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Summary.We introduce a multi-level restricted Schwarz preconditioner with
a special coarse-to-fine interpolation and show numerically that the new
preconditioner works extremely well for some difficult large systems of lin-
ear equations arising from some optimization problems constrained by the
incompressible Navier-Stokes equations. Performance of the preconditioner
is reported for parameters including number of processors, mesh sizes and
Reynolds numbers.

1 Introduction

There are two major families of techniques for solving Karush-Kuhn-Tucker
(KKT, or optimality) Jacobian systems, namely the reduced space and the
full space methods [2, 3, 12, 11]. When memory capability is an issue, re-
duced methods are preferred, although many sub-iterations might be needed
to converge the outer-iterations and the parallel scalability is less ideal. As the
processing speed and the memory capability of computers increase, full space
methods become more popular because of their increased scalability. One of
their main challenges, though, is how to handle the indefiniteness and ill-
conditioning of those Jacobians. In addition, some of the solution components
might present sharp jumps. Traditional multilevel preconditioning techniques
do not work well because of the cross-mesh pollution; i.e., sharp jumps are
smoothed out by inter-mesh operations.
We introduce a new multilevel restricted Schwarz preconditioner with a

special coarse-to-fine interpolation and show numerically that it works ex-
tremely well for rather difficult large Jacobian systems arising from some
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optimization problems constrained by the incompressible Navier-Stokes equa-
tions. The preconditioner is not only scalable but also pollution free.
Many optimization problems constrained by PDEs can be written as

{

min
x∈W

F(x)

s.t. C(x) = 0 ∈ Y.
(1)

Here W and Y are normed spaces, W is the space of optimization variables,
F :W → R is the objective functional and C :W → Y represents the PDEs.
The associated Lagrangian functional L :W ×Y∗ → R is defined as

L(x,λ) ≡ F(x) + 〈λ,C(x)〉Y , ∀ (x,λ) ∈W ×Y∗,

where Y∗ is the adjoint space of Y, 〈·, ·〉Y denotes the duality pairing and
variables λ are called Lagrange multipliers or adjoint variables. In many cases
it is possible to prove that, if x̂ is a (local) solution of (1) then there exist

Lagrange multipliers λ̂ such that (x̂, λ̂) is a critical point of L [10]. So, with a
discretize-then-optimize approach [9] and sufficient smoothness assumptions,
a necessary condition for a solution of (1) is to solve the KKT system

(

∇xL
∇λL

)

=

(

∇F + [∇C]
T
λ

C

)

= 0. (2)

Each iteration of a Newton’s method for (2) involves the Jacobian system

[

∇xxL [∇C]
T

∇C 0

](

px

pλ

)

= −

(

∇xL
C

)

. (3)

The paper is organized as follows. Section 2 introduces a preconditioner for
(3), while in Section 3 we test it on some flow control problems and report its
performance for combinations of parameters including number of processors,
mesh sizes and Reynolds numbers. Final conclusions are given in Section 4.

2 Multilevel pollution removing restricted Schwarz

Schwarz methods can be used in one-level or multilevel approaches and, in
each case, with a combination of additive and/or multiplicative algorithms
[13]. They can be also used as linear [8] and nonlinear preconditioners [6].
Let Ωh be a mesh of characteristic size h > 0, subdivided into non-

overlapping subdomains Ωj , j = 1, . . . , NS . Let H > 0 denote the charac-

teristic diameter of {Ωj} and let {Ω
′

j} be an overlapping partition with over-
lapping δ > 0. From now on we only consider simple box domains, uniform
meshes and simple box decompositions, i.e., all subdomains Ωj and Ω

′

j are
rectangular and made up of integral number of mesh cells. Let N and Nj de-

note the number of degrees of freedom associated to Ωh and Ω
′

j , respectively.
Let K be a N ×N matrix of a linear system
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Kp = b (4)

that needs to be solved during the application of an algorithm for the numer-
ical solution of a discretized differential problem. Let d indicate the degree
of freedom per mesh point. For simplicity let us assume that d is the same
throughout the entire mesh. We define the Nj ×N matrix Rδ

j as follows: its

d×d block element (Rδ
j)α,β is either (a) an identity block if the integer indices

