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A Local Defect Correction (LDC) method for solving time-dependent par-
tial differential equations whose solutions have highly localized properties is
discussed. We present some properties of the technique. Results of numerical
experiments illustrate the accuracy and the efficiency of the method.

1 Introduction

Solutions of Partial Differential Equations (PDEs) are often characterized by
highly localized properties. Examples are frequently encountered in the area
of shock hydrodynamics, transport in turbulent flow fields, combustion, etc.
An efficient solution of this kind of problems requires the usage of adaptive
grid techniques, where a fine grid spacing and, possibly, a small time step are
adopted only where the high activity occurs. Among other techniques, the Lo-
cal Defect Correction (LDC) method for time-dependent problems described
in [MAM04] has the advantage that only uniform grid and uniform grid solvers
can be used. At each time step, LDC is an iterative process in which a global
coarse grid solution and a local fine grid solution are iteratively improved. In
particular, the local approximation improves the solution globally through a
defect correction.

The LDC method was introduced in [Hac84] for solving elliptic boundary
value problems. LDC is a domain decomposition technique in which the local
domain fully overlaps the global one. An analysis of LDC in combination with
finite differences is presented in [FR96]. In [Ant05] the method is extended to
include adaptivity, multilevel refinement, domain decomposition and regrid-
ding. In this paper we present the LDC technique for solving time-dependent
PDEs (Section 2) and we discuss some properties of the method (Section 3).
Results of numerical experiments illustrate the accuracy and the efficiency of
the method (Section 4).
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2 The LDC method

We consider the following two-dimensional problem
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




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





∂u(x, t)

∂t
= Lu(x, t) + f(x, t), in Ω ×Θ,

u(x, t) = ψ(x, t), on ∂Ω ×Θ,

u(x, 0) = ϕ0(x), in Ω ∪ ∂Ω,

(1)

where Ω is a spatial domain, ∂Ω its boundary and Θ the time interval (0, tend].
Moreover, L is a linear differential operator, f a source term, ψ a Dirichlet
boundary condition and ϕ0 a given initial condition.

Problem (1) has to be discretized in space and time in order to be solved
numerically. For this reason, we introduce a global uniform coarse grid (grid
size H), which we denote by ΩH . We also introduce the time step ∆t. We
assume that u has, at each time level, a region of high activity that covers a
small part ofΩ. At time tn := n∆t a coarse grid approximation computed with
a time step ∆t might be not adequate enough to represent u(x, tn). In order
to better capture the local high activity, we introduce a local uniform fine
grid (grid size h < H), which we denote by Ωh

l . On Ωh
l the time integration

is performed using a time step δt = ∆t/τ , with τ an integer ≥ 1. In LDC the
local solution is used to improve the global approximation through a defect
correction.

In the remainder of this section we will assume that a solution uH,h,n−1 is
known at time tn−1 on the composite grid ΩH,h := ΩH ∪ Ωh

l , see Fig. 1. Its
expression is given by

uH,h,n−1 :=

{

uh,n−1
l , in Ωh

l ,

uH,n−1, in ΩH \Ωh
l ,

(2)

where uh,n−1
l and uH,n−1 are a local and a global approximation of u(x, tn−1)

respectively. We want to compute an approximation of the solution at the new
time level tn on the composite grid.

Coarse grid problem

A first coarse grid approximation at tn, we call it uH,n
0 , can be computed

applying the backward Euler method to the PDE in (1). The usage of explicit
time integrators on the global grid is not of interest in LDC; this is discussed
in [MAM04]. We obtain

(I −∆tLH)uH,n
0 = uH,h,n−1|ΩH + fH,n∆t, (3)

where LH is some spatial discretization of L. In (3), fH,n also includes the
Dirichlet boundary conditions. We rewrite (3) as
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Fig. 1. Example of composite grid ΩH,h

MHuH,n
0 = uH,h,n−1|ΩH + fH,n∆t. (4)

