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We present a parallel fully coupled implicit Newton-Krylov-Schwarz algorithm
for the numerical solution of the unsteady magnetic reconnection problem
described by a system of reduced magnetohydrodynamics equations in two
dimensions. In particular, we discuss the linear and nonlinear convergence and
the parallel performance of a third-order implicit algorithm, and we compare
our results with those obtained with an explicit method.

1 Introduction

In the magnetohydrodynamics (MHD) formalism plasma is treated as a con-
ducting fluid satisfying the Navier-Stokes equations coupled with Maxwell’s
equations [6]. The behavior of an MHD system is complex since it admits
phenomena such as Alfven waves and their instabilities. One of the intrinsic
features of MHD is the formation of a singular current density sheet, which
is linked to the reconnection of magnetic field lines [3, 9, 10, 12], which in
turn leads to the release of energy stored in the magnetic field. Numerical
simulation of the reconnection plays an important role in our understanding
of physical systems ranging from the solar corona to laboratory fusion devices.
Capturing the change of the magnetic field topology requires a more general
model than ideal MHD. A resistive MHD system is considered in this paper.
To simulate this multi-scale, multi-physics phenomenon, a robust solver has
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to be applied in order to deal with the high degree of nonlinearity and the
nonsmooth blowup behavior in the system. One of the successful approaches
to the numerical solution of the MHD system is based on the splitting of the
system into two parts, where equations for the current and the vorticity are
advanced in time, and the corresponding potentials are obtained by solving
Poisson equations in a separate step. In such an explicit approach, to satisfy
the CFL condition, the time step may become very small, especially in the case
of fine meshes, and the Poisson solves must therefore be performed frequently.
On the other hand, implicit time stepping presents an alternative approach
that may allow the use of larger time steps. However, the non-smooth nature
of the solution often results in convergence difficulties. In this work we take
a fully coupled approach such that no operator splitting is applied to the
system of MHD equations. More precisely, we first apply a third-order im-
plicit time integration scheme, and then, to guarantee nonlinear consistency,
we use a one-level Newton-Krylov-Schwarz algorithm to solve the large sparse
nonlinear system of algebraic equations containing all physical variables at
every time step. The focus of this paper is on the convergence and parallel
performance studies of the proposed implicit algorithm.

2 Model MHD Problem

We consider a model resistive MHD problem described as follows[2, 7]:
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(1)

where U is the vorticity, F is the canonical momentum, φ and ψ are the
stream functions for the vorticity and current density, respectively, ν is the
plasma viscosity, η is the normalized resistivity, de = c/ωpe is the inertial

skin depth, and ρs =
√

Te/Tiρi is the ion sound Larmor radius. The current
density is obtained by J = (F − ψ)/d2

e. The Poisson bracket is defined as:
[A,B] ≡ (∂A/∂x)(∂B/∂y) − (∂A/∂y)(∂B/∂x). Every variable in the system
is assumed to be the sum of an equilibrium and a perturbation component; i.e.
φ = φ0+φ1, ψ = ψ0+ψ1, U = U0+U1, and F = F 0+F 1, where φ0 = U0 = 0,
ψ0 = cos(x), and F 0 = (1 + d2

e) cos(x) are the equilibrium components. After
substitutions, we arrive at the following system for the perturbed variables:
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(2)
where Feqx = −(1 + d2

e) sin(x) and Beqy = sin(x). The system is defined on
a rectangular domain Ω ≡ [lx, ly] ≡ [2π, 4π], and doubly periodic bound-
ary conditions are assumed. For initial conditions, we use a nonzero initial
perturbation in φ1 and a zero initial perturbation in ψ1. The exact form
of the perturbation follows after some useful definitions. The aspect ratio is
ε = lx/ly. The perturbation’s magnitude is scaled by δ = 10

−4. We define

d̃e = max{de, ρs} and γ = εd̃e. For the initial value of the φ perturbation we
use

φ1(x, y, 0) =
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(3)

Other quantities are set as: U 1(x, y, 0) = ∇2φ1(x, y, 0) and F 1(x, y, 0) =
ψ1(x, y, 0) − de∇2ψ1(x, y, 0). From now on, we drop the superscript and as-
sume that the four fields φ, ψ, U and F represent the perturbed components
only. In order to connect the stream functions to physical quantities the fol-
lowing definitions are used: v = ez × ∇φ and B = B0ez +∇ψ × ez. Here B

stands for the total magnetic field, B0 is the guiding field in the z direction,
and v is the velocity in the plane perpendicular to the guiding field.
We discretize the system of PDEs with finite differences on a uniform mesh

of sizes hx and hy in x and y directions, respectively. At time level t
k, we denote

the grid values of the unknown functions φ(x, y, t), ψ(x, y, t), U(x, y, t), and
F (x, y, t), as φki,j , ψ

k
i,j , U

k
i,j , and F

k
i,j . The time independent components of the

system (2) are discretized with the standard second-order central difference
method. For the time discretization, we use some multistep formulas, known
as backward differentiation formulas (BDF) [8]. In this paper, we focus on a
third-order temporal and second-order spatial discretizations as shown in (4),
where Rk+1