1 6 α 6 Nj/d and 1 6 β 6 N/d are related to the same mesh point and this

mesh point belongs to Ω
′

j or (b) a zero block otherwise. The multiplication of

Rδ
j with a N × 1 vector generates a smaller Nj × 1 vector by discarding all

components corresponding to mesh points outside Ω
′

j . The Nj×N matrix R0
j

is similarly defined, with the difference that its application to a N × 1 vector
also zeroes all those components corresponding to mesh points on Ω

′

j \ Ωj .

Let B−1
j be either the inverse of or a preconditioner for Kj ≡ Rδ

j K Rδ
j

T
.

The one-level classical, right restricted (r-RAS) and left restricted (`-RAS)
additive Schwarz preconditioners for K are respectively defined as [5, 7, 8]

B−1
δδ =

Ns
∑

j=1

Rδ
j

T
B−1

j Rδ
j , B−1

δ0 =

Ns
∑

j=1

Rδ
j

T
B−1

j R0
j , B−1

0δ =

Ns
∑

j=1

R0
j

T
B−1

j Rδ
j .

For the description of multilevel Schwarz preconditioners, let us use index
i = 0, 1, . . . , L − 1 to designate any of the L > 2 levels. Let Ii denote the
identity operator and, for i > 0, let RT

i denote the interpolation from level
i − 1 to level i. Multilevel Schwarz preconditioners are obtained through the
combination of one-level Schwarz preconditioners B−1

i assigned to each level.
Here we focus on multilevel preconditioners that use exact coarsest solvers
B−1

0 and that can be seen as multigrid V-cycle algorithms [4] having Schwarz
preconditioned Richardson working as the pre and the post smoother at each
level i > 0, with B−1

i,pre
preconditioning the µi > 0 pre smoother iterations and

B−1
i,post

preconditioning the νi > 0 post smoother iterations. Then, as iterative

methods for (4), with r(`) denoting the residual at iteration ` = 0, 1, 2, . . .,
they can be described in the case L = 2 as

r(`+1) = (I1 −K1B
−1
1,post

)ν1(I1 −K1R
T
1 B−1

0 R1)(I1 −K1B
−1
1,pre
)µ1r(`). (5)

Pollution removing interpolation constitutes a key procedure in our pro-
posed multilevel preconditioner, due to the sharp jumps that often occur on
the multiplier values over those regions of Ωh where constraints are greatly
affecting the behavior of the optimized system. Although the evidence of this
discontinuity property of Lagrange multipliers is just empirical in our paper,
it is consistent with their interpretation [11]: the value of a Lagrange multi-
plier at a mesh point gives the rate of change of the optimal objective function
value w.r.t. to the respective constraint at that point.
In the case of the problem corresponding to Figure 2-b, for instance, an

external force causes the fluid to move on a clockwise way and the boundary
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consists of rigid slip walls. The vertical walls greatly affect the overall vorticity
throughout the domain, i.e., the value of the objective function, because they
completely oppose the horizontal velocity component v1. The values of λ1 at
the walls then reflect this situation. In contrast, λ2 develops sharp jumps at
the other two walls opposing v2. In all our experiments the discontinuities
are located only over the boundary and not around it, even for very fine
meshes. Common coarse-to-fine interpolation techniques will then smooth the
sharp jumps present in coarse solutions, with a gradual jumping, from interior
mesh points towards boundary mesh points, appearing over those fine cells
(elements, volumes) located inside coarse boundary ones. That is, the good
correction information presided by the coarse solution is lost with a common
interpolation. We refer to the smoothed jump as “pollution”, in contrast to
the “clean” sharp jump that is expected at the fine level as well.
We therefore propose amodified coarse-to-fine interpolation procedure that

is based on a general and simple “removal of the pollution”. Let RT
i denote

any unmodified interpolation procedure and Z i the operator that zeroes out,
from a vector at level i, the Lagrange multipliers at all those mesh points with
equations that have a greater influence on the objective function. For the case
of PDEs describing physical systems, the number of such points are expected
to be relatively small. Our modified interpolation is then expressed by

