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Summary. A small modification of the restricted additive Schwarz (RAS) precon-
ditioner at the algebraic level, motivated by continuous optimized Schwarz methods,
leads to a greatly improved convergence rate of the iterative solver. The modification
is only at the level of the subdomain matrices, and hence easy to do in an existing
RAS implementation. Numerical experiments using finite difference and spectral el-
ement discretizations of the modified Helmholtz problem u − ∆u = f illustrate the
effectiveness of the new approach.

1 Schwarz Methods at the Algebraic Level

The discretization of an elliptic partial differential equation

Lu = f in Ω, Bu = g on ∂Ω, (1)

where L is an elliptic differential operator, B is a boundary operator and Ω
is a bounded domain, leads to a linear system of equations

Au = f . (2)

A stationary iterative method for (2) is given by

un+1 = un + M−1(f − Aun). (3)

An initial guess u0 is required to start the iteration. Algebraic domain decom-
position methods group the unknowns into subsets, uj = Rju, j = 1, . . . , J ,
where Rj are rectangular matrices. Classical coefficient matrices for subdo-
main problems are defined by Aj = RjART

j . The additive Schwarz (AS)
preconditioner [DW87], and the restricted additive Schwarz (RAS) precondi-
tioner [CS99]) are defined by

M−1

AS =
J

∑

j=1

RT
j A−1

j Rj , M−1

RAS =
J

∑

j=1

R̃T
j A−1

j Rj , (4)
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where the R̃j correspond to a non-overlapping decomposition, i.e. each entry

ul of the vector u occurs in R̃ju for exactly one j.
The algebraic formulation of Schwarz methods has an important feature: a

subdomain matrix Aj is not necessarily the restriction of A to a subdomain j.
For example, if A represents a spectral element discretization of a differential
operator, then Aj can be obtained from a finite element discretization at the
collocation points. Furthermore, subdomain matrices Aj can be chosen to
accelerate convergence and this is the focus of the next section.

2 Optimized Restricted Additive Schwarz Methods

Historically, domain decomposition methods were formulated at the continu-
ous level. We consider a decomposition of the original domain Ω in (1) into
two overlapping sub-domains Ω1 and Ω2, and we denote the interfaces by
Γij = ∂Ωi ∩ Ωj , i 6= j, and the outer boundaries by ∂Ωj = ∂Ω ∩ Ω̄j . In
[Lio88], a parallel Jacobi variant of the classical alternating Schwarz method
was introduced for (1),

Lun+1

1 = f in Ω1, Lun+1

2 = f in Ω2,
B(un+1

1 ) = g on ∂Ω1, B(un+1
2 ) = g on ∂Ω2,

un+1
1 = un

2 on Γ12, un+1
2 = un

1 on Γ21.
(5)

It was shown in [EG02] that the discrete form of (5), namely

A1u
n+1
1 = f1 + B1u

n
2 , A2u

n+1
2 = f2 + B2u

n
1 , (6)

is equivalent to RAS in (4). In optimized algorithms, the Dirichlet transmis-
sion conditions in (5) are replaced by more effective transmission conditions,
which corresponds to replacing the subdomain matrices Aj in (6) by Ãj and

the transmission matrices Bj by B̃j , corresponding to optimized transmission
conditions, and leads to

Ã1u
n+1

1 = f1 + B̃1u
n
2 , Ã2u

n+1

2 = f2 + B̃2u
n
1 , (7)

see Sections 3 and 4 for how to choose Ãj .
We now shown that, for sufficient overlap, the subdomain matrices Aj in

the RAS algorithm (4) can be replaced by the optimized subdomain matrices
Ãj from (7), to obtain an optimized RAS method (ORAS) equivalent to (7),

un+1 = un + (

2
∑

j=1

R̃T
j Ã−1

j Rj)(f − Aun). (8)

The additional interface matrices B̃j in (7) are not needed in the optimized
RAS method (8), which greatly simplifies the transition from RAS to ORAS.
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Definition 1 (Consistency). Let Rj, j = 1, 2 be restriction matrices cover-
ing the entire discrete domain, and let f j := Rjf . We call the matrix splitting

