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Summary. We apply the finite element method to two-dimensional, incompress-
ible MHD, using a streamfunction approach to enforce the divergence-free conditions
on the magnetic and velocity fields. This problem was considered by Strauss and
Longcope [SL98]. In this paper, we solve the problems with magnetic and velocity
fields instead of the velocity stream function, magnetic flux, and their derivatives.
Considering the multiscale nature of the tilt instability, we study the effect of do-
main resolution in the tilt instability problem. We use a finite element discretization
on unstructured meshes and an implicit scheme. We use the PETSc library with
index sets for parallelization. To solve the nonlinear MHD problem, we compare
two nonlinear Gauss-Seidel type methods and Newton’s method with several time
step sizes. We use GMRES in PETSc with multigrid preconditioning to solve the
linear subproblems within the nonlinear solvers. We also study the scalability of this
program on a cluster.

1 MHD and its streamfunction approach

Magnetohydrodynamics (MHD) is the fluid dynamics of conducting fluid or
plasma, coupled with Maxwell’s equations. The fluid motion induces currents,
which produce Lorentz body forces on the fluid. Ampere’s law relates the
currents to the magnetic field. The MHD approximation is that the electric
field vanishes in the moving fluid frame, except for possible resistive effects. In
this study, we consider finite element methods on an unstructured mesh for
two-dimensional, incompressible MHD, using a streamfunction approach to
enforce the divergence-free condition on magnetic and velocity fields and an
implicit time difference scheme to allow much lager time steps. Strauss and
Longcope [SL98] applied adaptive finite element method with explicit time
difference scheme to this problem.
The incompressible MHD equations are:

2B =V x (vxB), Zv=—v.-Vv+(VxB)xB+uViv,

V-v=0, V-B=0, L
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where B is the magnetic field, v is the velocity, and p is the viscosity. To
enforce incompressibility, it is common to introduce stream functions: v =

(g—Z’, —%) , B= (%, —g—f). By reformulation for symmetric treatment of

the fields, in the sense that the source function {2 and C are time advanced,
and the potentials ¢ and v are obtained at each time step by solving Poisson
equations, we obtain

792+ [92,6] = [C,y] + V202,
¢ O ¢ O
ZC+[C,0] = [2,9]+2(52,52] +2 (52,52 2)
Vip =0, Vi =C,
where [a,b] = %g—z — g—z%.

To solve (2), we have to compute the partial derivatives of potentials.
These partial derivatives can be obtained by solutions of linear problems. To
do this, we have to introduce four auxiliary variables. It requires the solution
of eight equations at each step.

We use the velocity v and the magnetic field B to reduce the number of

equations to solve (2). To this aim, we put v = (vq,v2) = (‘g—‘;’, —%) , B=

(B1,Bs) = (‘Z—iﬁ, —g—f) in equation (2) and get the following system:

29_? + (v1,v2) - VR = (B, Ba) - VC + uV342,
%C + (v1,v2) - VC = (By, Ba) - V2 + 2([v1, B + [va, Ba)), (3)
LTl A oy N e

V3¢ = 0, V2 = C.

In the eight equations in (3), the last two equations for potentials don’t need to
be solved to get the solutions in each time step. If the potentials are needed at
a specific time, they are obtained by solving the last two equations in (3). To
solve the Poisson’s equations for v and B in (3), we have to impose boundary
conditions which are compatible to boundary conditions of ¢, 1, {2, and C.

2 Finite discretization

To solve (3), we use the first-order backward difference (Euler) derivative
scheme leading to an implicit scheme which removes the numerically imposed
time-step constraint, allowing much larger time steps. This approach is first
order accurate in time and is chosen merely for convenience.