φ (i, j), Rk+1
ψ (i, j), Rk+1

U (i, j), and Rk+1
F (i, j) are the second-order

accurate spatial discretizations of the time-independent components. We need
to know solutions at time steps k−2, k−1 and k in order to compute a solution
at time step k+1 in (4). A lower order scheme (second-order backward Euler)
is employed at the beginning of the time integration for these start-up values.
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3 One-level Newton-Krylov-Schwarz Method

At each time step, the discretized fully coupled system (4) is solved with a
one-level Newton-Krylov-Schwarz algorithm (NKS). NKS is a general purpose
parallel algorithm for solving systems of nonlinear algebraic equations. NKS
has three main components: an inexact Newton algorithm, a Krylov subspace
linear solver, and an additive Schwarz preconditioner. At each time step, the
discretized system of equations can be represented by G(E) = 0, where E =
{φ, ψ, U, F}. The unknowns are ordered mesh point by mesh point, and at
each mesh point they are in the order φ, ψ, U , and F . The mesh points are
ordered subdomain by subdomain for the purpose of parallel processing. The
Newton iteration is given as: Ek+1 = Ek − λkJ(Ek)−1G(Ek), k = 0, 1, ...,
where E0 is a solution obtained at the previous time step, J(Ek) = G′(Ek)
is the Jacobian at Ek, and λk is the steplength determined by a linesearch
procedure [4]. Due to doubly periodic boundary conditions, the Jacobian has
a one-dimensional null-space that is removed by projecting out a constant. In
the inexact Newton’s method we do not solve the Jacobian system exactly.
The accuracy of the Jacobian solver is determined by some ηk ∈ [0, 1) and
the condition ‖G(Ek)+J(Ek)sk‖ ≤ ηk‖G(Ek)‖. The overall algorithm can be
described as follows:

1. Inexactly solve the linear system J(Ek)sk = −G(Ek) for sk using a pre-
conditioned GMRES(30) [11].

2. Perform a full Newton step with λ0 = 1 in the direction sk.
3. If the full Newton step is unacceptable, backtrack λ0 using a backtrack-
ing procedure until a new λ is obtained that makes E+ = Ek + λsk an
acceptable step.

4. Set Ek+1 = E+, go to step 1 unless a stopping condition has been met.

In step 1 above we use a left-preconditioned GMRES to solve the linear sys-
tem; i.e., the vector sk is obtained by approximately solving the linear Jaco-
bian system M−1

k J(Ek)sk = −M−1
k G(Ek), where M

−1
k is a one-level additive

Schwarz preconditioner. To formally define M−1
k , we need to introduce a par-

tition of Ω. We first partition the domain into non-overlapping substructures
Ωl, l = 1, · · · , N . In order to obtain an overlapping decomposition of the do-
main, we extend each subregion Ωl to a larger region Ω

′
l, i.e., Ωl ⊂ Ω′l. Only

simple box decomposition is considered in this paper – all the subdomains Ωl
and Ω′l are rectangular and made up of integral numbers of fine mesh cells.
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The size of Ωl is Hx × Hy and the size of Ω
′
l is H

′
x × H ′y, where the H

′s
are chosen so that the overlap, ovlp, is uniform in the number of fine grid
cells all around the perimeter, i.e., ovlp = (H ′x − Hx)/2 = (H

′
y − Hy)/2 for

interior subdomains. For boundary subdomains, we simply cut off the part
that is outside Ω. On each extended subdomain Ω ′l, we construct a subdo-

main preconditioner Bl, whose elements are B
i,j
l = {Jij}, where the node

indexed by (i, j) belongs to Ω′l. The entry Jij is calculated with finite differ-
ences Jij = 1/(2δ)(Gi(Ej + δ)−Gi(Ej − δ)), where 0 < δ ¿ 1 is a constant.
Homogeneous Dirichlet boundary conditions are used on the internal subdo-
main boundary ∂Ω′l ∩ Ω, and the original boundary conditions are used on
the physical boundary, if present. The additive Schwarz preconditioner can be
written as

M−1
k = (R1)

TB−1
1 R1 + · · ·+ (RN )TB−1

N RN . (5)

Let n be the total number of mesh points and n′l the total number of mesh
points in Ω′l. Then, Rl is an n

′
l × n block matrix that is defined as: its 4 × 4

block element (Rl)i,j is an identity block if the integer indices 1 ≤ i ≤ n′l and
1 ≤ j ≤ n belong to a mesh point in Ω′l, or a block of zeros otherwise. The
Rl serves as a restriction matrix because its multiplication by a block n × 1
vector results in a smaller n′l × 1 block vector by dropping the components
corresponding to mesh points outside Ω′l. Various inexact additive Schwarz
preconditioners can be constructed by replacing the matrices Bl in (5) with
convenient and inexpensive to compute matrices, such as those obtained with
incomplete factorizations. In this paper we employ the ILU factorization.

