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Abstract

Chimera [10] happens to be a version of Schwarz’ method and of Lions’ space de-
composition method (SDM). It was analyzed by Brezzi et al [1] but an estimate was
missing for for numerical quadrature. We give it here with new numerical tests.

1 Introduction

Consider a Hilbert spac¥, a continuous bilinear form(u, ) symmetric with a
coercivity constanév > 0 and f regular for well posedness of

a(u, @) = (f,a) Ya eV, Q)

We assume that’ = V; + 1, Vi N V4, of non zero measure (i.e. overlapping)
where eaclV; is a closed subspace &f We will need also two continuous symmet-
ric bilinear formsb; (u, @), i = 1,2 coervice enough so that

2

> bii) + a(i;) > a() ;) Vi € Vi )

1

A typical example is the Dirichlet problem ferAu = f in {2 = 2, U {2, and such
that(2; N 2, # 0; denote byS; = 012, N (2}, j # i. Then set

Vi={ve L2(2): vlo, € V(2), vlo-q, =0} ®3)
Algorithm 1 (Schwarz)
Begin loopwith a Chosen? € V;, andn = 0.
Find o' such thaw*' — o € V;, i,j =1,2,j # i by solving

a(vf,6;) = (f,5:;) Y € Vi 4)
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End loop

The convergence has been analyzed by P.L. Lions[6] in a general setting. In search
for precision, we present the following alternative; it usegu,v) = b(u,v) =
(Bu,v), i = 1,2 for some positive scalat and two arbitrary functions? € V;.

Algorithm 2 (SDM)
Begin loopwith n = 0:
Findu!™' € V; by solving

but™™ —uf ay) + a(ul T+ ul i) = (f, ) Vi €
b(uf ™ —uf o) + a(ul +ub T dn) = (fiiz) iz € Va (5)

End loop

Wheng3 = 0 Algorithm 2 is identical to Algorithm 1 withu "' = o't =7 i, j =
1,2, j # i. If the decomposition is done witlh members withn > 2 thenu"*! is
found by solving

buf !t =l ;) + a(uf T = + Yl ddy) = (fd;) Vi€V (6)
Jj=1

Theorem 1.(J.L. Lions[4]) We assume (1-2). Then Algorithm (6) is convergent in
the following sense: as — oo, v}’ — u} with u] + u3 = u solution of (1) and the
decomposition is uniquely defined by

1 .
(ﬁ—l—A)ul:E(ﬁ—l—A)(u—l—u?—ug) in 2, N8, wuils, =0, uilg, =u

1 .
(B+ Aug = §(ﬁ+A)(u+ug —u)in 21002y, usls, =0, usls, = u
Au; = f in 91\91 N QQ, Ui|6(2i =0 (7)

2 Discretization

Let 7y, (resp7z,) be a triangulation of2, (respf2s), quasi-uniform[2], in the sense
that, if hj; andh,,, are the maximum and minimum edgesiiy,, andH,, andH,,,

are the maximum and minimum edgesT,,, then there exists two constaris
andCyr such thathy, < Cirhy, Hy < CorH,,. Without loss of generality

we can also assume, thiat; < H,,. For clarity we assume that thig; are polygonal

and thata(, ) is the Laplace operator with Dirichlet conditions. Iét, andVs;, be

two Lagrange conforming continuous finite element approximation spaces of order
pof Vi = H} (1) andVa = HE(£22). Then the discrete version of Algorithm 2 is

to find for i=1,2,u”! € Vj;, such thatv;, € Vi,

ih

/ (Bultt —ulh v, + V(U +ub,) Vo) = / fvin, (8)
£2; £2;
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Theorem 2.(see Hecht et al. [4]) Assume that the solution of (1) igfi" 1 (£2) for
somep > 1. Assume that in (7)o, € HPTH((2). If up = lim(upy, + uf,) is
computed with Lagrange conforming finite elements of opgdénen

[u = unll,0 < CRP([urllprr,e: + luzllprr,e.)- (9)

3 Numerical Quadrature

As such, the scheme is too costly to implement because it requires the intersection
of triangulations. Recall that the quadrature formula with integration points at the
vertices is exact for polynomials of degree less than or equal to one. In particular, for
a given trianglel’ one has

T .
/gdwdy = |3—| > gla) Vge (D). (10)
T i=1,2,3

Hence we introduce the following quadrature rule.

