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1.1 Introduction and Problem Setting

We consider Stokes equations in the fluid region 2y and Darcy equations
for the filtration velocity in the porous medium (2,, and coupled at the
interface I' with adequate transmission conditions. Such problem appears
in several applications like well-reservoir coupling in petroleum engineering,
transport of substances across groundwater and surface water, and (bio)fluid-
organ interactions. There are some works that address numerical analysis
issues such as: inf-sup and approximation results associated to the continuous
and discrete formulations Stokes-Darcy systems [LSY03, Gal04, GS04, GS05]
and Stokes-Laplacian systems [QVZ02, DQO3], mortar discretizations analysis
[RY05, GSO05], preconditioning analysis for Stokes-Laplacian systems [DQ04,
D04, D04b]. Here we are interested on preconditionings for Stokes-Mortar-
Darcy with fluz boundary conditions, therefore the global system as well as the
local systems require flux compatibilities. Here we propose two preconditioners
based on balancing domain decomposition methods [Man93, PW02, DP03]:
in the first one the energy of the preconditioner is controlled by the Stokes
system while the second one is controlled by the Darcy system. The second is
more interesting because it is scalable for the parameters faced in practice.

Let £2f, 2, C R" be polyhedral subdomains, 2 = int(£2; U 2,) and
I' = int(002f U 012,), with outward unit normal vectors on 0f2; denoted by
M, § = f,p. The tangent vectors of I" are denoted by 71 (n = 2), or T4,
1 =1,2 (n = 3). Define I'; := 002; \ I, j = f,p. Fluid velocities are denoted
by u; : 2; = R", j = f,p. Pressures are p; : {2; = R, j = f,p. We have:

Stokes equations Darcy equations
~V-T(uys,ps) = f;in 2 up = — 3 Vpy in £
V-uy =gy in 2 V-u, = gp in 2, (1.1)

ug=hgonly | uyn,=h on I,
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here T' (v, p) := —pI +2puDv where p is the viscosity and Dv := (Vv + Vo)
is the linearized strain tensor. k represents the rock permeability and p the
fluid viscosity. For simplicity on the analysis we assume that k is a real positive
constant. We also impose the compatibility condition (see [GS05])

(gfa ]‘)Qf + (gpa l)Qp - <hf77f7 ]‘>Ff - (hpa ]')Fp = 07
and the following interface matching conditions across I" (see [LSY03, DQO3,
QVZ02, DQ04] and references therein):
1. Conservation of mass across I':  usn; +uyn, =0on I.

2. Balance of normal forces across I': py — 2;”7}1D(uf)nf =pyonl.

3. Beavers-Joseph-Saffman condition: This condition is a kind of em-
pirical law that gives an expression for the component of X in the tangential
direction of 7. It is expressed by:

1.2 Weak Formulations and Discretization.

Without loss of generality we consider the case where hy = 0, h, = 0, and
ay = oo (here we use the energy of a s-harmonic Stokes and hamonic Laplacian
extensions are equivalents idependent of ay; see [GS05].

The problem is formulated as: Find (u,p,\) € X x M x A satisfying, for
all (v,q,p) € X x M x A:

a(ua 'U) + b(“ap) + bF('Ua /\) = E(’U)
b(u, q) =g(q) (1.3)
br(u,p) =0,

where X = X; x X; := H}(Q4,Ty)? x Ho(div, 2, T},); M = L3(2) C
L2(024) x L*(£2,). Here H}(£2¢,I) denotes the subspace of H'(§2f) of func-
tions that vanish on I'y. Analogously, H(div, {2, I},) denotes the subspace
of H(div, £2,) of functions that its normal trace restricted to I, is zero. The
Lagrange multiplier space is A := H*(I"). Also

a(u,’u) = af(uf:vf) + aP(uPJ vl’): b(’U,p) = bf(’Uf,pf) + bp(vp:pp)a

and br(v, ) = (g ns, mr + (Vpy My, pyr, v = (vs,v,) € X, pu € A, where
(Vp My, W) = (Vp Ny, En (11))og,. Here Ey is any continuous lift-in. The
bilinear forms a;, b; are associated to Stokes equations, j = f, and Darcy law,
j = p. The bilinear for a; includes conditions 2 and 3 above. The bilinear
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form b is the weak version of condition 1 above. For the analysis of this weak
formulation and the well-posedness of the problem see [GS05].