Let H' denote H'(K), HY* denote the subset of H'(K) which satisfy
the boundary condition of A, and H%4" denote he subspace of H*(K) whose
elements have zero values on the Dirichlet boundary of A = 2, vy, v9, By, Bo.
Multiply the test functions and integrate by parts in each equation and use
the appropriate boundary conditions, to derive the variational form of (3) as
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follows: Find X = (2, C,v1,v2, By, Bo) € HY? x HY x HYV1 x HYv2 x HB1 x
H'PB2 guch that
F'(X,Y) =0 (4)

for all Y = (u,w, p1,p2,q1,q2) € HL? x Hl x HLv x HLv2 x HLB1 x H1.B2,
where F" = (F{l,Fgl,Fg,F4,F5,F6)T,
FM(X,Y) = MM2,u)+ (v-V2,u)+ pa(2,u) — (B-VC,u),
F}X,Y)=MC,w)+ (v -VC,w) — (B-V2", w) —2P(v,B,w),
F3(X Y)_avlvpl + 88 yP1 ) (X Y)_a(’UvaQ)_(%_gapQ)a
F(X Y)_a’Blaql + %yvql ) (X Y)_a’(BQaQQ) (83_5;%)7

(u,w) = [reuwdz, MP(u,w) = 4;(u—u",w), a(u,w)= [ Vu-Vwdz,
P((uy,us), (vl,vg sw) = [ ul,vl]wda}—FfK uQ,vg]wda}

\_/\//—\/—\

Let Kp, be a given triangulation of domain K with the maximum diameter
h of the element triangles. Let V}, be the continuous piecewise linear finite el-
ement space. Let VhA7 A = 2,v1,v9, By, Ba, be the subsets of V}, which satisfy
the boundary conditions of A on every boundary point of K;, and V,f‘/ be sub-
spaces of V}, and H LA’ Then we can write the discretized MHD problems as
follows: For each n, find the solutions X} = ({23, Cp, vf'y,,v3 ., BY ), Byy,) €
V2 x Vi, x VP x V72 x VhB X VhB 2 on each discretized times n which satisfy

FU(X5,YR) =0 ()

for all Yy, € V2 x Vi, x V1 x V2 x VP x vz,

3 Nonlinear and linear solvers

(5) is a nonlinear problem in the six variables consisting of two time dependent
equations and four Poisson equations. However, if we consider the equations
separately, each equation is linear with respect to one variable. Specifically, the
last four equations are linear equations and Poisson problems. From the above
observations, we naturally consider a nonlinear Gauss-Seidel iterative solvers
(GS1) which solve linear each equation on one variable in (5) in consecutive
order with recent approximate solutions.

Poisson solvers are well developed and the first two equations are time
dependent problems. From this observation, we consider another nonlinear
Gauss-Seidel iterative solvers (GS2) which solve first two equations of (5) as
one equation and solve four Poisson equations.

Nonlinear Gauss-Seidel iterative method doesn’t guarantee convergence,
but converges well in many cases, especially for small time step sizes in time
dependent problems.

Next, we consider the Newton linearization method. Newton’s method has,
asymptotically, second-order convergence for nonlinear problems and greater
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scalability with respect to mesh refinement than the nonlinear Gauss-Seidel
method, but requires computation of the Jacobian of nonlinear problem which
can be complicated.

In all three nonlinear solvers, we need to solve linear problems. Krylov
iterative techniques are suited because they can be preconditioned for effi-
ciency. Among the various Krylov methods, GMRES (Generalized Minimal
RESiduals) is selected because it guarantees convergence with nonsymmet-
ric, nonpositive definite systems. However, GMRES can be memory intensive
(storage increases linearly with the number of GMRES iterations per Jaco-
bian solve) and expensive (computational complexity of GMRES increases
with the square of the number of GMRES iterations per Jacobian solve).
Restarted GMRES can in principal deal with these limitations; however, it
lacks a theory of convergence, and stalling is frequently observed in real ap-
plications.