Rj, Ãj, B̃j, j = 1, 2 in (7) consistent, if for all f and associated solution u of
(2), u1 = R1u and u2 = R2u satisfy

Ã1u1 = f1 + B̃1u2, Ã2u2 = f2 + B̃2u1. (9)

Lemma 1. Let A in (2) have full rank. For a consistent matrix splitting Rj,

Ãj, B̃j, j = 1, 2, we have the matrix identities

Ã1R1 − B̃1R2 = R1A, Ã2R2 − B̃2R1 = R2A. (10)

Proof. We only prove the first identity, the second follows analogously. For an
arbitrary f , we apply R1 to equation (2), and obtain, using consistency (9),

R1Au = R1f = f1 = Ã1u1 − B̃1u2.

Now using u1 = R1u and u2 = R2u on the right-hand side yields

(Ã1R1 − B̃1R2 − R1A)u = 0.

Because f was arbitrary, the identity is true for all u and therefore the first
identity in (10) is established.

While the definition of consistency is simple, it has important conse-
quences: if the classical submatrices are used, i.e. Ãj = Aj = RjART

j , j = 1, 2,
then the restriction matrices Rj can be overlapping or non-overlapping, and
with the associated Bj , we obtain a consistent splitting Rj , Aj , Bj , j = 1, 2.

If however other subdomain matrices Ãj are employed, then the restriction
matrices Rj must be such that the unknowns in u1 affected by the change in

Ã1 are also available in u2 to compensate via B̃1 in equation (9), and similarly
for u2. Hence consistency implies for all non-classical splittings a condition on
the overlap in the Rj in RAS. A strictly non-overlapping variant can be ob-
tained when applying standard AS with non-overlapping Rj to the augmented
system obtained from (7) at convergence,

[

Ã1 −B̃1

−B̃2 Ã2

] [

u1

u2

]

=

[

f1

f2

]

, (11)

see the non-overlapping spectral element experiments in Section 4 and [SCGT05].
For optimized RAS, a further restriction on the overlap is necessary:

Lemma 2. Let Rj, j = 1, 2, be restriction matrices covering the entire dis-

crete domain, and let R̃j be the corresponding RAS versions of these ma-

trices. If B̃1R2R̃
T
1 = 0, then B̃1R2R̃

T
2 = B̃1, and if B̃2R1R̃

T
2 = 0, then

B̃2R1R̃
T
1 = B̃2.
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Proof. We first note that by the non-overlapping definition of R̃j , j = 1, 2,
the identity matrix I can be written as

I = R̃T
1 R̃1 + R̃T

2 R̃2. (12)

Now multiplying B̃1R2R̃
T
1 = 0 on the right by R1 and substituting the term

R̃T
1 R1 using (12) leads to

(B̃1 − B̃1R2R̃
T
2 )R2 = 0,

which completes the proof, since the fat restriction matrix R2 has full rank.
The second result follows analogously.

Theorem 1. Let Rj, Ãj, B̃j, j = 1, 2 be a consistent matrix splitting, and let

R̃j be the corresponding RAS versions of Rj. If the initial iterates u0
j , j = 1, 2,

of the optimized Schwarz method (7) and the initial iterate u0 of the optimized
RAS method (8) satisfy

u0 = R̃T
1 u0

1 + R̃T
2 u0

2, (13)

and if the overlap condition

B̃1R2R̃
T
1 = 0, B̃2R1R̃

T
2 = 0 (14)

is satisfied, then the two methods (7) and (8) generate an equivalent sequence
of iterates,

un = R̃T
1 un

1 + R̃T
2 un

2 . (15)

Proof. The proof is by induction. For n = 0, we have (15) by assumption (13)
on the initial iterates. We now assume that un = R̃T

1 un
1 + R̃T

2 un
2 , and show

that the identity (15) holds for n + 1. Applying Lemma 1 to the first term of
the sum in (8), we obtain

R̃T
1 Ã−1

1 R1(f − Aun) = R̃T
1 Ã−1

1 (f1 − R1Aun)

= R̃T
1 Ã−1

1 (f1 − (Ã1R1 − B̃1R2)u
n)

= R̃T
1 (Ã−1

1 f1 − R1u
n + Ã−1

1 B̃1R2u
n),

(16)

and similarly for the second term of the sum,

R̃T
2 Ã−1

2 R2(f − Aun) = R̃T
2 (Ã−1

2 f2 − R2u
n + Ã−1

2 B̃2R1u
n). (17)

Substituting these two expressions into (8), and using (12) leads to

un+1 = R̃T
1 (Ã−1

1 (f1 + B̃1R2u
n)) + R̃T

2 (Ã−1

2 (f2 + B̃2R1u
n)).