RT
i,modif

= RT
i −ZiR

T
i (Ii−1 −Zi−1). (6)

This procedure removes the smoothed contributions due to the coarse discon-
tinuities, maintaining, at the fine level, the sharp jumps originally present at
the coarse level. See Figure 1. Once RT

i is available, (6) can be applied to any
mesh in any dimension, with any number of components.
In the case of the problems in this paper, Z i zeroes the Lagrange multi-

plier components located at the boundary. In our tests we apply the modified
interpolation only on the Lagrange multiplier components of coarse solutions,
while the optimization variables continue to be interpolated with RT

i . Also,
the restriction process remains Ri for all variables, that is, (5) becomes

r(`+1) = (I1 −K1B
−1
1,post

)ν1(I1 −K1R
T
1,modif

B−1
0 R1)(I1 −K1B

−1
1,pre
)µ1r(`).

The Lagrange multipliers reflect the eventual “discontinuity” on the type
of equations (or their physical dimensions) between equations in different re-
gions of Ω: in the case of the problems in Section 3, between those in Ω and
those on ∂Ω. From this point of view, it seems “natural” to apply different
interpolations to the multiplier components depending on their location.

3 Numerical experiments

Our numerical experiments in this paper focus on optimal control problems
[9], where the optimization space in (1) is generally given by W=S × U,
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Fig. 1. Representation of the modified coarse-to-fine interpolation (6), with (a)
input ϕi−1 and (c) output ϕi. The five steps are: (1) interpolation RT

i ϕi−1, (2)

coarse jump values ϕ̃i−1 = (Ii−1 − Zi−1)ϕi−1, (3) polluted ϕ̃i = RT
i ϕ̃i−1, (4)

pollution isolation Ziϕ̃i, (5) pollution removal ϕi = RT
i ϕi−1 −Ziϕ̃i.

with S being the state space and U the control space. Upon discretization,
one has n=ns+nu, where ns (nu) is the number of discrete state (control)
variables. More specifically, we treat the boundary control of two-dimensional
steady-state incompressible Navier-Stokes equations in the velocity-vorticity
formulation: v = (v1, v2) is the velocity and ω is the vorticity. Let Ω ⊂ R2 be
an open and bounded smooth domain, Γ its boundary, ν the unit outward
normal vector along Γ and f a given external force defined in Ω. Let L2(Ω)
and L2(Γ ) be the spaces of square Lebesgue integrable functions in Ω and
Γ respectively. The problems consist of finding (s,u) = (v1, v2, ω, u1, u2) ∈
L2(Ω)3 × L2(Γ )2 = S×U such that the minimization

min
(s,u)∈S×U

F(s,u) =
1

2

∫

Ω

ω2 dΩ +
c

2

∫

Γ

‖u‖22 dΓ (7)

is achieved subject to the constraints


































−∆v1 −
∂ω
∂x2

= 0 in Ω,

−∆v2 +
∂ω
∂x1

= 0 in Ω,

−∆ω +Re v1
∂ω
∂x1
+Re v2

∂ω
∂x2

−Re curl f = 0 in Ω,

v − u = 0 on Γ,

ω + ∂v1

∂x2
− ∂v2

∂x1
= 0 on Γ,

∫

Γ
v · ν dΓ = 0,

(8)

where curl f = −∂f1/∂x2 + ∂f2/∂x1. The parameter c > 0 is used to adjust
the relative importance of the control norms on achieving the minimization,
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so indirectly constraining their sizes. The physical objective in (7)-(8) is the
minimization of turbulence [9]. The last constraint is due to the mass conser-
vation law, making m 6= ns and causing the complexity Jacobian computation
to increase, since non-neighboring mesh points become coupled by the inte-
gral. We restrict our numerical experiments to tangential boundary control
problems, i.e., u · ν = 0 on Γ , so that m = ns.
Here we only report tests forΩ = (0, 1)×(0, 1), c = 10−2 and f = (f1, f2) =