4 Numerical Results

To illustrate model behavior, we choose nominal values of the inertial skin
depth de = 0.08 and the ion sound Larmor radius ρs = 0.24. The normal-
ized resistivity and viscosity are chosen in the range η, ν ∈ [10−4, 10−2]. Time
in the system is normalized to the Alfven time τA =

√
4πnmilx/By0, where

By0 is the characteristic magnitude of the equilibrium magnetic field and lx
is the macroscopic scale length [7]. Ω is uniformly partitioned into rectan-
gular meshes up to 500 × 500 in size. The stopping conditions for the iter-
ative processes are given as follows: relative reduction in nonlinear function
norm ‖G(Ek)‖ ≤ 10−2‖G(E0)‖, absolute tolerance in nonlinear function norm
‖G(Ek)‖ ≤ 10−10, relative reduction in linear residual norm ‖rk‖ ≤ 10−6‖r0‖,
and absolute tolerance in linear residual norm ‖rk‖ ≤ 10−10.
A typical solution is shown in Fig.1. The initial perturbation in φ produces

a feature-rich behavior in ψ, U , and F . The four variables in the system evolve
at different rates: φ and ψ evolve at a slower rate than F and U . For η = 10−3

and ν = 10−3 we observe an initial slow evolution of current density profiles up
to time 100τA and the solution blows up at time near 250τA. In the middle of
the domain the notorious “X” structure is developed, as can be seen in the F
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Fig. 1. Contour plots of φ (top left), ψ (top right), U (bottom left), and F (bottom
right). The results are obtained on 300×300 mesh, ∆t = 1.0τA, t = 100τA, η = 10−3,
ν = 10−3, implicit time stepping.

contours, where the magnetic flux is being reconnected. Similar reconnection
areas are developed on the boundaries of the domain due to the periodicity
of boundary conditions and the nature of the initial φ perturbation. In the
reconnection regions, sharp current density peaks (Fig. 2 (a)) are formed. We
compare results obtained by our implicit method with these obtained with
an explicit method [5]. Fig. 2 (b) shows that the third-order implicit method
allows for much larger time steps, and still produces results that are very close
to these obtained with the explicit algorithm, where the size of the time step
is determined by the CFL constraint.
Next, we look at some of the machine dependent properties of the algo-

rithm. Our main concern is the scalability, which is an important quality in
evaluating parallel algorithms. First, we look at the total computing time as
a function of the number of subdomains and calculate t(1)/t(np) which gives
a ratio of time needed to solve the problem with one processor to the time
needed to solve the problem with np processors. Our experiments are con-
ducted on a Linux cluster. Fig.3 shows the results for a 500× 500 mesh, and
overlap 1 is used in all cases. We can see that the one-level algorithm scales
reasonably well in terms of the total computing time. Table 1 illustrates re-
sults obtained on a 300 × 300 mesh. The time scalability is attained despite
the fact that the total number of linear iterations increases with the number
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Fig. 2. a) Formation of current density peaks in the reconnection region, J , 100×100
mesh, η = 10−2, ν = 10−2, ∆t = 1.0τA. b) Comparison plots of J obtained with the
explicit method (∆t = 0.001τA) and the implicit with ∆t = 1.0τA at t = 200τA on
300× 300 mesh with η = 10−3 and ν = 10−3.

of subdomains. Interestingly enough, the total number of nonlinear iterations
decreases with the increase of the number of subdomains.

Table 1. Scalability with respect to the number of processors, 300× 300 mesh. ILU
factorization for all subproblems, ovlp = 1. Time step ∆t = 1.0τA, 10 time steps,
t = 100τA. The problem is solved with 64, 32, 16, 8, 16, 8, 4 and 1 processors.

np t[sec] Total Nonlinear Total Linear Linear/Nonlinear

1 4846 19 4865 256
2 3009 19 4938 260
4 1943 12 6444 537
8 1345 14 8596 614
16 892 16 19923 808
32 350 11 7541 686
64 275 11 9754 887

5 Conclusions and Future Work

The proposed fully coupled implicit scheme with a third-order time discretiza-
tion allows much larger time steps than the explicit method, while still pre-
serving the solution accuracy. One-level NKS converges well with the problem
parameters in the specified range, given the right stopping conditions. With-
out a coarse space, the algorithm scales reasonably well for medium number of
processors with a small subdomain overlap. Future continuation of this work
may include solutions of the MHD problem on finer meshes with a larger
number of processors. Longer time integration with various η and ν values, as
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Fig. 3. Computing time scalability t(1)/t(np), 500×500 mesh, η = 10−3, ν = 10−3,
∆t = 0.1τA with 1− 64 processors, t = 100τA. The data are collected over 100 time
steps.

well as higher ρs to de ratios, may be helpful in the further understanding of
the algorithm for the numerical solutions of MHD problems.
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