From now on we assume that (2;, i = f, p, are two dimensional polygonal
subdomains. Let 7;” be a triangulation of (2;, i = f, p. We do not assume that
they match at the interface I'. For the fluid region, let X ;” and M ;f " be P2/P1

triangular Taylor-Hood finite elements and denote M’;f =M ? "M L3(£2y). For

the porous region, let X Z" and M,? ? be the lowest order Raviart-Thomas finite

elements based on triangles and denote MZP = M,’f” N L%(£2,). We assume
in the definition of the discrete velocities that the boundary conditions are
included, i.e., for U;f’ € X’;f we have 'v’;f = 0 on Iy and for vZ” € ng’,
vh-n, = 0 holds on I},

We choose piecewise constant Lagrange multipliers space:

Al = {)\ : )\|6? = )\e;’ is constant in each edge e of 7},’” (F)} ,

i.e., the mortar is on the fluid region side and the slave on the porous region
side, and leads to a nonconforming approximation on A"» since piecewise
constant functions do not belong to H'/>(I"). Define X" := X ’;f x X ZP, and

zh = {'uh e X" : (W, + o, wr=0Vue A"P}. (1.4)

1.3 Matrix and Vector Representations
To simplify notations, from now on we drop the subscript h associated to the
discrete variables. We consider the following partition of degrees of freedom:

u} | Interior displacements + tangential velocities at I,
p; | Interior pressures with zero average in (2;,
u® | Interface normal displacements on I,

P Constant pressure in (2;,

Then, we have the following matrix representation of the coupled problem:
(AL BIEAID 0oJo 0 0 0]07 [uf]
Bl, 0 BL. 0|0 0 0 o0]0]]p
AL BIT AL B[ 0 0 0 0 |BY| |
0
0

i=f,p.

0 0 0ojo o0 o0 |0 | | pf
| AL BY AT 0 [0 | |uf
|BY, 0 Bf. 0|0 | |2f
|A2, BYY A%, BPT|BY | | uf
o o B> 00 []|P
[0 0 -B, 00 | LA

oloc o o o
oloc o o o
[wa]
Edoooc\
olo o o o
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and in each subdomain (see [PW02, DP03]) given by:
Al Bif |47 0
B 0 |Bw 0] FEd
Ai, BT |4i, BT KL, KiL.|°
0 0 |B 0

(1.5)

The mortar condition 1.4 on I' (Darcy side as the slave side) is imposed as
ufp = =B, 'Byup = ITul,, where —IT is the L(I") projection on the space of
piecewise constant functions on each e?. We note that that B, is a diagonal
matrix for the lowest order Raviart-Thomas elements.

Now we eliminate u?, pt, i = f,p., and ), to obtain the following (saddle
point) Schur complement

u{ﬂ b
Sipr | =101,
p* b®

which is solvable when b + b? = 0. Here S is given by

S} +m7Tsvir |BIT T BeT

. - Sr BT
— qf TopiT — = — | T
S:=87 +I"'sril = B ‘0 0 _[BO]’
BrI1 | 0 0
~ om0 ; ; i (i V-1 g Si. BT
where II := [0 sz2] and §*:= Kl - K}, (K},) KT = [BE 0 ]

Define Vp = {'u €Z":v; = SH(vym¢lr) and v, = ’DH('up-np|p)|p)}
and

M, = {q € M" : ¢; = const. in 2;,i = f,p; and fnf qs +f9p aQp :0}.

Here SH (DH) is the velocity component of the discrete Stokes (Darcy)
harmonic extension operator that maps discrete interface normal velocity
U € Hé({z(F) (ab. € (HY*(I"))") to the solution of the problem: find
u; € X’}i and p; € Mf’ such that in (2; and Vv; € Xﬁ“ and Vgq; € M:-“
we have:

af(ug,vf) +bs(vs,pr) =0

br(uys,qy) =0 ap(Up, Vp) + bp(vp, pp) =0

" by (up, =0
upn = @t on I Jp(-nIJ:q%)? on I (1.6)
'U/f-n:OOIl Ff 'u,p-n=00n Ff

upT =0 on 02
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Associated with the coupled problem we introduce the balanced subspace:

Vs :=KerB={'UEVF:/Ui-ni:O,izf,pandu’I’ﬂzﬂv}i}. (1.7)
r

1.4 Balancing Domain Decomposition Preconditioner I

For the sake of simplicity on the analysis we assume that I" = {0} x [0, 1],
2y =(-1,0)x(0,1) and £2, = (0,1) x (0, 1). We introduce the velocity coarse
space on I" as the span of the ¢(} =y(y —1) (vo be its vector representation).
Define:

Ry = , So=RoSRY and Qo= RISIR,.
0 I2><2

Because vg is not balanced, Sy is invertible when pressures restricted to M.
The low dimensionality of the coarse space and the shape of cb‘} are keep fixed
with respect to mesh paramenters imply stable discrete inf-sup condition for
the coarse problem. Denote Sy := v Srvo and S := Buv Sy *vf BT. A simple

I_PO] , where

calculation gives I — QoS = [ G 0

P = (vogglngp - vogalvgBTg_leogalngp) + vogalvg'BTS'_lB
G :=S87'B - S8 'BuS, vl Sr.