L |T| V(ujp) Vv
(Vu, Vo) = ZTGTM 3 Zi:1,2,3 Toy+1o, la(T)

ﬁ V(’U‘K)-Vu
"'ZKeTzh 3 Ej:1,2,3 T, t1o, |‘Ij(K)'

wherelq, (x) = 1if x € (2; and zero otherwisej(= 1,2). The notationV (u r)
is used to indicate that we first restrict the functioto 7', and then we compute its
gradient (which is actually constantiy. A similar interpretation holds fov (v ).
With such definitions we propose to solve the discrete problems:
-Findul,t! € Vi, such thatv,, € Vi,

b(ufit —uly, dan) + an(uly + uby, dap) = (f,41n) Yaan € Vin

bugy ' — uby, Gion) + an(ufy, + ub ' don) = (f,d2n) Vion € Vo (12)

(11)

Clearly these definﬁe?,jr1 uniquely. At convergence the problem solved is
- Find u;p, € Vi, such thava,;, € Vi

ap(uip + uzp, G1p + Gon) = (f, Gap + Gon)- (13)

Under a mild assumption on the triangulations this discrete problem has a unique
solution at least when linear elements are uged (1):

each vertex of7;, is internal to a triangle K of 75, and conversely. (14)

This is because of the coercivity of the bilinear form and of the uniqueness of the
decomposition, = uyp + uop:

Theorem 3.(Brezzi)

Assume (14) holds. If two functions, € V;;,, i = 1,2 coincide on a connected
subsett’ of 2, N {2, then bothu;;, are linear (not just piecewise linear) ift’.
Furthermore

an(un + tan, urp 4+ usn) > clluip 4 uap||? for all uy, € Vi
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One more property is needed, the continuity:@f and then we can apply Strang’s
lemma and obtain the following estimate:

Proposition 1. (see [4]) Assume that the triangulations@f and (2, are compatible
in the sense that they give a coercive bilinear form. Assumedathas uniformly
continuous for allh. Then the error between the approximate problem (13) and the
continuous problem is

[lu = un|| < Ch(]

+ )

4 Continuity of the Approximate Bilinear Form

4.1 The One Dimensional Case

We begin with the mono dimensional case because the proof is easier to follow. The
same argument will be extended to 2D.

Proposition 2. In one dimension the constant of continuityin

|VUH + Vuh|h < C|VUH + Vuh|

1 ; X X;
satisfies C? < = max{max [2it1 = @il X1 = |} (15)
2 €K |(Ez — j(z)| i€l |X — X )|
where K (resp.L) is the set of such thatj(i) exists withX ;) € [z, 2;11] (resp

r;6) € [Xi, Xiq1]). Consequently’ is bounded by the square root of half the largest
interval length divided by the smallest distance between two vertices.

Proof For any real valued functiofi,

max f(Vug + Vuy) < [}IIEILJX fUg +Uy)

Up , UH h>sYH

whereuy, uy are real valued continuous- piecewise linear functions on their mesh
andUy, U, are piecewise constant vector valued on their meshes, becaus&every
is aU and the opposite is not true when boundary conditions exist at both ends.
DenoteV = Uy + Uj,. AsV is piecewise constant, by definition

4 V|i=2|wi+1—wil(|‘/|( D+ Vi) +Z|XJ+1 XGIIVIEGH)? + IVI(X50)?)

2| Vo = Z X — @l (IVI(X;)* + IVI)?) + Z |z: = X5|(IVI(X)? + [VI(2:)?)

i,JEK i,JEL

+ D lzien — 2| (VI + VI + ) X = XG1(IVIEG)” + IVIX)%) (26)

icl jeJ

wherel, J are the set of intervals completely inside an interval of the other mesh,
i.e.

