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Summary. We report on algebraic multilevel preconditioners for the parallel solu-
tion of linear systems arising from a Newton procedure applied to the finite-element
(FE) discretization of the incompressible Navier-Stokes equations. We focus on the
issue of how to coarsen FE operators produced from high aspect ratio elements.
The method uses on each level £ an auxiliary matrix By, which contains inter-nodal
distance information of the underlying initial FE grid. Then, a standard coarsen-
ing procedure is performed on B; and non-smoothed transfer operators are defined.
Preliminary numerical results obtained on distributed memory parallel computers
show that the use of the auxiliary matrix can greatly improve the convergence rate
of the resulting multilevel preconditioner.

1 Introduction

We consider linear systems of type
Az = b, (1)

where A € R"*™ is a real square (sparse) matrix, arising from a stabilized FE
discretization of the incompressible Navier-Stokes equations, possibly with
heat and mass transfer, and z,b € R" are the solution vector and the right-
hand side, respectively. The elements of A are defined by a Newton procedure
(see for instance [10]), since the original problem is nonlinear.

The linear problem (1) is usually solved using a Krylov accelerator; there-
fore a preconditioner is mandatory. Several solution strategies have been pre-
sented in the literature; in this paper we will focus on multilevel methods.

** This work was partially supported by the ASC program and the DOE Office of
Science MICS program at Sandia National Laboratory. Sandia is a multiprogram
laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the
United States Department of Energy’s National Nuclear Security Administration
under contract DE-AC04-94AL85000.



2 Marzio Sala, Paul T. Lin, John N. Shadid, and Ray S. Tuminaro

The basic idea of multilevel methods is to capture errors by utilizing multi-
ple resolutions in the iterative scheme. Oscillatory components are effectively
reduced through simple relaxation procedure. In these methods the smooth
components are handled using an auxiliary, lower-resolution version of the
problem. The idea is applied recursively on the next coarser level.

The first and best known example of a multilevel preconditioner is multi-
grid (see, for example, [5]). Although extremely successful for certain classes
of problems, multigrid methods have the notable disadvantage of requiring
the generation of a set of coarser grids, which can be difficult to generate
for problems defined on complex geometries and unstructured grids. For this
reason, we consider algebraic methods of the aggregation type; see [12].

Aggregation provides an automatic way of generating coarse levels and
transfer functions to move solutions between the levels. The method has been
thoroughly developed for symmetric systems and relies on the idea of gen-
erating low energy (or smooth) basis functions that capture the kernel (or
near kernel) of the discrete system being solved. In [6] we have shown that
aggregation methods can deliver convergence rates comparable to that of geo-
metric multigrid, while being more flexible, for problems defined on structured
non-stretched grids.

For problems with anisotropies, a procedure equivalent to the so-called
semi-coarsening is required; see [7]. The basic idea of semi-coarsening is that
the mesh is only coarsened in directions where smoothing is easily accom-
plished. Thus, for a problem which has weak coupling in the z direction,
coarsening would only be performed in the y and z directions. Algebraic meth-
ods can mimic this approach by ignoring connections which are “weak” in the
graph coarsening phase. That is, if the coupling between unknowns ¢ and
j is ignored, they will not be agglomerated together to define a coarse un-
known. However, this strategy fails to deliver the required semi-coarsening if
applied to matrices arising from bilinear FE on stretched grids, since all the
entries in the computational stencil have comparable value. Without a proper
semi-coarsening, the resulting multilevel preconditioner performs poorly on
anisotropic problems.

In order to recover semi-coarsening, we proceed as follows. On each level /,
we introduce an auxiliary matrix, By, defined using some information about
the grid, so that the magnitude of the elements of By reflects weak and strong
connections in the FE problem. Anisotropic aggregates can be constructed
using By, adopting a conventional dropping technique. By is defined using ad-
ditional information that is usually available in standard finite-element codes.
The use of an auxiliary matrix is certainly not new in the geometric multigrid
community, although to the best of our knowledge no paper reports on its use
with aggregation-based preconditioners.

