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Summary. We present a new method [7] for numerically solving elliptic problems
with multi-scale data using multiple levels of not necessarily nested grids. We use
a relaxed iterative method which consists in calculating successive corrections to
the solution in patches of finite elements. We analyse the spectral properties of the
iteration operator [6]. We show how to evaluate the best relaxation parameter and
what is the influence of patches size on the convergence of the method. Several
numerical results in 2D and 3D are presented.

1 Introduction

In numerical approximation of elliptic problems by finite element method, a
great precision of solutions is often required in certain regions of the domain
in which the solution is defined. Efficient approaches are for instance adaptive
mesh refinement techniques or domain decomposition methods. The objective
of this paper is to present a method to solve numerically elliptic problems
with multi-scale data using two levels of not necessarily nested grids.

Consider a multi-scale problem with sharp data in small sub-domains. We
solve the problem on a coarse mesh of the computational domain. Therein we
consider a patch (or multiple patches) with corresponding fine mesh wherein
we would like to obtain more accuracy. Thus we calculate successively correc-
tions to the solution in the patch. The coarse and fine discretizations are not
necessarily conforming. The method is a domain decomposition method with
complete overlapping. It resembles the Fast Adaptive Composite grid (FAC)
method (see, e.g., [9]) or possibly a hierarchical method (see [3] for example).
However it is of much more flexible use in comparison to the latter: in fact
the discretizations do not need to be nested, conforming or structured. The
idea of the method is strongly related to the Chimera method [4].

The outline of this paper is as follows. In Section 2 we introduce the
algorithm and present an a priori estimate for the approximation (Prop. 1).
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In Section 3 we present the convergence result for the method (Prop. 3) and
give sharp results for the spectral properties of the iteration operator. We
give a method to estimate the optimal relaxation parameter. In Section 4
we consider computational issues and discuss the implementation. Finally, in
Section 5 we assess the efficiency of the algorithm in simple two-dimensional
situations and give an illustration in 3D. The reader should note that this
paper contains no proofs which can be found in [6].

2 Two-step algorithm

Let 2 Cc R? d = 2 or 3, be an open polygonal or polyhedral domain and
consider a bilinear, symmetric, continuous and coercive form a : H}(£2) x
H}(02) — R. The usual H'(£2)-norm is equivalent to the a-norm defined by
l[o]] = a(v,v)z, Vo € HY(2). If f € H (), due to Riesz'representation
Theorem there exists a unique u € H}(£2) such that

CL(U,QD) = <f‘90>’ Vo € H&(Q), (1)

where (-|-) denotes the duality H1(£2) — H(£2). Let us point out that (1)
is the weak formulation of a problem of type £(u) = f in £2, w = 0 on the
boundary 912 of 2, where L(-) is a second order, linear, symmetric, strongly
elliptic operator.

A Galerkin approximation consists in building a finite dimensional sub-
space Vi, C H}(£2), and solving the problem: Find upyyp, € Vi, satisfying

a(umn, @) = (flp), Ve € Vin. (2)

In the following the construction of the space Vg is presented. We in-
troduce a regular triangulation 7z of {2, a union of triangles K of diameter
less than or equal to H. Consider now a multi-scale situation with a solution
that is very sharp, i.e. varies rapidly, in a small polygonal or polyhedral sub-
domain A of 2, but smooth, i.e. varies slowly, in {2\ A. This means that the
solution can be well approximated on a coarse mesh in {2\ A but needs a
fine mesh in A. We would like to stress that A is not necessarily the union of
several triangles K of 7. Besides A can be determined in practice by an a
priori knowledge of the solution behaviour or an a posteriori error estimator,
for example. Let 7}, be a regular triangulation of A with triangles K such that
diam(K) < h.

We define Vi = {¢p € H}(2) : ¢ € Pr(K),VK € Ty}, and V, = {3 €
HE(2) : Y| € Po(K),VK € T, and ¢ = 0 in 2\ A}, where Py(K) is the
space of polynomials of degree < g on triangle K. We set Vg = Vg + V3.
Let us observe that in practice, it is not possible to determine a finite element
basis of V. The goal of our method is to evaluate efficiently g without
having a basis of Vi, but only a basis of Vi and a basis of Vj.

Before to show how to compute ugyp, we give the following a priori esti-
mate:
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Proposition 1. Let ¢ = max(r, s) + 1 and suppose that the solution u of (1)
is in H1((2). Then the approximate problem (2) has a unique solution wgp,
which satisfies the a priori error estimate

[lu = wianl| < C (H lull ra oy + bl zracay ) 3)

where C' is a constant independent of H, h and wu.