We assume MH to be invertible. We denote by Γ the interface between Ωl

and Ω \Ωl. For convenience we partition the coarse grid points as follows

ΩH = ΩH
l ∪ ΓH ∪ΩH

c , (5)

whereΩH
l := ΩH∩Ωl, Γ

H := ΩH∩Γ andΩH
c := ΩH\(ΩH

l ∪ΓH). In Fig. 1 the
coarse grid points ΩH

l are marked with circles, while the points ΓH and ΩH
c

are denoted by triangles and squares respectively. Assuming that the spatial
discretization on the coarse grid is such that the stencil at grid point (x, y)
involves at most function values at (x+ iH, y+ jH), with i, j ∈ {−1, 0, 1}, we
can rewrite (4) as







MH
l BH

l,Γ 0

BH
Γ,l M

H
Γ BH

Γ,c

0 BH
c,Γ MH

c















uH,n
l,0

uH,n
Γ,0

uH,n
c,0









=







uH,h,n−1|ΩH

l

uH,h,n−1|Γ H

uH,h,n−1|ΩH
c






+







fH,n
l ∆t

fH,n
Γ ∆t

fH,n
c ∆t






. (6)

Fine grid problem

In order to formulate a discrete problem on Ωh
l , we have to define artificial

boundary conditions on Γ . We can prescribe artificial Dirichlet boundary con-
ditions at time tn by applying an interpolation operator in space P h,H . The
operator P h,H maps function values in ΓH to function values at grid points of
the fine grid that lie on the interface, denoted by Γ h. In Fig. 1 the points Γ h

are marked with small diamonds. If we want to perform time integration with
a time step δt = ∆t/τ , we also need to provide boundary conditions on Γ h at
all the intermediate time levels tn−1+k/τ , with k = 1, 2, . . . , τ − 1. Therefore

we perform linear time interpolation between uH,h,n−1|Γ h and P h,HuH,n
0 . A

fine grid approximation at time tn can thus be computed solving
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Mh
l u

h,n−1+k/τ
l,0 = u

h,n−1+(k−1)/τ
l,0 + f

h,n−1+k/τ
l δt

−Bh
l,Γ

(

k

τ
P h,HuH,n

Γ,0 +
τ − k

τ
uH,h,n−1|Γ h

)

, for k = 1, 2, . . . , τ . (7)

The procedure (7) is initialized using

uh,n−1
l,0 = uH,h,n−1|Ωh

l

. (8)

We can combine all the equations in (7) to express uh,n
l,w , with w = 0, directly

in terms of uH,h,n−1|Ωh

l

. We obtain

(

Mh
l

)τ
uh,n

l,w = uH,h,n−1|Ωh

l

+

τ
∑

k=1

(

Mh
l

)k−1
f

h,n−1+k/τ
l δt

−

τ
∑

k=1

(

Mh
l

)k−1
Bh

l,Γ

(

k

τ
P h,HuH,n

Γ,w +
τ − k

τ
uH,h,n−1|Γ h

)

, (9)

or
(

Mh
l

)τ
uh,n

l,w = uH,h,n−1|Ωh

l

+F h,n
l δt−Wn

l,ΓP
h,HuH,n

Γ,w +Zn
l,Γu

H,h,n−1|Γ h . (10)

In (10) F h,n
l depends only on the source term and on the fine grid operatorMh

l ,
while Wn

l,Γ and Zn
l,Γ only depend on Mh

l and Bh
l,Γ .

Defect correction and LDC iteration

The fine grid approximation is now used to overall improve the coarse grid
solution at tn. The fine grid solution is regarded to be more accurate than
the coarse grid approximation because it is computed with a grid size h < H
and a time step δt ≤ ∆t. The fine grid solution can therefore be used to
approximate the local discretization error or defect in ΩH

l . For w = 1, the
approximated defect is given by (cf. the first equation in (6))

d̃H,n
l,w−1 := MH

l R
H,huh,n

l,w−1 +BH
l,Γu

H,n
Γ,w−1 − uH,h,n−1|ΩH

l

− fH,n
l ∆t, (11)

where RH,h is a restriction operator from the fine to the coarse grid, such that
(RH,huh,n

l,w−1)(x, y) = uh,n
l,w−1(x, y) for every (x, y) ∈ ΩH

l . The defect d̃H,n
l,w−1

is now added to the right hand side of (6). A more accurate coarse grid
approximation can be computed solving

MHuH,n
w =







uH,h,n−1|ΩH

l

uH,h,n−1|Γ H

uH,h,n−1|ΩH
c






+







fH,n
l ∆t+ d̃H,n

l,w−1

fH,n
Γ ∆t

fH,n
c ∆t







=







0

uH,h,n−1|Γ H

uH,h,n−1|ΩH
c






+







MH
l R

H,huh,n
l,w−1 +BH

l,Γu
H,n
Γ,w−1

fH,n
Γ ∆t

fH,n
c ∆t






.

