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Summary. The paper analyzes the approximation of the weak continuity constraint
in the Mortar method, and provides error estimates in the L? and H' norms for
generic discretization spaces, treating the presence of cross-points in the geometrical
decomposition.

1 Introduction

The Mortar element method is a non overlapping non conforming domain
decomposition technique for solving PDEs that weakens the continuity con-
straint of the solution by allowing jumps across the interfaces of the subdo-
mains. Recently it has become of great interest especially for its flexibility
in allowing the coupling of different physical models, the use of different dis-
cretization schemes and non matching grids at the interfaces of the decomposi-
tion. An important aspect of such a technique is related to the implementation
of the weak constraint across the interfaces. It is in fact well known the the
exact computation of the integrals appearing in the jump condition can give
rise to non trivial problems when discrete functions defined on non matching
grids are involved or when totally heterogeneous discretization spaces are used
(as in the case of the wavelet/finite element coupling [2]).

A possible remedy is the use of quadrature formulas to evaluate such inte-
grals. However it has been shown in [4] that if quadrature formulas based on
the master or on the slave side of the interface are used, the results are not
optimal for the best approximation error and the consistency error respec-
tively. In [6] the authors propose to overcome the above problem by adopting
a Petrov-Galerkin approach, namely by choosing a test space in which the
quadrature formula is different from the one considered in trial space, and
show numerical optimal results. On the other hand, the idea introduced in
[2] consists of replacing the classical jump constraint by an approximated one
where the trace on the master edge is replaced by its projection on a suitable
defined auxiliary space. Even if this last approach can be more expensive (the
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computation of the auxiliary projection requires the solution of a linear sys-
tem), it allows to derive a rigorous analysis of the error and turns out to be
applicable in a more general framework than the finite element method. More-
over, in [1] the authors show that the new technique provides an approach to
the coding of non-conforming domain decompositions which allows to create
a flexible, easily extendible and usable code. In particular, it is important to
point out that by following the new method the introduction of a new type
of discretization in an existing program does not require any modification to
the pieces of the code that provide the tools of the discretization spaces al-
ready implemented: the programmer should implement methods to integrate
trace functions with functions belonging to the auxiliary space, rather than
with the functions belonging to all of the types of the discretizations already
in the code unlike in the classical Mortar approach, where the realization of
the jump condition, whatever the exact computation of the integrals or the
use of quadrature formulas one decides to use, requires the programmer to
be somehow familiar with all the libraries implementing the discretizations
already in the code, to enter and modify the existing methods with the risk
of breaking the existing portions of the code.

We present here the analysis of the Mortar method with the introduction of
the approximate constraint in a general context, when generic approxima-
tion spaces are involved in each subdomain of the decomposition of 2 C R2,
providing H' and L?-norm error estimates and we show some numerical re-
sults comparing the new technique with the classical mortar approach. The
extension of such results to the three dimensional case is a work in progress.

2 The Mortar method with approximate constraint

We introduce the Mortar method through a very simple model problem,
namely the Poisson equation, referring to [5] for more details and for proofs
of the main results that we will recall throughout the section.

Let 2 C R? be a polygonal domain, and consider the following elliptic prob-
lem: given f € L?(2), find u : 2—R such that

—Au=f, in 2 u =0, on 912. (1)

Let 2 = Uj_, 2, be a fixed decomposition of 2 as the disjoint union of
L polygonal subdomains (2, and set I ¢ = 02, N 02y, and S = Ulyp.
We denote by wéi) the i-th side of the /-th domain, so that we can write
012 = |, fy/). We do not fix a priori any restriction on the number of the
sides of each polygon, and we assume that the decomposition is geometrically

conforming, that is each edge ”ygi) coincides with Iy (= 042, N 012,) for some
n,1<n<0L.
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For each £, let VE be a family of finite dimensional subspaces of H'(£2,) N
C°(£2), depending on a parameter h = h; > 0 and satisfying homogeneous
boundary conditions on 92 N 82, and denote by

L
Xn =[] Vi
=1

According to the Mortar approach, in order to impose weak continuity to the
solution across the interfaces of the decomposition, we start by choosing the
so called non mortars (or slave) sides fy,(lk). More precisely, since each edge of
the conforming decomposition coincides with the intersection of two adjacent
subdomains, it is possible to write that +. (k) = (z) = I, for some indices

£ and i. Then we choose one side (say 'y§ )) as master side and the other as

slave side of the common edge Iy,, intersection of the two adjacent master
subdomain {2, and slave subdomain (2, respectively. Moreover, in order to
simplify the notations, we use the compact index m = (n, k) to signify that
the integer m is related to the slave side of the interface. Therefore we can
rewrite the decomposition of the skeleton as follows:

S=JFm  with v Ny =0

For v € [], H*(£2¢), let denote by v and v~ the two L*(S) functions whose
restriction to each edge of the skeleton coincides with the trace on that edge
corresponding to the master and to the slave subdomain respectively:

+ £

v =) and v =l
|‘7m Tm “Ym

[

On each slave side 7,,, we define a multiplier space M™ C L?(v,,) and we in-
troduce the following weak continuity constraint which appears in the classical
Mortar approach:

/(v+—v_))\ds=0, YA€ My ~ HM,’L" (2)
5

mel

As already pointed out in the introduction, an important aspect of the Mortar
technique is related to the implementation of the weak constraint (2) across
the interfaces. The problem arises when, within the jump condition, one has
to compute the integrals [ v‘t Am for each interface when v|+ and A,

belong to different types of discretization. It is in fact well known that the
exact computation becomes extremely technical when the intersections of the
supports of unrelated triangular meshes have to be computed and when totally
heterogeneous functions are involved (it can happen that the integral of the
product of unrelated functions can not be exactly computed, as in the coupling
of wavelets and finite elements). The idea proposed in [2] consists in replacing
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the classical jump constraint by an approximate one where the trace on the
master edge vT is substituted by its projection on a suitable chosen auxiliary
space. Precisely, on each slave side 7, let us introduce an auxiliary space
Us,m C L?(vm) depending on a parameter § = d,,. For all ¢ € L*(vy,), let
P.(¢) € Us,m be the unique element of Us , such that

P, (C)T) ds = CT’ ds, V’? € U&,ma (3)

Tm Ym

and let us define the projection operator P : L*(S) — Us = [],,,c; Us,m as
follows: for ¢ € L%(S)

PO = (Pu(Gw) . with  Gu=(,..

Remark that the auxiliary space will have to be chosen in such a way that the
integrals of the form f {nds are (easily) computable provided ( is any trace
function on the slave side and 7 € Us,m- Therefore, introducing the following
approximate integration

/(P(v+) —v7)Ads =0, YA € My, (4)
s

and the associated discrete constrained space X} = {vp, € X}, s.t. (4) holds},
we consider the following problem:

Problem 1. Find uj, € &}, such that for all v, € A},

L
Z Vu(va(;:/ fon.
=15 2

Remark again that Problem 1 is derived from the classical method by simply
replacing the jump condition (2) with (4). Moreover, even if this last approach
requires the solution of a linear system for the computation of the auxiliary
projection, thus resulting more expensive with respect to other possible solu-
tions, it allows to derive a rigorous analysis of the error and turns out to be
applicable in a more general framework than the finite element method. In
particular, in [5] the author show error estimates for Problem 1 for generic
choices of discretization spaces. We recall here for completeness the main re-
sult, referring to the paper for more details. Introducing the notations

1/2
o |-l = (Ze - 11 g, )) is the broken H' norm,

e hy is the dlscretlzatlon parameter acting as “mesh sizes” on v,

o h=maxp{hm}, h=ming{hn}, 6=max,{6n}, &=min,{on},

and denoting by H = max{h,4} and h = min{h,4}, let us be the solution
of problem (1), and u the true solution of problem (1) verifying u € H*({2)
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for some s > 1. Under suitable and fairly standard assumptions on the multi-
plier space and on the approximation and auxiliary spaces, the following error
estimates holds:

lu—unlli, S (1 + llogah]) H* Hulls,e,  [lu—unllo,e S (1 + llogahl) H*||ulls,s-

Remark that in the analysis of the error “natural” norms (namely H'/? on the
interfaces) are involved. This give rise to the loss of a logarithmic factor in the
estimates (when cross-points/wire basket are present in the decomposition),
but allows to apply the analysis in a general framework (even when non mesh-
dependent spaces as in [3] are involved).

2.1 Numerical results

We conclude the presentation of the method by showing some numerical appli-
cations. In Section 2.2 we consider the coupling of finite element and wavelet
schemes and in Section 2.3 we compare the Mortar method with approximate
constraint with the classical approach in the finite element framework.

2.2 Wavelet /finite element coupling

We recall that such an approach allows to overcome one of the drawbacks
of wavelet type methods, which perform in a very promising way on aca-
demic examples, but whose application to real life problems is seriously lim-
ited by the issue of geometry (tensor product-like domains). Moreover, in the
wavelet/FEM coupling it is not possible to compute exactly the integral of a
wavelet type function times a piecewise polynomial defined on an unstructured
grid since wavelets are (in general) not known in closed form. Therefore we
apply the technique proposed in the paper and we show some examples which
refer to the computation of the numerical solution of the Poisson problem (1)
when the domain (2 is the reference square [0, 1]? containing holes in different
numbers, shapes and positions. Triangular meshes are used to describe the
holes profile, so that finite element type discretizations are used in the corre-
sponding subdomains, while wavelet analysis is performed in the presence of
tensorial-type meshes (subdomains without holes) (see Figures 1 and 2).