Let us mention that a priori Vi NV}, does not necessarily reduce to the
element zero as shown in Fig. 1(a) where a 1D situation is illustrated by the
hat functions in {2 and in A. In the case when 7y and 7, are not nested, as
illustrated by Fig. 1(b) where we have translated the patch, it is not possible
to easily exhibit a finite element-basis of Vg from the bases of Vi and Vj.
Note also that moving from the situation depicted in Fig. 1(a) to the one in
Fig. 1(b), the dimension of Vi, increases by 1. All these difficulties impose
an iterative method for solving problem (2).

(a) Nested elements. (b) Non-nested elements.

Fig. 1. Linear finite elements in 1D on {2 (plain lines) and A (dotted lines) .

So we suggest the following algorithm to compute w gy, .
Algorithm 2

1. Set u® € Vi such that a(u®, p) = (flp), Ve € Vg,
and choose w € (0;2).
2. Formn=1,2,3,... find
(i) wp, € Vi, such that a(wp, @) = (flp) —a(u" 1), VeV, ;
utTE = Ut wwy,
(ii)wy € Vi such that a(wg, ) = (fl) —a(u"2,¢), Ve e Vg ;
u =u""2 +wwgy.

It is readily seen that this algorithm is a Schwarz type domain decom-
position method [10] with complete overlapping but without any conformity
between the meshes 7y and 7;, (see for instance the work by Chan et al.
[5]). It is similar to the Chimera or overset grid method [4, 11]. However, the
algorithm presented in [4] is an additive method which can be changed to a
multiplicative method equivalent to the above presented with w = 1.
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Our multiplicative Schwarz method is also similar to a Gauss-Seidel
method and can be put in the framework of the successive subspace cor-
rection algorithm by Xu and Zikatanov (see, e.g., [12]). The spaces Vg and V},
defined on the arbitrary triangulations 7y and 7; are not necessary orthognal
nor share the only element zero as intersection. Note in particular that the
sum which defines Vp;, is a priori not a direct sum. This property makes the
above algorithm different from most known iterative schemes. For structured
grid constellations, the algorithm resembles the FAC method (see for example
the works from McCormick et al. [8]), or possibly a hierarchical method (see
for example the papers from Yserentant [13], Bank et al. [2]) with a mortar
method (see [1]).

We underline that the new aspect we introduce is to link the speed of
convergence of this algorithm to the parameter 4, introduced here below,
corresponding to the cosine of an abstract angle between the spaces V}, and
V. Furthermore, an optimal relaxation keeps the method competitive in cases
where the problem is badly conditioned (see Sect. 5).

3 Convergence analysis and consequences

We shall now analyse the convergence of the two-scale algorithm.? If P, :
Vin — Vi and Py : Vg, — Vg are orthogonal projectors from Vi, upon Vj,
and Vg respectively with regard to the scalar product a(-,-), and I denotes
the identity operator in Vi, we set B = (I —wPpy)(I —wPhFy), and check that
ugp —u = B(ugp —u"1).

We set Vo = Vg NVj and VOL the orthogonal complement of Vy in Vi,
with respect to a(-,-). We define Vj, = V;, N Vg~ and Vi = Vi N V. For
w € (0;2) and 4 € [0;1) defined by

v €V, vg#0 (4)

o SUP w0y, %0 %, if Vi, £ Vp and Vg # Vo,
0, otherwise,

we introduce the functions

N { O w14+ 03P —dw 4, ifw < wold), (5)

b) w = .
P(,w) w—1, otherwise,

where
2-2,/1—72 . )
wo(§) =4 —F for Ve (0;1), (6)
1, for ¥ =0,

and N(9,w) = w(2 — w)7/2 + y/w2(2 — w)232/4 + (w — 1)2.
An abstract analysis of the spectral properties of the iteration operator B
leads to the following result:

3 An extension to a method using several patches has been analysed in [6].
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Proposition 3.

1. If w € (0;2), then Algorithm 2 converges, i.e. lim, o ||u™ — ump|| = 0.

2. The spectral norm of B induced by the scalar product a(-,-) is given by
|Bl| = N(¥,w) < 1, when w € (0;2).

3. The spectml radius of B is given by p(B) = p(y,w) < 1, when w € (0;2).

Thus we have the convergence of Algorithm 2 when w € (0;2), the conver-
gence speed given by p(B), and the factor of the reduction of the error in the
norm a(-,-)'/? bounded by || B||. Both functions are plotted on the graphs of
Fig 2. In the case V) = {0}, 4 corresponds to the constant of the strengthened
Cauchy-Buniakowski-Schwarz inequality.
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(a) p(w) for different 4. (b) ||B]| for different 4.