(12)
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The new coarse grid solution can be used to update the boundary con-
ditions for a new local problem on Ωh

l , which in turn will correct the coarse
grid approximation. At each time step the LDC method is thus an iterative
procedure and, as studied in [AMTB03] for stationary cases, its convergence
is very fast.

Adaptivity

In a time dependent problem it is likely that the high activity moves as time
proceeds. As a consequence, the local region Ωl might be located in different
positions and a have a different size or shape at the various time levels in Θ. At
each time, in order to perform the next time step ∆t, we have to determine a
suitable Ωl. This can be done, for example, by measuring some characteristics
of the solution (e.g. slope, gradients, etc.). Many methods have proposed in
the literature, see for example [BS99]. If the composite grid changes in time,
we interpolate the solution found at tn−1 to the new grid to construct the
initial solution uH,h,n−1.

3 Properties of the LDC method

In this section we will discuss some properties of the LDC method for time-
dependent PDEs. The following lemma shows that once the coarse grid ap-
proximations do not change on the interface Γ , the LDC algorithm converges
and a fixed point of the iteration has been reached.

Lemma 1. If uH,n
Γ,w = uH,n

Γ,w−1 for a certain index w, then the LDC iteration

converges and

uH,n
q = uH,n

w , uh,n
q = uh,n

w , (13)

for all q = w,w + 1, . . ..

Proof. Assume that uH,n
Γ,w = uH,n

Γ,w−1 for a certain index w. From (10), we have

that uh,n
w = uh,n

w−1, and hence, from (12),

MHuH,n
w+1 =







0

uH,h,n−1|Γ H

uH,h,n−1|ΩH
c






+







MH
l R

H,huh,n
l,w +BH

l,Γu
H,n
Γ,w

fH,n
Γ ∆t

fH,n
c ∆t







=







0

uH,h,n−1|Γ H

uH,h,n−1|ΩH
c






+







MH
l R

H,huh,n
l,w−1 +BH

l,Γu
H,n
Γ,w−1

fH,n
Γ ∆t

fH,n
c ∆t






= MHuH,n

w

Because we have assumed MH to be invertible, we have uH,n
w+1 = uH,n

w , for all

grid points in ΩH . Since ΓH ⊂ ΩH , we have uH,n
Γ,w+1 = uH,n

Γ,w . By induction, we

find uH,n
q = uH,n

w and uh,n
q = uh,n

w , for all q = w,w + 1, . . .
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We can combine (12), (11) and (10), and express the LDC iteration as













(

Mh
l

)τ
0 Wn

l,ΓP
h,H 0

0 MH
l BH

l,Γ 0

0 BH
Γ,l MH

Γ BH
Γ,c

0 0 BH
c,Γ MH

c

























uh,n
l,w

uH,n
l,w

uH,n
Γ,w

uH,n
c,w













=













0 0 0 0

MH
l R

H,h 0 BH
l,Γ 0

0 0 0 0

0 0 0 0



























uh,n
l,w−1

uH,n
l,w−1

uH,n
Γ,w−1

uH,n
c,w−1















+













uH,h,n−1|Ωh

l

0

uH,h,n−1|ΓH

uH,h,n−1|ΩH
c













+













F h,n
l ∆t

0

fH,n
Γ δt

fH,n
c δt













+













Zn
l,Γ u

H,h,n−1|ΓH

0

0

0













. (14)

We rewrite (14) using the short notation

MH,huH,h,n
w = SH,huH,h,n

w−1 + ũH,h,n−1 + f̃H,h,n + z̃H,h,n−1. (15)

If the LDC algorithm converges, then (15) has a fixed point, which we denote
by uH,h,n (we remove the subscript that numbers the LDC iterations). The
fixed point uH,h,n satisfies by definition

MH,huH,h,n = SH,huH,h,n + ũH,h,n−1 + f̃H,h,n + z̃H,h,n−1. (16)

The following theorem states that, if the LDC iteration converges, the fine
and the coarse grid approximation coincide in the common points between
fine and coarse grid.