I = {Z : 3] s.t. [(L’i,(L'iJrl] C [Xj,XjJrl} J = {j : dis.t. [Xj,XjJrl] C [l’i,xiJrl]}
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Denote by N the set of values &, of V' right or left of z; or X,. As f(V) =
[VI2/|V[§ we see that it is of the typg(V) = >, .y arlVIZ / Ypen BV
with «; equal to a fourth of:; 1 — z; or X, 11 — X;, andg; equal half ofz; ; — x;

or X;y1 — X; orz; — X or X; — xj(;) asum of two of those. Of course it is
important to notice that all values appear both in the nominator and denominator.
With a change of variable this is also

> g
f(W) = Zﬂiv[/]?k Then HlaXf(W) = m]?X E

Now that this is established we can answer much simply the problem of finding
max o,/ 3 it is the largest ratio of coefficients multiplying (=) or V(X" in
the expressions fdi/|, and|V|2, i.e. in (16).

Qg

4.2 The Two Dimensional Case

A similar argument applies in two dimensions. Assume we have two triangulations
with triangles{ T} } & and{t;}7 respectively and vertice®; andg;. Recall that

N n
1 1
VIR=52" D Wn@uPIT+5> > Wala Pl A7)

k=17=1,2,3 k=14=1,2,3

wherei;, j = 1,2, 3 are the numbers of the 3 vertices for each triangle. On the other
hand the exact valué’|2 is

VIE=Y" > Ve (&) | Rl (18)

kil j=1,2,3

whereRy; = T Nt; and&y; is any point inRy;.

For eachQ;; (respg;,) in (17) there is al?; which contains it. For thesg& let us
choose in (18fx; = Q;; andg,,. Then for every term imV\%; there is a correspond-
ing term in|V|2:

1 . .
EWT’“ (Qi, I*|T%| in correspondence with/r, (Q;, [Tk Nt (19)

wherel is such that);; € ¢;; and similarly withg; .

However in this construction we will assign as maphyo a R as the number of
vertices it contains. So the safest is to divide by 3 the second term in (19).
Notice that somd? do not contain any vertex; if we leave these aside we obtain

Vi
Vi

So we have proved the following

>

1 T
LT 1)
2kl | T3 N ;]

< : T, Nt; contains at least one vertéx (20)

(=] V]
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Proposition 3. In two dimensions, the constant of continuity between the approxi-
mate normVuy + Vuyg|, and the exact one is proportional to the square root of
the biggest ratio of area between a triandleand one of its polygong N ¢ wheret

is a triangle of the other triangulation containing a vertexiof

The proof is similar, except that in the exact norm there are terms which do not exist
in the approximate norm; but these are positive and appear in the denominator of the
expression which bounds C.

Remark 1 Consider the case where each triangle of the mdss no more than one
vertex of the mesl# inside. Assume that this vertex is near the center of the triangle
(or segment in one-D). Assume that all angles between two intersecting edges are
bounded away from 0 andwhenh, H — 0 and thatH /h andh/H do not tend to

0. ThenC is strictly posivite in the limit. However it is difficult in practice to insure
that no angle tend to zero when the mesh is refined

Fig. 1. Top: Two meshes in 1D and the intersected mesh. Two intervals have been singled out
as they are strictly inside an interval of the other mesh; the continuity constant is proportional
to the ratio of the smallestinterval in the intersected mesh to the biggest interval in both meshes
neighbor to that smallest one. Bottom: The continuity constant is proportional to the smallest
polygon containing a vertex (shown with a texture) divided by the area of the biggest neighbor
triangle in both meshes. Notice that some edges pass right through a vertex in this example,
so if one mesh is shifted slightly the continuity constant estimate suddenly deteriorates.