Note that P is projection and that B(I — P) = 0, i.e. the image of I — P is
contained on the balanced subspace defined in (1.7); see also [PW02]. Given a
residual r, the coarse problem Qqor is the solution of a coupled problem with
one velocity degree of freedom (vg) and a constant pressure per subdomain (2;,
1 = f,p with mean zero on (2. Hence, when v and up are balanced functions,
the Sp-inner product is defined by (see (1.3)):

— T
R = =
<UF UF)SF : <S]“U1“,U1“) UFSFUF

coincides with the S-inner product defined by

(LI~ 5] s[5
a]’lp]l/g q p
Consider the following BDD preconditioner operator (See [DP03]):
Sat = Qo+ (1= QS) (8) " (1= 5Qo).- (L8)

Also observe that Sy'S = QoS + (I — QoS) (Sf) S (I — QoS), and when
ur,vr are balanced functions we have:
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—1 ur vr _ f -1
sys 0] Ds = () srurorse,
and .

C(”{"au{‘)Sr S ((Sf) SF“{")”{")SI‘ S C(“{"a“{")Sr

is equivalent to
e(Spuf,ut) < (Sruf,ul) < C(Spuf, ul). (1.9)

Proposition 1 If u}: is a balanced function then
1
(STup, up) < (Sruf,ul) X (1+ ) (Spuf, u).

Proof. The lower bound follows trivially from Sl’i and S beeing positive on
the subspace of balanced functions. We next concentrate on the upper bound.

Let v}, a balanced function and v%. = ITvf. Define v, = DHv%. Using
properties ([Mat89]) of the discrete operator DH we obtain

w
(STvp, vp) = ap(vp, vp) < ;”’U?‘”%Hlﬂ)'(l“)‘
Using the L,-stability property of mortar projection II we have
W 2y = 0PI ry = I0F T3y S H0F 1272y
Defining v; = SHv}. and using properties of SH ([PW02],GS05) we have

2 -
Hllvpllye py < as(vs,vp).

1.5 Balancing Domain Decomposition Preconditioner IT

We note that the previous preconditioner is scalable with respect to mesh
parameters, however it deteriorates when the permeability k gets smaller.
In real life applications, permeabilities are in general very small, hence the
previous preconditioner becomes irrelevant in practice. In addition, to capture
the boundary layer behavior of Navier-Stokes flows near the interface I, the
size of the fluid mesh h; needs to be small while the Darcy mesh does not.
With those two issues in mind, we were motivated to propose the second
preconditioner. Opposed to the former preconditioner, we now control the
Stokes energy by the Darcy energy.

We assume that the fluid side discretization on I" is a refinement of the
corresponding porous side discretization. For j = 1,...,M?, and on I', we
introduce normal velocity Stokes functions ¢’ (a bubble P2 function) with

support on the interval ef, = 0 x [(j — 1)hp], jhp]. Under the assumption of
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the nested refinement and P2/P1 Tatlor-Hood discretization, qﬁ?c € X/'Ir.
Denote X ’} as the subspace spanned by all qﬁjc and X £ as subspace spanned
by functions of v{ﬂ which has zero average on all edges ef). Note that X ’} and

X! form a direct sum for X/| and the image IT X/ is the zero vector. Using
this space decomposition we can write

f ofT
S}Jj — [S?cb Sub ]
Snb Sr{n
and by eliminating the variables associated with the spaces X fb we obtain
N T B
Szf“ = Srfb - Sﬁb (S7n) 1S£b7

and end up again with a Schur complement of the form

; ~B;'B; 0 ]TS,,[—B;Bf 0

S::SM[ B ]=Sf+ép,
2X2

0 Irxo

N T
where the matrix S is applied to vectors of the form [u’l’q p({ oy ] . Note that

l§f and B, are diagonal matrices of the same dimension and are spectraly
equivalent. We introduce the following preconditioner operator

Syt = Qo + (I = QoS8)(S7)™ (I = SQo). (1.10)
Using the same arguments as before we prove:

Proposition 2 If ub. is a balanced function then

(Shulp, up) < (Sruf,ub) < (14 5)(Spub, ub).

p

Proof. Let vb. = E;\ipl quﬁi;. And notice that the basis functions qﬁi; do not
overlap each other on I'. We have:

M, M,
loflF2ry =D B34 T2(r) = By Y B3,
s past

. 1/2 . ;
and using HO({ arguments on intervals e, we have

M, M,
b2 2147 |12 ; VZ 2
||1}F||H3é2(r) j ;ﬂ;”‘ﬁf”Héf(e;) ~ = ﬂ].

Note that, by considering 'u}i =%, we have

(3100,0%) < ay(SHof SHOL) = pllorrlop o
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since the space for discrete Stokes harmonic extension now is richer (includes
also X fb) than in SH, and also the equivalence results between discrete Stokes
and Laplacian harmonic extensions. We obtain

G [ 1 K A
($10%,0) < Lokl < Ly pllToH Ry < 2545500, 00),
P i

=,

where we have used an inverse inequality for piecewise constant functions.
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