Fig. 2. Spectral radius and norm of B as a function of w for different ~.

Remark that in [3], Bramble et al. present an abstract analysis of product
iterative methods and conclude with an upper bound for the norm of B. Even
an optimization of the constants appearing in this bound (see [6]) shows that
the estimate is always not optimal. We also point out that the minimization
of this known result with respect to w does not lead to a significative value
for the relaxation parameter. We show that the best convergence speed, i.e. a
minimal spectral radius (5), is obtained for w = wo(¥) given by (6).

Let us briefly consider a case where A C K, for K € Ty and r = 1. Let
the scalar product be given by

o 0
alt, ) = Z/ 8;” o dx, Wi € HY(O), (7)

i,j=1

where Q5 S LOO(Q), aij(x) = aji(a:), 1 < i,j < d, and ZZ]’:I aij(a:)&fj >
1
2

2
alef?,v6 € B € 2. et § = |, (S, 110035/00l ) |+ and
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6 =1/ 1/5\, A being the Poincaré constant. In this case we have ¥ < %6, i.e. an
upper bound for the parameter 7. If furthermore the a;;’s are constant over
A, 1 < 4,5 < d, this last result implies that the algorithm converges in only

one iteration.

A crucial question for running the algorithm is to know how to choose
the relaxation parameter w. Since Prop. 3, if w = 1, we have p(B) = 72
Furthermore, we can prove that p(B) = lim,,_,, ¥/||B™u°||. Hence, given an
evaluation of 7, we obtain the optimal relaxation parameter w°P* = wy(7)
given by the formula (6). The parameter is optimal in the sense that it gives
the minimum value for p(B) directly related to the speed of convergence.

In practice, we set w = 1 and f = 0, and perform m steps of the algo-
rithm to obtain some u™. Following what precedes, we use the approximation
p= %/|[lum|, and obtain with (6) and p = 52 that w°P' = L}{ﬂ.

Finally, we consider Algorithm 2 with two relaxation parameters w;, and

1 1
wg such that "2 = v ! + wpwy, and w” = v~ 2 + wywy. We can prove
that the spectral radius of the corresponding iteration operator is minimum

when wy = wp, = wo(9).

4 Implementation issues

We discuss practical aspects to construct an efficient computer program for im-
plementing Algorithm 2. Handling two domains with a priori non-conforming
triangulations raises a couple of practical issues. At any stage the coarse
and the fine parts of the solution u™ are stored separately, that is to say
utl = u’},‘l + uZ_l with u};_l € Vy, uZ_l € Vj,. We write the first step of
the n-th iteration of the algorithm as follows:

n—1 n—

Find wy € Vi, s.t. a(wn, @) = (fle) —a(uyy *, @) — aluy, 1,@),V<p cV,.

n*% n—1 ”*% n—1
Set uy * =uy  andu, * =u, 4+ wws.

The same holds for the second step which writes out explicitly:

n—i n—i
Find wy € Vi s.t. a(wm, p) = (fle) —a(uy 2,¢) —alu, 2,¢),Ye € Vg.
n1 n—1
Set uy = upy * +wwy and up = u;, .

We conclude that v} = uZ_l +wwy, and u = u’}_l_l + wwg.

At this point we need to discuss the numerical integration and restrict
ourselves to linear finite elements (r = s = 1).

Two difficulties are to be taken into account whether sharp data, i.e. data
needing fine integration, of the problem comes from the right-hand side f
or originates from the form a. In the first case the evaluation of (f|¢) needs
particular attention. In the second case scalar products evaluated on the coarse
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grid must be considered with care. Another issue is the treatment of mixed
term scalar products wherein both coarse and fine functions appear.

In the sequel, we consider these problems and illustrate our proposals

with the scalar product given by (7). The evaluation of the different terms
appearing in the algorithm is conforming to the following guidelines:

If the coefficients a;; defining the scalar product a are smooth in A, the
homogeneous terms a(pm,vy) with ¢g, vy € Vi, and a(pp, ) with
Yh,Yr € Vp, of support in {2 resp. A are integrated using the grid 75 on
{2 resp. 7, in A. Numerical integration in 2D is done with the standard
three-point formula (in 3D we use a four-point formula). In the case of (7)
this writes out, Yor, vy € Vy,

d+1 d
|K| 3<pH Nu
aomim~ Y ST S o) 28] 2
KeTy a=11i,5=1 J K ?
where |K| denotes the area or volume, and x%, a = 1,...,d + 1, the

vertices of the element K. We use the same formula for a(¢p, ) where
Oh,Yp € Vp, with K € 7p, in (8)

The mixed term a(pp, ¥r), on € Vi, g € Vi, of support in A, is approx-
imated by a(pp, rptbm), i.e

|K| &= O(rnor)
alen, Vi) ~ Z Z Z ——= , (9
KeTh a=1lij=1 &CJ Ox; |

where 75, is the standard interpolant to the space V;,. When implementing,
we need to introduce a transmission grid, i.e. a fine structured grid consid-
ered over the patch A. This enables handling of the grids and associating
fine and coarse triangles and vertices.