Preconditioning consists in operating on the system matrix J; where

Jpoxy = —F(xk) (6)

with an operator P, ' (preconditioner) such that J, P, ' (right precondition-
ing) or P, 'Ji (left preconditioning) is well-conditioned. In this study, we use
left preconditioning because this can be implemented easily. This is straight-
forward to see when considering the equivalent linear system:

P Jwbxy = =P F(ay,). (7)

Notice that the system in equation (7) is equivalent to the original system (6)
for any nonsingular operator P, ! Thus, the choice of P ! does not affect the
accuracy of the final solution, but crucially determines the rate of convergence
of GMRES, and hence the efficiency of the algorithm.

In this study, we use multigrid which is well known as a successful precon-
ditioner, as well as a scalable solver in unaccelerated form, for many problems.
We consider the symmetrized diagonal term of Jacobian as a reduced system,
ie.,

1
Js k= 3 (Jrk + JEk) - (8)

where Jg i is a block diagonal matrix. The reduced system Jg ; may be less
efficient than Jg j but more numerically stable because it is symmetric and
nonsingular.

To implement the finite element solver for two-dimensional, incompress-
ible MHD on parallel machines, we use PETSc library which is well developed
for nonlinear PDE problems and easily implements a multigrid preconditioner
with GMRES. We use PETSc’s index sets for parallelization of our unstruc-
tured finite element discretization.
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4 Numerical experiments : Tilt Instability

y
We consider the initial equilibrium state as ¢ = { E21//;J_0(7]f))i‘]1(kr) r’ : i 1’

where J,, is the Bessel function of order n, k is any constant that satisfies

Ji(k) =0, and r = /22 + y2.

(d) t = 7.0.

Fig. 1. Contours of 2, C, ¢, and ¥ at time t = 0.0, 4.0, 6.0, 7.0.

In our numerical experiments, we solve on the finite square domain K =
[-R, R] x [-R, R] with the initial condition of the tilt instability problem
from the above initial equilibrium and perturbation of ¢ (originating from
perturbations of velocity) such that

19.0272743J1(kr)y/r ifr <1
0.0 ifr>1"’

—1.295961618J, (kr)y/r ifr <1

2(0) = 0.0, C(0) = {
¢(0) = ].07337(952+y2)7 ’(/J(O) = { _(l o r)y/r ifr>1,
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where k = 3.831705970 and with Dirichlet boundary conditions 2(z,y,t) =
0.0, ¢(x,y,t) = 0.0, and Y (z,y,t) =y — # and Neumann boundary con-

dition for C, i.e., g—g(x,y,t) = 0.0. The initial and boundary condition for
velocity v and magnetic field B are derived from the initial and boundary
condition of 2, C, ¢, and 1. Numerical simulation results are illustrated in
Fig. 1.

The tilt instability problem is defined on unbounded domain. To investi-
gate the effect of size of domains, we simulate two methods, one uses ¢, 1 and
its derivatives (SL) and the other uses v and B (K) on the square domains
with R = 2 and R = 3. These numerical simulation results are reported in
Fig. 2, the contours of ¢ at ¢ = 6.0. The average growth rate ~ of kinetic
energy is shown in Table 1. These numerical simulation results show that the
solutions of two formulations are closer when the domain is enlarged, with the
previous approach converging from above and new approach converging from
below.

= 4@\§
oo oo @@ 9
= == == \\//;
= — _ = —
(a) R=3 (SL).  (b) R =3(K). (¢) R=2(SL).  (d) R =2(K).

Fig. 2. Contours of ¢ at T'= 7.0.

Table 1. Average growth rate =y of kinetic energy from ¢t = 0.0 to t = 6.0

previous, R = 2|previous, R = 3|new, R = 2|new, R =3
2.167 2.152 1.744 2.102

From here, we consider the convergence behaviors of several nonlinear and
linear solvers as a function of time step sizes. In Table 2, we report the number
of nonlinear iterations of nonlinear solvers according to time step sizes for the
fixed staring time and fixed mesh level 5. We choose t = 0.0 and ¢t = 6.0 as
the starting time because many simulations have trouble at start up time and
the magnitudes of the velocity (v1,v2) and magnetic field (B, Bz) increase
with time. These numerical results show that GS2 and Newton method are
more nonlinearly robust than GS1.

