830e-13 8.4238e-14

Second, we consider f(x, y) = 6 ex+y x y (−3 + y + x + x y), with the exact
solution p(x, y) = 3 ex+y x y (1 − x)(1 − y). This is Problem 4.1 of Rice et
al. [RHD81]. Results are shown in Table 2. It is a commonly used example
of an analytic problem with homogeneous Dirichlet boundary values. Rice
[RHD81] considers only a single subdomain setting. The spectral solution
is more accurate due to a higher order approximation. Figure 2 shows the
solution and error for the third case in Table 2.

Table 2. Second case considered. The spectral method uses a local solution that is
fourth order accurate.

total nodes spectral spectral 2nd order
(subdomains) errL2 errL∞ errL2

18×18 (2 × 2) 2.8047e-7 1.3978e-6 3.6947e-4
34×34 (2 × 2) 1.0409e-8 9.6288e-8 8.2776e-5
66×66 (2 × 2) 3.6829e-10 6.3610e-9 1.9237e-5
130×130 (2 × 2) 1.2921e-11 4.0955e-10 4.6102e-6
258×258 (2 × 2) 4.7057e-13 2.5989e-11 1.1266e-6

The results are given for two local solvers, the spectral and Schur decom-
position. We note that the Schur decomposition provides the exact solution
for the first problem since the truncation error is exactly zero. The results
approach machine accuracy and are comparable with or better than the best
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Fig. 2. Solution and error.

published results for this particular problem. Figure 3 shows the application
of the procedure to an L-shaped domain.
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Fig. 3. Two rectangular domains overlapping into an L-shape: solution and error.

4 Conclusions

A direct method for solution of linear elliptic problems through domain decom-
position has been presented as applied to the Poisson equation. The procedure
calculates local solutions on each domain and computes connection functions
as solutions to a Cousin problem that correct for the mismatch on the internal
boundaries and overlap domains.

In regular rectangular decompositions, eigenfunction expansions for the
connection boundary value problem can be calculated directly with each com-
ponent separated. In two dimensions (or more) each direction needs to be cal-
culated successively with a second Cousin problem generated after calculation
of each connection function. In L-shaped and more complicated domains the
connection functions can still be calculated but require full coupling of all the
eigenfunctions.
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The final procedure is as accurate as the accelerated Schwarz procedure
with the order of accuracy determined by the local solution procedure. The
benefit of the procedure is the improvement in the calculation of the connec-
tion functions, directly through eigenexpansions, that is half as expensive as a
second iteration of the Schwarz procedure. Matching the solution in the over-
lap provides a stronger condition than transmission of boundary data. Fur-
thermore, the procedure allows for the computation of connection solutions
in more complicated domains and successively in two or more dimensions.
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