If the coeflicients a;; are sharp in A, the presented approximation illus-

T

trated by (8) for the term a(u?{ 2 ), ¢ € Vy, appearing in the right-hand
side of the coarse correction step needs to be rewritten in order to use a
fine integration in the domain A. Set a}; and aj; such that a;; = aj; + a3

and
1 Jay; mNR2\A 2 [0 in2\4
% =30 %ij = a;; inA '

ij in A ’ i
The right-hand side of relation (8) rewrites, You, vy € Vg,

d+1 d

IK | &pH OMu
KeTy zxz:lzgz:l airj K 8xi
|K| - A(rnem)|  Olrnin)
+ Z Z Z ' 5 ' (10)
KeTh a=1ij=1 dz; g Ti Ik
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As our algorithm is a correction algorithm with corrections tending to
zero, the left-hand side a(wg, @), ¢ € Vi, is not to be rewritten. All other
terms already based on 7}, for integration do not need to be revised.

e The term (f|p), ¢ € V}, or Vi, is approximated with

pl -
(flon) = Z Z fHx X )
KGTH
KL -
+ Z Zf &) (rnen)(xk),  Vem € Vi, (11)
KETh
and
1K1 S
(Flon) ~ Z Zf K)en(x5),  Vn € Vi, (12)
KETh

_ ol 2 . 1 [ fin02\A 9 JO in2\ 4
where f = f"+ f Wlthf_{OinA ’andf_{fin/l .

5 Applications in 2D and 3D

We consider the Poisson-Dirichlet problem

{—Au:f in 2= (-1;1)% d=2,3, (13)

u=20 on 0f2.

First, we implement the problem (13) in 2D (d = 2) to assess the conver-
gence of Algorithm 2 with regard to the influence of the grids used. We take
f such that the exact solution to the problem is given by u = ug + Z?:l Uuj,
uo(w,y) = cos(5x) cos(Ty) and wi(z,y) = nx(R;) expe;” exp(—1/|e5 — R),
where R;(z,y) = /(z — 2;)2+ (y — y;)? and x(R;) = Lif R; < ey, x(R;) =0
if R; > ep; m, €5 and (z;,¥:), ¢ = 1,2,3,4 are parameters. Hence the right-
hand side of (13) is given by f = fo + 2?21 fi, where fo = —Auy and
fi=—Au;, i =1,2,3,4. We choose n = 10, ey = 0.3 and (z1,y1) = (0.3,0.3),
(z2,y2) = (0.7,0.3), (z3,y3) = (0.3,0.7), (x4,y4) = (0.7,0.7).

For the triangulation of {2, we use a coarse uniform grid with mesh size
H and r = 1. We consider the patches A;, i = 1,2, 3,4, with a fine uniform
triangulation of size h and s = 1. Choose A; = (z; — ¢;z; +€) X (y; — €; y; +€),
with € = 0.1. We set H = 2/N and h = 2¢/M, N, M being the number of
discretization points on one side of the squares {2 and A; respectively.

In the following we consider different situations including structured nested
and non-nested as well as unstructured grids on the domain (2. We always use
the same structured grids for the patches. Our goal is to show that the algo-
rithm performs well when h — 0 for fixed H, and when each patch covers only
a small number of coarse elements. It is particularly competitive when used
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with the optimal relaxation parameter in initially ill-conditioned situations

(see Table 1(c), with small displacement of the nodes of the nested grid).
We introduce a stopping criterium for the algorithm, which controls the

relative discrepancy |[u™ — u™~1||/||u"|| between two iterations n — 1 and n,

n =1, 2, ..., and measures the stagnation of the algorithm. We call n¢ys the
number of iterations required for convergence. Conforming to our problem
(13), || - || denotes here the H!-seminorm.