Theorem 1. Assume that the LDC iteration converges. Then uH,h,n is such

that the projection of uh,n
l on the local coarse grid equals uH,n

l , viz.

RH,huh,n
l = uH

l (17)

Proof. Combination of (16) and (14) yields













(

Mh
l

)τ
0 Wn

l,ΓP
h,H 0

−MH
l R

H,h MH
l 0 0

0 BH
Γ,l MH

Γ BH
Γ,c

0 0 BH
c,Γ MH

c

























uh,n
l

uH,n
l

uH,n
Γ

uH,n
c













= ũH,h,n−1 + f̃H,h,n + z̃H,h,n−1.

(18)
The second equation of the system reads

MH
l R

H,huh,n
l +MH

l u
H,n
l = 0, (19)

which gives (17), since we supposed MH (and hence MH
l ) to be invertible.
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We finally write the system of equations that the limit of the LDC iteration
satisfies at time tn.

Theorem 2. Assume that the LDC iteration converges. Then uh,n
l , uH,n

Γ

and uH,n
c satisfy the following system of equations







(

Mh
l

)τ
Wn

l,ΓP
h,H 0

BH
Γ,lR

H,h MH
Γ BH

Γ,c

0 BH
c,Γ MH

c















uh,n
l,w

uH,n
Γ,w

uH,n
c,w









=







uH,h,n−1|Ωh

l

uH,h,n−1|ΓH

uH,h,n−1|ΩH
c






+







F h,n
l ∆t

fH,n
Γ δt

fH,n
c δt






+







Zn
l,Γ u

H,h,n−1|ΓH

0

0






. (20)

Proof. Elimination of uH,n
l from (18) gives (20).

We notice that (20) implies a discretization on the composite grid, while, for
solving that system, we have only used uniform grids and uniform grid solvers.

4 Numerical experiments

In this section we present the results of a 2D numerical experiment. We solve
the following time-dependent convection-diffusion equation

∂u

∂t
+ ∇u = ∇2u+ f, (21)

in Ω = (0, 2) × (0, 1). The initial condition, the boundary condition and the
source term f are chosen is such a way that the exact solution of the problem
is

u = 3 − tanh (25 (x− t) + 5 (y − 1)) . (22)

The exact solution (22) has at each time a region of high activity that covers
a small part of Ω. The problem is solved by means of LDC with different
values of H , h, ∆t and δt. The spatial discretization is performed using finite
differences both globally and locally. The backward Euler scheme is used for
time discretization both on the global and the local grid. The local region is
chosen in such a way that at time level tn

Ωl =
(

(tn − 0.2, tn + 0.4) × (0, 1)
)

∩Ω. (23)

In our tests we perform only one LDC iteration per time step. As a com-
parison, we also solve problem (21) using a single uniform global grid with
grid size hunif = h and time step δtunif = δt. At time t = 0.6 we measure
the maximum error εmax of the numerical approximations with respect to the
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exact solution (22). Table 1 shows that LDC can achieve practically the same
accuracy as the uniform grid solver. Of course LDC is computationally less
expensive than the uniform grid solver since the fine grid spacing and the
small time step are adopted only in a limited part of the domain.

Table 1. Results of the numerical experiment

Grid size Time step εmax

H h = hunif ∆t δt = δtunif LDC Unif. grid

1/10 H/3 1.0·10−1 ∆t/3 4.36·10−2 4.33·10−2

1/10 H/5 1.0·10−1 ∆t/5 1.21·10−2 1.18·10−2

1/20 H/3 2.5·10−2 ∆t/3 9.50·10−3 9.50·10−3

1/20 H/5 2.5·10−2 ∆t/5 3.02·10−3 3.02·10−3
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