(

−sin2(πx1) cos(πx2) sin
2(πx2), sin

2(πx2) cos(πx1) sin
2(πx1)

)

. For compari-
son, we solve simulation problems with v · ν = 0 and ∂v/∂ν = 0 on Γ .
We performed tests on a cluster of Linux PCs and developed our software

using the Portable, Extensible Toolkit for Scientific Computing (PETSc) from
Argonne National Laboratory [1]. Table 1 shows the efficacy of the modified
interpolation process, which performs much better than the unmodified one,
causing the two-level preconditioner to outperform the one-level precondi-
tioner. Table 2 shows the flexibility of the two-level preconditioner, which
provides a similar average number of Krylov iterations throughout all seven
situations in the table. Figure 2-a shows the controlled velocity field: the move-
ment near the boundary is less intense. Figures 2-c and 2-d clearly show the
stabilization on the average number of Krylov iterations provided by the two-
level preconditioner with modified interpolation. The one-level preconditioner
fails with 100 processors for Re = 250 and Re = 300.

Table 1. Resulted average number ` of Krylov iterations per Newton iteration with
Re=250, right preconditioned GMRES, a 280 × 280 mesh (631, 688 variables), 49
processors, relative overlapping δ/H = 1/4 and a 70× 70 coarse mesh, for different
combinations of number L of levels, linear interpolation type, number σ of pre and
post smoother iterations, and RAS preconditioner.

L Linear Inter- σ RAS preconditioner
polation Type `-RAS r-RAS

1 − − ` = 336 ` = 973

2 Unmodified 1 ` = 1, 110 ` = 1, 150

2 Unmodified 2 ` = 356 ` = 222

2 Modified 1 ` = 21 ` = 28

4 Conclusions

We have developed a multilevel preconditioner for PDE-constrained opti-
mization that showed a robust performance when tested on some boundary
flow control problems. Our main contribution consisted of the combination
of a general multigrid V-cycle preconditioner with (1) RAS preconditioned
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Table 2. Resulted average number ` of Krylov iterations per Newton iteration with
Re=300, right preconditioned GMRES and a 70 × 70 coarse mesh, for different
situations of number Np of processors and mesh size. To each situation corresponds
a combination of the number σ of Richardson iterations, the RAS preconditioner
and the relative overlapping δ/H used in the pre and post smoothers. The number
of variables is 2, 517, 768 in the case of finest mesh.

Np
δ
H

140×140 280×280 560×560

25 1
4
σ = 1; r-RAS; ` = 20 σ = 1; r-RAS; ` = 23 −

49 1
2
σ = 1; r-RAS; ` = 18 σ = 1; r-RAS; ` = 21 −

100 1
2
σ = 1; `-RAS; ` = 18 σ = 1; `-RAS; ` = 25 σ = 2; r-RAS; ` = 27
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Fig. 2. Information on cavity flow problems: (a) controlled velocity field with
Re = 200 and (b) corresponding Lagrange multiplier λ1; results for (c) one-level
and (d) two-level preconditioner with right-preconditioned GMRES, a 280 × 280
mesh (631, 688 variables), and a 70× 70 coarse mesh.

Richardson smoothers and (2) a modified interpolation procedure that re-
moves the pollution often generated by the application of common interpo-
lation techniques to the Lagrange multipliers. Such combination was key for
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the success of the two-level method in our experiments and the consequent
improvement over the one-level method, handling flow control problems with
higher Reynolds number, finer meshes and more processors. Surprisingly, RAS
preconditioners performed much better than the classical ones.
Multilevel Schwarz is a flexible algorithm, and since it is also fully cou-

pled (in contrast to operator-splitting, Schur complement, reduced space tech-
niques), the original sparsity of a discretized PDE constrained optimization
problem is maintained throughout its entire application and fewer sequential
preconditioning steps are needed. We expect this preconditioner to have wide
applications in other areas of computational science and engineering.
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