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1 Introduction

Balancing Domain Decomposition (BDD) methods belong to the family of pre-
conditioners based on nonoverlapping decomposition of subregions and they
have been tested successfully on several challenging large scale applications.
Here we extend the BDD algorithms to the case of overlapping subregions and
we name them as Overlapping Balancing Domain Decomposition (OBDD) al-
gorithms. Like on the BDD methods, coarse space and weighting matrices
play crucial roles in making both the proposed algorithms scalable with re-
spect to the number of subdomains as well as to make the local Neumann
subproblems on the overlapping subregions consistent on each iteration of
the preconditioned system. These new algorithms also differ from the stan-
dard overlapping additive Schwarz method (ASM) of hybrid form since those
are based on Dirichlet local problems on the overlapping subregions. This
difference motivated us to generalize the OBDD algorithms to the Helmholtz
equation where we use the Sommerfeld boundary condition for the local prob-
lems and a combination of partition of unity and plane waves for the coarse
problem.

1.1 Balancing Domain Decomposition Methods

To have a clear picture of the OBDD algorithms, we first provide a short review
of two-level Balancing Domain Decomposition (BDD) methods introduced in
[Man93, TW04]. BDD methods are iterative substructuring algorithms, i.e.
methods where the interior degrees of freedom of each of the nonoverlapping
substructures are eliminated. Hence the discrete problem

Az =§ (1)
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obtained from a finite element discretization method applied to the domain
12 is reduced and posed on the interface I' = UY | I';. Here I; = 812;\012p are
the local interfaces and 8f2p the Dirichlet part of 8f2. The linear system is
then reduced to the form

Su=g,

where

N
S=> RISiR;,
i=1

where the matrices S; are the local Schur complements and E; are the regular
restriction operators from nodal values on I'" to I;. To simplify the exposition,
we consider that the matrix A comes from a finite element discretization of
the Poisson problem and therefore, the Schur complement matrices S; are
symmetric positive semi-definite (the kernel consists of constant functions)
when 002; N 0Np = 0, or positive definite otherwise. To build the BDD pre-
conditioner, weighting matrices D; on the interface are constructed so that

Z RI'R,D; = Ir (2)

forms a partition of unity on the interface I'. The weighting matrices D;, for
the Poisson problem with constant coefficient, can be chosen as the diagonal
matrix defined as zero at the nodes on I'\I; and the reciprocal of the number
of subdomains a node x € I is associated with. The preconditioner is of the
hybrid type given by

Tspp =P+ (I - P)(O_Ti)(I - Py), (3)

i=1

where the coarse problem P, is simply the orthogonal projection (on the S-
norm) onto the coarse space V. The coarse space Vj is defined as the span of
the basis functions D; RT n; where each column vector n;, up to considerations
of what to do when 802; N 92p # 0, is a vector that generates the null space
of S;, i.e. the column vector [1,1,1,1,...,1]T on nodes of I;. Hence,

Py = RY(RoSRY) ™ R,S, (4)

where the columns of the matrix R are formed by all columns of D;RIn;.
The local operators T; are defined as

T; = D;RF S} R;D;S (5)

where S;'r is the pseudo inverse of the local Schur complement S;. We remark
that each local Neumann problem .S’;'r is solved up to a constant when the
002; N 8N2p = 0. The compatibility condition is guaranteed because a coarse
problem is solved right before; if y belongs to the range of (I — F), and
using the definition of Py (an orthogonal projection in S-norm), we have
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(DiRTn;,Sy)r = 0 (inner product on I'), and so (n;, R;D;Sy)r, = 0 (inner
product on I;). Hence, R;D;Sy is perpendicular to the null space of S; and
so the local problem S;z; = D;R;Sy satisfies the compatibility condition, and
we say that the local problems are balanced.

1.2 Overlapping Balancing Domain Decomposition Methods

We generalize the nonoverlapping BDD method to the overlapping domain
case. This is done by maintaining the BDD structure described above. We
replace the Schur complement matrix S to the whole matrix A. We replace
the restriction operator R; to I; to a restriction operator Rf to all nodes

of the extended subdomain ﬁf\&()D (including also the boundary nodes
on 92¢\812p). We replace the Neumann problem S;” by a Neumann prob-
lem (A9)* on 29 with Neumann boundary condition on 802¢\0£2p and zero
Dirichlet boundary condition on 8!)? NoL2p. We replace the partition of unity
(2) to a partition of unity on 2\02p

N
Z(Rf)TRng = Iﬁ\aQDa (6)

i=1

where the weighting matrix D? is a diagonal matrix with diagonal elements
given by the regular partition of unity seeing on the theory of Schwarz meth-
ods. Similarly, the coarse space Vo‘s also is based on this partition of unity
(with some modification near 8{2p to satisfy Dirichlet boundary conditions).
The coarse problem P is the orthogonal projection (on the A-norm) onto the
space V) and the OBDD preconditioner is define as

N
Toppp = Py + (I - P)()_T))(I - ), (7)

where the local problems are given by

T} = D}(R))"(A9)*RID] A. (8)

The same arguments about BDD compatibilities hold here: if y belongs
to the range of (I — Pg) we have (D{(R?)'nl, Ay)a\o0, = 0, and so
(ng, RID{ Ay) os\pa, = 0. Hence, R{DJAy is perpendicular to the vector

n? (a column vector of ones on nodes of 29 when 22 N 82p =). The vector
nf spans a space that contains the kernel of Ag, and so the local Neumann

problems Az; = D? R Ay satisfy the local compatibility condition.