Several other approaches have been proposed in the literature to improve
the coarsening of algebraic multilevel methods. Chow [3] suggested to compute
algebraically smoothed vectors, Broker et al. [2] proposed to take advantage
of SPAI smoothers, and Brezina et al. [1] introduced the adaptive smoothed
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aggregation technique. Although promising, these techniques all rely on the
computation of either a set of slowly converging vectors or SPAI smoothers,
which are usually expensive operations.

This paper is organized as follows. Section 2 introduces the multilevel
preconditioning algorithm we have adopted. Section 3 describes the proposed
procedure to obtain semi-coarsening. Section 4 presents the numerical results,
obtained on a distributed parallel computer. Finally, Section 5 outlines the
conclusions.

2 Aggregation Multilevel Preconditioner

In this paper we focus on non-smoothed aggregation only, since no general the-
ory is available to define a proper prolongator smoother for non-symmetric
equations. The construction of the multilevel hierarchy in non-smoothed ag-
gregation is performed by the following five steps. For each level £ (except the
coarsest), do:

1. Extract from A, the graph Gy to coarsen.

2. Coarsen Gy to define a set of aggregates. Each aggregate defines a “grid
point” on the coarser level.

3. Define the prolongator P, and restriction Ry.

4. Compute the next-level matrix Agy;1 as Ry Ay Py.

We now focus in more details on steps 1 and 2. For systems of equations,
we define G; by “condensing” all the physical unknowns corresponding to the
same grid point, thus defining the “block” structure of A,. Each block has
size m x m, m being the number of physical unknowns. The graph coarsening
is defined as follows:

€ij is an edge of g[ iff |ai]'| Z 0\/ |ai,~| . |ajj|. (2)

0 is the threshold, and |- | is an appropriate matrix norm. The m x m block
elements a;; that do not fulfill (2) are dropped in the construction of G,.
A graph decomposition algorithm (such as those in METIS) is then applied
to G¢. The goal of this algorithm is to define groups of vertices (aggregates)
such that each aggregate contains a tightly connected subgraph and so that
each vertex is included in just one subgraph. Each aggregate will effectively
become an unknown on the coarse mesh. Once the aggregates are defined, the
prolongator matrix Py is constructed such that each row corresponds to a grid
point and each column corresponds to an aggregate.

Once the multilevel hierarchy has been establish, an iteration (V-cycle) of
the recursive algorithm is as follows. Starting from ¢ = 0, on each level do:

1. If on the coarsest level, solve with a direct solver and return.
2. Do v iterations of pre-smoothing S7"°.
3. Compute the restricted residual ry11 = Ry 7.
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4. Recursively solve Agpy1 €p41 = Toq1-

5. Interpolate error, ey = Py egy1.

6. Add the correction e; to the current iterate.
7. Do v iterations of post-smoothing S7°*.

3 Definition of the Auxiliary Matrix

For problems defined on stretched grids, the distribution of nodes in the
stretched direction will correctly represent the low frequencies, whereas, in
the direction perpendicular to the stretching, it will represent the high fre-
quencies. The closer two nodes are, the better they will represent the high
frequency components of the error. For the problems considered in this pa-
per, the matrix coefficients do not properly reflect the strength of connection
between points, while the geometric information does (i.e., points that are
geometrically distant from each other have a weak connection between them
compared to points that are close to each other). Therefore, we want to form
a matrix which captures this geometric information that can be used in the
coarsening stage of the algorithm. The basic idea is to create a discrete Lapla-
cian matrix where the size of the off-diagonal entries is related to the distance
between points. In particular, we define

1

b= ——
Yl = x5

i#3j, bii=Y»_ —bij,

i#]

where x;, represents the coordinates of node k.

B represents the finite-element mesh in the following sense: if a grid node
i is “far” from j, then b; ; is “small”, while if ¢ is “close” to j, then b;; is
“large”. The dropping technique (2) can now be straightforwardly applied to
B to produce anisotropic aggregates.