5 Numerical Test

In all the numerical tests that follow, errors are evaluated on the intersected mesh,
using exact quadrature formula. The problem to solve 8u = fin 2, u =
g ondf2. Data are chosen so thatz, y) = sin(x) x sin(y).

5.1 Exact quadrature

This formula is introduced so as to give an exact computation for integral like

fT} 1y PV Where® and¥ see FIG.2 below aré1-lagrange functions on the
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w

Fig. 2. Quadrature points for exact evaluation ﬁzf‘,,mTH DU

triangleT), andT'y respectively. It is based on the intersection of the two meshes.
2, is a circle of radiusl centered at0,0) and 2 is the squaré—0.5,0.5)2. (2,

is going to be meshed with uniform triangles so that by diadic refinement, order of
convergence should be easily evaluated see Tablel.

5.2 First quadrature formula

Tablel displays the results when(11) is used. Notice that by takiad/;,, v € V4,

we don’t recover the ordinary approximated bilinear form for the Laplace equation
on the domain?,. So for a parallel implementation of (12), instead, we must find
u™t € Vg, such that (heré = 0), Vo € Vo, (§21)

1 1
(Vul™ Vo), = (f,0) — (Vul, Vo) g — a(Vu?, Vo), + Q(Vu?, Vo)g.

Here(.,.)n, (.,.)g don't need quadrature. For the numerical experiments, we have
3

)
takens2, = (—2,3) x (—3,2) and2; = (=4, 2) x (=3, 4),

5.3 Second quadrature formula

On the way, we have also tried, fok, v € Vi, ug, v € Vi

(Yo, Vol = Y 51 Y (Vn) Vo) (a5(K))

KeKp j=1,2,3
R e |
(Vug, Vor)mn,ong, == ) 3 (V(uz) - V(vi|r)) (¢;(T)). (21)
TeTy 7=1,2,3

5.4 Schwarz algorithm with quadrature

Finally, to compare with Schwarz’ algoritm, let,;; : Vj, — Vg andryy, : Vg —
V;, the P! interpolation operators. Then the Schwarz method is implemented as

{ (V" + wppo™), Va), = (f,0), Va € Vo

(V0™ + mgu™), Vo) = (f,9)m Vo € Vo (22)
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u — (u1 + u2) uw— (u1 + u2)
N1|N2| L?error [rate] VL? error [rate] |[N1|N2| L?error [rate] VL error|rate
Exact Quadrature Second Quadrature
10| 5 |1.64E — 02| — |2.25FK — 01| — 10| 5 |1.85FE — 02| — |2.32F — 01| —
20|10 [3.78E — 03|2.02|1.11EF — 01|1.02| |20 |10|5.66F — 03|1.71{1.16 E — 01{1.00
40|20 [8.24F — 04| 2.2 [5.03F — 02|1.15] | 40|20 |1.03E — 03]2.45|5.34F — 02|1.12
First Quadrature Schwarz overlapping
3|5 |4.64FE —01| — |1.00E — 00| — 10| 5 |1.68F — 02| — |2.29FE — 01| —
6 |10 [8.18F — 02|2.50(5.44F — 01|0.89| | 20| 10|3.49F — 03]2.26|1.09F — 01|1.06

40120 |9.15F — 04]1.93|5.13E — 02|1.09

Table 1.NumericalL? errors, and convergence rate, for P1 polynomials with different quadra-
ture formula.N;, i = 1, 2 is the number of vertices on the boundary of the donf3in

Conclusion

The results show that the first quadrature formula has optimal errors numerically

but
obt
but

the results are very sensitive to the position of the grid points. Good results are
ained with the second quadrature formula, which is also easy to implement in 3D
no error analysis are available yet.
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Fig. 3. Chimera solution of test case with ex+ig. 4. Chimera solution of Lu
act quadrature formula. Bottom : solution ol on 2, u = 0 on 9£2) with second quadra-
each subdomain. ture formula. Top right: intersected mesh.
Bottom : solution on each subdomain.