2.3 Coupling finite elements with non-matching grids

In this section we test the influence that the parameter § (acting as mesh
size of the auxiliary space Us m on the interfaces) has on the behavior of the
numerical solution. In doing that, we compare the classical Mortar method
and the new technique with the approximate constraint. Recall that the two
approaches differ in the computation of the integrals fwm v‘t Am that appear
in the constraint: precisely such quantities are computed e;actly in the first
approach while they are replaced by f,ym P, (Ulflm )Am in the second one.
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Fig. 1. A 2 x 2 D.D.: the unit square contains two circular holes in the second and
fourth subdomains. Wavelets of level j = 4 in the first subdomain and j = 5 in the
third one while finite elements defined on unstructured meshes are used in the other
subdomains.
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Fig. 2. (a): A 3 x 1 D.D. The domain contains two holes, the first having a wing
profile shape and the second a circular shape. Wavelet discretization space is used
in the last subdomain.

To fix the ideas we consider a decomposition of £2 = [0,1]? into two rectangles
£ =[0,.5] x [0,1] and 2> =[.5,1] x [0,1] and finite element approximations
in each and we always refer to the model problem (1), where the right hand
side f is chosen in such a way that the exact solution (plotted in Figure 3) is
given by

u(z,y) = z(1 - 2)y(1 — y)cos(50(x — .5)y)-

In Table 1 we show L2 and H'! semi-norm of the error between the approximate
and the exact solution when exact integrals are used in the cases of 256/256
and 1024/1024 number of nodes. In Table 2 we show the behavior of the errors
for both cases with respect to different values of the parameter .
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1

Fig. 3. Analytiéal solution

|| Nodes || L? norm || H' semi—norm”
[ 256/256 || 0.00201031 [| 0.00204565 ||
[ 1024/1024]] 0.000503404]] 0.000511633 ||

Table 1. Global error in the L? and H! norms with respect to the number of nodes
with exact computation of integrals.

I Nodes: 256 / 256 I Nodes: 1024 / 1024 |

|| || L% norm || H? semi—norm” || L% norm || H? semi—norm”

|| é ||Appr0x. integralHApprox. integral” é ||Approx. integralHApprox. integral”

| 8] 0.00245223 [ 0.0170961 || 24]] 0.000503542 || 0.000550747 ||
| 10]] 0.00203049 [ 0.00363632 || 26]] 0.000503434 | 0.00051738 ||
| 12]] 0.00201145 | 0.00212979 [ 28] 0.000503409 [ 0.000512209 |
| 14]] 0.00201035 [ 0.00204711 | 30]] 0.000503404 | 0.000511652 ||
| 16]] 0.00201031 || 0.00204565 || 32[] 0.000503404 [ 0.000511633 ||
| 18]] 0.00201032 ]| 0.00204616 || 34]] 0.000503404 | 0.000511644 ||
| 20]] 0.00201043 ]| 0.00205476 || 36]] 0.000503406 | 0.000511837 ||
| 30]] 0.00201031 || 0.00204575 || 40[] 0.000503419 [ 0.000516155 |

Table 2. Behavior of L? and H! error with respect to the parameter § for the
approximate integration.

In Table 3 we now compare the error behavior of the two methods (the classical
approach and the approximate constraint) for different choices of the meshes
and for values of the mesh size of the auxiliary space § = h”, where h denotes
the maximum between the mesh size of the master and slave side of the inter-
face and, roughly speaking, 7 < 1 is a suitable chosen parameter which allows
to balance the approximation error associated to each subdomain and the
contribution that corresponds to the introduction of the auxiliary projection.
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|| || L% norm || L% norm || H? semi—norm” H? semi—norm”

[Nodes [|Exact integral[|Approx. integral||Exact integral [[Approx. integral]

[100/64 ]| 0.00151034 [ 0.00151044 [ 0.123656 | 0123657 |
[100/225]] 0.001484 [ 0.00148373 [ 0.121936 | 0.121938 I
[[256/289]] 0.000989383 ]| 0.000989398 [ 0.0509703 [ 0.0509703 |
[256/361]] 0.000986929 [ 0.000986939 [ 0.0508623 || 0.0508626 ||
529/441] 0.000580285 [ 0.000580295 [ 0.0254181 [ 0.0254184 ||
[729/625[] 0.000441467 || 0.000441472 [ 0.0185628 || 0.018563 |
[729/841]] 0.000439254 [| 0.000439258 [ 0.0184722 [ 0.0184726 |

Table 3. Comparison between exact and approximate integration

2.4 Conclusions

We conclude with some remarks for the coupling of finite elements with non-
matching grids in the three dimensional case. The idea of replacing the exact
computation of the integral appearing in the jump constraint by an approxi-
mate one avoids the difficult task of coding the intersections of the supports of
discrete functions living on different meshes of the (bi-dimensional) interfaces.
A possible remedy can be the choise of ; elements on quadrilateral meshes
for the auxiliary space Us and the numerical tests performed for the 2D case
suggest that the mesh size § can be chosen coarser than the coarsest of the
mesh sizes of the approximation spaces involved in the subdomains. Moreover,
the new technique allows to handle the approximation spaces as independent
as possible from the implementation point of view, and the introduction of a
new discretization in an existing code turns out to be particularly easy and
does not require any modification to the methods already implemented, which
is an essential feature that a commercial library should satisfy.
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