The resulting algorithm for the definition of the multilevel preconditioner
reads as follows:

1. Build the auxiliary matrix By using the nodal coordinates x
2. For each level 4, do
3. Define the dropping value

4. Build graph G, based on By

5. Create the aggregates using G,

6. Create the tentative prolongators P, and R,
7. Byy1 = RyBoP,

8. Destroy By

9. EndFor

10. Build a new hierarchy using A and the Py, R, previously computed
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Fig. 2. 3D horizontal CVD reactor

Fig. 1. Steady-state x-component of . . .
with a rotating disk

velocity for model 3D building

4 Numerical Results

We apply the algorithm described in Section 3 to the solution of the lin-
ear system arising from a stabilized FE discretization of the incompressible
Navier-Stokes equations with energy and mass transport; see for instance [11].
The equations in residual form are:

é

Rp = 6—5 +V - (pu) (3)
du

R =p5, +p(u-Vu) = V- T - pg (4)

5T X _
Rr = pC, E+u-VT +V'q—¢—zhkv'.]k (5)
k=1
Ry, =p[%+u-VYk] +V -k k=1,2,..,N;—1 (6)

The FE code used for this work is MPSalsa [11], which uses a parallel Newton-
Krylov solver on unstructured meshes. The calculations were performed on
the Sandia Cplant machine, composed of nodes with one 500-MHz Dec Alpha
processor and 1 GB of RAM, connected together by Myrinet. A classical ag-
gregation procedure has been used to define the aggregates [9]. The smoother
is one sweep of Gauss-Seidel (with damping parameter of 0.67) for either the
first level or the first two levels, while Aztec’s incomplete factorization were
adopted for the other levels. The KLU solver of the Amesos [8] library was
used to solve the coarse problem. The threshold used in (2) was 0.05.

The first example involves the calculation of fluid flow, without thermal
effects, in a simple prototype model of a building. This model represents a
two-story building with the floors separated by two atria. Figure 1 shows a
typical laminar steady-state solution. The centerline cutting plane shows the
x-component of velocity. The worst aspect ratio hexahedral elements have
largest dimension that is five times larger than the smallest dimension. We
consider laminar steady-state calculations to allow direct-to-steady-state so-
lutions. Seven nonlinear iterations were required to reach convergence.
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Table 1 shows an algorithmic scaling study for the steady-state calculations
on hexahedral meshes and shows the reduction in iteration count provided by
the auxiliary matrix as compared to without the auxiliary matrix. The larger
meshes are generated by uniform refinement of previous meshes, with the
number of processors being increased to maintain a roughly constant num-
ber of unknowns per processor. After each level of uniform refinement of the
building geometry, the fine mesh is load-balanced using the ParMETIS graph
partitioner through Zoltan [4]. The first three columns present the number of
processors and unknowns and nonzeros in the fine level matrix. For both the
case with and without auxiliary matrix, the table presents the complexity of
the hierarchy (sum of nonzeros of matrices in all levels divided by the nonzeros
of the finest matrix), the setup time in seconds, the average linear iterations
per Newton step, and the average time per Newton step in seconds.

In the results, the number of unknowns per processor is kept roughly con-
stant, and therefore a perfectly scalable preconditioner would converge in the
same number of iterations as the number of processors used in the computa-
tion is increased. From Table 1, one can note that using isotropic aggregates
with 16 and 128 processors the iterations increase from 57 to 90 (an increment
of about 57%), while using anisotropic aggregates the difference is modest (of
about 25%). This makes the preconditioner based on the auxiliary matrix
nearly scalable in terms of iterations to convergence, but still unsatisfactory
from the point of view of CPU time. The large CPU times are due to one
of the drawbacks of semi-coarsening: higher complexity. For this example,
while isotropic aggregates reduces grid complexity between two consecutive
levels by a factor of 27 in 3D, semi-coarsening only achieves a grid complexity
reduction of 9 in 3D. This increases the setup and application cost of the
resulting multilevel cycle, as well as the time required to compute the ILU
factorizations.