All results are illustrated in the following table. In each part we depict the
considered situation by small graphics showing first the whole triangulation
Ty with the patches, then a zoom to emphasize the region around one corner
of a patch to show how 7, and 7y are related. First we set w = 1 and
run our method to obtain an estimate of 4 and hence of the spectral radius
of the iteration operator, as discussed at the end of Sect. 3. Then we run
the algorithm on problem (13) till convergence and report the number of
iterations mcvg. These values are respectively reported in the first rows of
Tables 1(a)-1(c). Given the approximation for 4 we determine the optimal
relaxation parameter with (6) and give the spectral radius. The last line in
the tables reports the required iterations needed by the method to converge
under optimal relaxation.

In a first test, we choose N and M such that the ratio H/h is of magnitude
10. In these first cases, the patches cover a small number of triangles of 7y
leading to small coefficients ¥ and p. Hence convergence is reached after a
small number of iterations.

When doubling the number of fine triangles, see Table 1(b), the situation
remains similar. A slight over-relaxation realises a gain of a couple of itera-
tions. This suggests that the method is efficient in multi-scale situations, i.e.
in problems with fixed H and h — 0.

In the examples of Table 1(c) we increase the precision of the coarse tri-
angulation. These cases show that the algorithm is best-suited to situations
with patches covering a small number of coarse triangles. In fact, increasing
the number of coarse triangles covered by the patches leads to bad condition
numbers (p close to 1). Nevertheless optimal relaxation allows to divide by a
factor 2 the number of iterations necessary to obtain convergence. This shows
that optimal relaxation is a key ingredient in our method.

These basic results show that the method is very well adapted for multi-
scale situations when applying small patches in the regions with sharp data.

Let us now turn to the 3D case (d = 3) of problem (13). We take f such
that the exact solution to the problem is given by u = ug + u1, uo(x,y, 2) =
(= uy (= - -2 _ 2 _ Rp2
cos(gz) cos(gy) cos(52) and ui(z,y,2) = nx(R)expe,~exp(—1/[e} — R?|).
where R(7,y,2) = /2% +y? + 22. We choose n = 10, ¢; = 0.3 and take
A = (-0.25,0.25)3. We set w = 1. For the triangulation of {2 resp. /A, we use
a uniform structured grid with mesh size H resp. h. We set H = 2/N and
h = 0.5/M, N, M being the number of points per side of the cubes {2 and
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/

\

H/h =10 nested non-nested unstructured
N=M=10 N =11, M = 10 N =M =10
p(7,1) =42 0.28 0.30 0.34
Nevg 6 8 8
p(7,w") = wP" — 1 0.08 0.09 0.10
Nevg 5 6 8
(a) H/h =10 and N = 10.
H/h =20 nested non-nested unstructured
N =10, M = 20 N =11, M = 20 N =10, M = 20
p(3,1) =42 0.28 0.31 0.38
Nevg 6 8 9
p(7, W) = WPt — 1 0.08 0.09 0.12
Nevg 5 6 6

(b) H/h =20 and N = 10.

L
nested non-nested unstructured
N = M = 20 N =21, M = 20 N =M =20
0.24 0.89 0.91
6 24 27
0.07 0.50 0.54
5 13 15

(¢) H/h =20 and N = 20.

Table 1. Comparison of the algorithm properties in 2D.
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A. We use linear finite elements (r = s = 1). To assess the convergence of
ugp = u™vs in H and h to the exact solution u,* we introduce the standard
relative errors € = ||u — u"||/||u|| and ey = €™eve = ||u — wgpl||/||u|]-

Consider the coarse triangulation (N = 16,32,64) with a patch M =
8,16,32,64. We assess the quality of the estimate u™ at the iteration n of
the algorithm by comparing it to the exact solution u. The results of e”
through n are depicted on Fig 3(a). Note that it is useful to run the algorithm
through more than one sole iteration. Nevertheless only a couple of iterations
are sufficient to obtain good results. As mentioned above, in the present cases
the speed of convergence remains constant with respect to the refinement of
the patch. When the error in 2\ A dominates (case N = 16, M = 32,64) a
refinement of 75, does not improve the precision. The reduction of the error,
in comparison with the sequence M = 8 to M = 16, stagnates.

Let us illustrate the efficiency of the method with respect to the memory
usage. On one hand we consider the computation of ugy on one grid with
N = 16,32,64. On the other hand we take a coarse grid (N = 16) with a
fine grid in the patch M = 8,16,32,64. In Fig. 3(b) we plot the error egp
with regard to the number of nodes used. Comparison of both curves leads
to conclude that the method is efficient in terms of memory usage. As above,
the stagnation in the reduction of ey, stems from the error on the coarse grid
becoming dominant. Similar results to those of memory usage can obtained
for the CPU-time.

In Fig. 3(c) we illustrate the solution obtained after 5 iterations for the
test case N = 16, M = 32.
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