1.3 Advantages and Disadvantages between BDD and OBDD

We note that differently from BDD methods, the OBDD methods work on the
whole finite element function space without eliminating any variables. Hence
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we solve Az = binstead of Su = g. As a first consequence, we avoid completely
the local Dirichlet solvers required on the BDD methods to compute residuals
as well as to build the coarse matrix. This is a considerable advantage for
the OBDD methods since these BDD local Dirichlet solvers require exact
solvers in each iteration of the preconditioned system, and more dramatically,
specially in three dimensional problems, a large number of preprocessing exact
local Dirichlet solvers are required to build the coarse matrix. We note also
that the coarse matrix of the proposed OBDD methods are the same size as
those of BDD methods, i.e. one degree of freedom per subdomain. However,
the OBDD coarse matrices are more sparse than those of BDD ones since
they do require connectivity among neighbors of the neighbors subdomains.
Another advantage for using OBDD methods is that they are less sensitive to
the roughness of the boundary of the subdomains (in general boundaries of
extended subdomains are smoother than nonoverlapping subdomains).

The proposed OBDD algorithms have also their disadvantages. The first
one is the extra cost when working with extended subdomains. Hence for
effective performance in terms of CPU time and memory allocation, small
overlap is a common practice. The second disadvantage is that the condition
number obtained by the OBDD methods are O(1 + H/(dh)) while the BDD
methods are O(1 + log(H/h)?). Numerically we show that for the minimum
overlap case, the preconditioned systems associated to OBDD present small
condition numbers, so the linear bound is comparable to the two log factors
for the BDD. For three dimensional problems, the ratio H/h would be smaller
and therefore, the linear bound of the OBDD would get closer to the two logs
bound of the BDD. The third disadvantage is that the inner products and
the vector sums inside the PCG/BDD (GMRES/BDD) are done only on the
interfaces nodes while on the PCG/OBDD (GMRES/OBDD) they are done
on all the nodes. We note however that in the proposed algorithms, after the
first iteration of the OBDD, only on the extended boundary interfaces will
have nonzero residuals and will maintain if during PCG iterations RASHO
coarse problems [CDS03, Sar02b] are considered (since the RASHO coarse ba-
sis functions are built to have zero residual on non interface nodes). Hence a
large saving on performancing A*wv to compute residuals is possible. The BDD
methods nowadays are well developed for several applications such as discon-
tinuous coefficients, two and three dimensional elasticity, plates and shells,
and recently also extended to saddle point problems. For two and three di-
mensional elasticity and for discontinuous coefficients problems, we can apply
some of the ideas in [Sar03, Sar02b] to design and analyze OBDD algorithms.
Extensions of OBDD algorithms to the saddle point problems are not trivial
and are very interesting subjects for future research.

2 The Finite Element Formulation

Consider the Helmholtz problem
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—Au* — (k(2))?u* = f in 0 9)
u*=gp on 9fp
681; =gn on 0Ny

*

on

+iku* =gs on 9f2g

where (2 is a bounded polygonal region in %2 with a diameter of size O(1). The
0f2p, 002N, and 0f2g are disjoint parts of 92 where the Dirichlet, Neumann,
and Sommerfeld boundary conditions are imposed. We note that the methods
developed here also holds for polyhedral regions in 3. From a Green’s for-
mula and conjugation of the test functions, we can reduce into the following
variational form: find u* — u}, € HL(£2) such that,

a(u*,v) = / (Vu* - Vo — E*u*v) dx — zk/ u*vds (10)
o) 8

2s

=/ fﬁdw—f—/ gvds = F(v), Yv € H}:,(.Q),
2 90N

where u}, is an extension of gp to H'(2), and H},(£2) is the space of H'({2)
functions which vanishes on 8f2p. To treat the Poisson’s problem, we let £ = 0
and 895 = 0

Let 7"(12) be a shape regular quasi-uniform triangulation of 2 and let V C
H,(£2) be the finite element space consisting of continuous piecewise linear
functions associated with the triangulation which vanish on 02p. Eliminating
up we obtain the following discrete problem: Find u € V' such that

a(u,v) = f(v), YveW. (11)

Using the standard basis functions, (11) can be rewritten as a linear system
of equations of ther form (1).