proc fine 5-level (GS/GS/ILU/ILU/KLU)
unks [nonzero no auxiliary matrix auxiliary matrix

complex|setup|avg its/|time/|complex|setup|avg its/|time/
time| Newt|Newt time| Newt|Newt
(sec) step| (sec) (sec) step| (sec)
2| 227K | 22.4M 1.02| 3.5 41) 120 1.16| 6.4 25 92
16(1.70M| 175M 1.02| 4.3 57| 164 1.18| 13.7 27| 112
128|13.1M| 1390M 1.02| 8.0 90| 434 1.21] 30.4 34| 264

Table 1. Comparison of five-level preconditioner (GS/GS/ILU/ILU/KLU) with
and without auxiliary matrix for 3D model building; uncoupled aggregation; Cplant
machine.

The second example involves the deposition of poly-Silicon in a rotating
disk chemical vapor deposition (CVD) reactor. A mixture of trichlorosilane
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(SiClsH), HCI, and H> enters from the four inlets on the left, flows over a
forward facing step, and over an inset rotating disk, depositing silicon on the
wafer. Chemical reactions occur on the surface of the disk only and not in
the flow. Figure 2 shows a schematic of the CVD reactor. A contour plot of
poly-silicon deposition rate on the disk is shown, along with representative
streamlines of the flow through the reactor.

Table 2 shows a scaling study of a simple continuation step where the
thermodynamic pressure was increased from 0.6 to 0.85 atmospheres and the
inlet flow velocity from 30 cm/sec to 35 cm/sec. The worst aspect ratio hexa-
hedral element has largest dimension that is about a factor of ten larger than
the smallest dimension. This table shows a comparison of the 1-level DD ILU
preconditioner with the 5-level preconditioners with and without the auxiliary
matrix. The smoothers for the 5-level preconditioner were one sweep of Gauss-
Seidel on the finest level with damping parameter of 0.67 and ILU on the next
three levels. Non-restarted GMRES was used with a linear solve convergence
criterion of 3 x 10~%. From the table, one can see that the auxiliary matrix has
improved the iteration count, while the CPU time is only marginally reduced.
This situation might be improved by using GS on the second level as in the
previous example.

proc| fine 1-level 5-level (GS/ILU/ILU/ILU/KLU)
unks no auxiliary matrix auxiliary matrix
avg its/|time|complex|avg its/|time/|complex|avg its/|time/
Newt |(sec) Newt | Newt Newt | Newt
step step| (sec) step| (sec)
2|87400 49| 125 1.01 75| 118 1.06 48| 103
16| 636K 95| 183 1.02 107 168 1.12 66| 141
128|4.85M 221| 409 1.02 164| 319 1.19 97| 313

Table 2. Comparison of five-level preconditioner (GS/ILU/ILU/ILU/KLU) with
and without auxiliary matrix for CVD reactor; uncoupled aggregation; Cplant ma-
chine.

5 Conclusions

In this paper we presented the application of a multilevel preconditioner for
the parallel solution of large, sparse linear systems for FE discretizations on
stretched grids. We concentrated on the coarsening process. In order to im-
prove the performance of our preconditioner, we introduced an auxiliary ma-
trix, which contains information about the underlying finite-element grid. The
coarsening is performed on an auxiliary matrix, then the final hierarchy is re-
built on the linear system matrix.
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By resorting to an auxiliary matrix, anisotropic aggregation can be con-
structed at a negligible computational cost. The reported preliminary nu-
merical results, obtained on a distributed parallel computer, show that the
proposed approach can significantly improve the performance of the algebraic
multilevel preconditioner in terms of iterations to convergence. Although more
effective, the preconditioner, of higher complexity, is more expensive to con-
struct and to apply.

Using anisotropic aggregates, the CPU time is significantly reduced for lin-
ear systems arising from the discretization of the incompressible Navier-Stokes
equations, while for chemically reacting flows the results are less satisfactory.
These preliminary results are encouraging although much more work on a
broader range of numerical tests is required.
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