To investigate another convergence behavior, we report the average num-
ber of linear iterations in one time step according to preconditioners in Table
3. Numerical results show that multigrid preconditioner applying on sym-
metrized reduced system is robust at ¢ = 0.0 and ¢ = 6.0, but multigrid
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Table 2. The average number of nonlinear iterations of one time step according to
time step sizes dt.

dt GS1 GS2 NM
t=0[t=06]t=0[t=6[t=0]t=6
00005 3 | 4 | 3| 4| 2 | 4
0001 4 | 4 | 3| 4| 3 | 4
0002] 5 | 5 | 3| 3 | 5 |4(5)
0005 12 | 8 | 4 | 6 | 3 | 5
001 | * | * | 4| 8 | 4|7
002] * | * | 6 | 13] 5 | 11

applied to the reduced system is robust only at ¢t = 0.0, very similar to the
symmetrized case, because the values of velocity are small at ¢ = 0.0. These
results show that we have to use multigrid preconditioner applied to the sym-
metrized reduced system to get good convergence.

Table 3. The average number of linear iterations in one time step according to time
step sizes

dt | GS2(R) | GS2(S) | NM(R) | NM(S)

t=0[t=06|t=0t=6]t=0]t=06[t=0]t=06
00005| 43 | 4 |43 4 | 5 | 5 |5 |5
000153 |45(53] 5 | 6| 5] 6|5
0002 66| 5 | 66|52 7 |68] 7 [625
0005| 11 | 7.8 | 11 | 88| 12| * |12 | 10
001 | 18 | * | 18 |15.2[185| * |185] 17
002 |28.8| * |28.8(27.3(31.6| * |31.6|33.3

In Table 4, we report the average number of nonlinear and linear iterations
from ¢ = 0.0 to t = 0.05 with dt = 0.005 according to the levels. These results

show that two numerical method GS2(S) and Newton method (S) have very
similar behaviors.

Table 4. Average number of iterations according to the number of level.

Solvers GS2(S) NM(S)
level |[nonlinear|linear|nonlinear |linear
4 4 7.9 3 8
5 3.1 11.2 3 11.7
6 3 16.1 3 16.4
7 3.4 19.1 3.4 20.1

In Table 5, we report the solution times of one time step according to
level and number of processors on the cluster machine BGC (the Brookhaven
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Galaxy Cluster) at BNL. We run the program on the same speed (696 MHz)
CPU’s. This table shows that Newton’s method have a better scalabilty GS2.

Table 5. Average solving time of one time step (linear system) according to level
and number of processors at ¢ = 0.0 and dt = 0.005

level[# CPU[  GS2(S) NM(S)

1 T | 13.7 (2.39) |12.3 (2.02)
2| 13.3 (2.74) | 7.76 (1.40)
5 2 | 425 (11.3) | 335 (6.62)
4 | 294 (7.79) | 21.0 (4.23)
8 |38.6 (11.12) | 19.9 (4.89)
6 8 [ 120.5 (35.9) | 59.9 (14.4)
16 | 64.5 (19.3) | 39.0 (9.65)
32 |118.1 (36.95)| 61.6 (17.8)

7 | 32 | 226.3(61.8) |142.9 (36.2)

5 Conclusions

We study the new streamfunction approach method for two-dimensional, in-
compressible Magnetohydrodynamics with finite element method and tilt in-
stability example. We show that nonlinear Gauss-Seidel (GS2) and Newton
method have similar numerical behaviors and have to employ multigrid pre-
conditioner on the symmetrized reduced system for good linear convergence.
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