All the domains and subdomains are assumed to be open; i.e., boundaries
are not included in their definitions. The superscript 7' means the adjoint of
an operator.

3 Notations

Given the domain {2 and triangulation 7"({2), we assume that a domain

partition has been applied and resulted in N non-overlapping connected sub-
domains (2;,i=1,...N of size O(H), such that

ﬁ:uﬁ\;lﬁi and 2;N02; =0, for j#i.

We define the overlapping subdomains (2 as follows. Let 2} be the one-
overlap element extension of (2;, where 2} D (2; is obtained by including all
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the immediate neighboring elements 7, € T"(2) of 2; such that 75 N 2; # 0.
Using the idea recursively, define a J-extension overlapping subdomains 29

Q=0 colc-.-c.

Here the integer § > 1 indicates the level of element extension and dh is the
approximate length of the extension. We note that this extension can be coded
easily through the knowledge of the adjacent matrix associated to the mesh.

4 Local Problems: Definitons of Df, Rf and Ti‘s

Consider a partition of unity on 2 with the following usual properties:
SN, 6(x) =1, 0<6(z) <1,and |VO(z)| < C/(Sh), when = € 12,
and 6?(x) vanishes on ﬁ\ﬁf; for details see [Sar02a, TWO04]. The diagonal
weighting matrices D¢ are defined to have diagonal elements values equal to
62 () at nodes x € 0.

Let us denote by VZ-‘S, i=1,---, N, the local space of functions in HI(Q;?)
which are continuous and piecewise linear on the elements of 7"(£2¢) and
which vanish on 82p N 92¢. We remark that we do not assume that functions
in V2 have to vanish on the whole 82J. We then define the corresponding
restriction operator R}

R:V VS i=1,---,N.

and obtain (6) and the following subspace decomposition

N
D}(R)™VP CcV and V=Y D{R)TV;.
i=1

To define the local solvers, we introduce the local bilinear forms on V; by

ags (Ui, ’l)i) = / (Vu, -Vo; — k2ui1_}i) der — ik u;U; ds. (12)
* 23 0928\ (82pUBS2N)

For the case k = 0, i.e. the Poisson problem, ans reduces to the regular
H'-seminorm inner product. For the case k # 0, i.e. the Helmholtz case, the
bilinear form ags considers Sommerfeld boundary condition on 802/\02nup,
Neumann on 9{2; N 02y and Dirichlet on 8/2; N 92p; see also [CCEW9S].
The associated local problems are defined as 77 : V — V? by: for any u € V

aQ‘.‘(TiéuaU) :a(u,D?(Rg)Tv), Vo € ‘/;'65 i= ]-a"'aNa (13)
and let T{ = DJ(RJ)TT? to obtain (8). When k = 0 and £2J is floating
subdomain, the matrix A? is singular. To obtain the compatibility condition

(Poisson problem) or to accelerate the algorithm (Helmholtz problem) we next
introduce the coarse problems.
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5 Coarse Problems: Definitions of R and P?

We note that some of the functions ¥ = I,6? cannot be used as a coarse
basis functions since some of them do not satisfy the zero Dirichlet boundary
condition on 8f2p and therefore, do not belong to V. Hence we modify those
just on a neighborhood h layer near 0f2p. This is done by defining a smooth
cut-off function ¢s on a dh layer near 8f2p and define the coarse basis functions
¥ = I1(¢509). Here I, is the regular pointwise interpolation operator to V.
For the Poisson’s problem, we define the coarse space V{ as the span of

the coarse basis functions 9¥,i = 1,---, N.
For the Helmholtz’s problem, we combine the ¥¢ with N, planar waves.
The basis functions for the coarse space V' are given by I5,(92Q;),i = 1,...,N

and j =1,---,N,, where Q;(z) = e*67 % where O] = (cos(6;),sin(8;)), with
0;=(G—-1)x Nlp,j =1,---, Np; see also [FMLOO0] for the use of plane waves
for FETI-H methods.

We define the restriction matrix R : V — V{ consisting of columns 9?
(Poisson) or I1,(92Q;) (Helmholtz). We define P¢ : V — V¢ by: for any u € V

a(Pgu,U) =a(u,v), Yve€ VO‘S,

and in matrix notation, P = (R§)T (AJ) "1 RS, where A = RJA(R])T.
For the Poisson case, we have [KS]:

Theorem 1.

() % a(Topppu,u) 2 (1+ 1 )afu,u).

6 Numerical Experiments

Below we present numerical results for solving the Helmholtz’s problem on
the unit square with the following boundary condition: Dirichlet gp = 1 on
west side, homogeneous Neumann on north and south sides, and homogeneous
Sommerfeld on east side; see [FMLO00]. For the Poisson’s equation including
discussions on the parallel implementations see Kimn and Bourdin [KB].
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