Now replacing by induction hypothesis un by R̃T
1 un

1 +R̃T
2 un

2 on the right hand
side and applying Lemma 2, we find together with (14)

un+1 = R̃T
1 (Ã−1

1 (f1 + B̃1R2(R̃
T
1 un

1 + R̃T
2 un

2 )))

+R̃T
2 (Ã−1

2 (f2 + B̃2R1(R̃
T
1 un

1 + R̃T
2 un

2 )))

= R̃T
1 (Ã−1

1 (f1 + B̃1u
n
2 )) + R̃T

2 (Ã−1

2 (f2 + B̃2u
n
1 )),

which together with (7) implies un+1 = R̃T
1 un+1

1 + R̃T
2 un+1

2 .
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3 The Schur Complement as Optimal Choice for Ãj

We show now algebraically what the best choice of Ãj is: we partition A from
(2) into two blocks with a common interface,

Au =





A1i C1

B2 AΓ B1

C2 A2i









u1i

uΓ

u2i



 =





f1i

fΓ

f2i



 ,

where u1i and u2i correspond to the interior unknowns and uΓ corresponds
to the interface unknowns. The classical Schwarz subdomain matrices are in
this case

A1 =

[

A1i C1

B2 AΓ

]

, A2 =

[

AΓ B1

C2 A2i

]

,

and the subdomain solution vectors and the right hand side vectors are

u1 =

[

u1i

uΓ

]

, u2 =

[

uΓ

u2i

]

, f1 =

[

f1i

fΓ

]

, f2 =

[

fΓ

f2i

]

.

The classical Schwarz iteration (6) would thus be

[

A1i C1

B2 AΓ

] [

un+1

1i

un+1

1Γ

]

=

[

f1i

fΓ − B1u
n
2i

]

,

[

AΓ B1

C2 A2i

] [

un+1

2Γ

un+1

2i

]

=

[

fΓ − B2u
n
1i

f2i

]

.

(18)

Using a Schur complement to eliminate the unknowns u2i on the first subdo-
main at the fixed point, we obtain

[

A1i C1

B2 AΓ − B1A
−1

2i C2

] [

u1i

u1Γ

]

=

[

f1i

fΓ − B1A
−1

2i f2i

]

,

and f2i can be expressed again using the unknowns of subdomain 2,

f2i = C2u2Γ + A2iu2i.

Doing the same on the other subdomain, we obtain the new Schwarz method

[

A1i C1

B2 AΓ − B1A
−1

2i C2

] [

un+1

1i

un+1

1Γ

]

=

[

f1i

fΓ − B1u
n
2i − B1A

−1

2i C2u
n
2Γ

]

,

[

AΓ − B2A
−1

1i C1 B1

C2 A2i

] [

un+1

2Γ

un+1

2i

]

=

[

fΓ − B2u
n
1i − B2A

−1

1i C1u
n
1Γ

f2i

]

.

(19)

This method converges in two steps, since after one solve, the right hand side in
both subdomains is the right hand side of the Schur complement system, which
is then solved in the next step. The optimal choice for the new subdomain
matrices Ãj , j = 1, 2, is therefore to subtract in A1 from the last diagonal
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block the Schur complement B1A
−1

2i C2, and from the first diagonal block in A2

the Schur complement B2A
−1

1i C1. Since these Schur complements are dense,
using them significantly increases the cost per iteration. Any approximation
of these Schur complements with the same sparsity structure as AΓ however
leads to an optimized Schwarz method with identical cost to the classical
Schwarz method (18) per iteration. Approximation of the Schur complement
at the algebraic level was extensively studied in [RMSS02]. We show in the
next section an approximation based on the PDE which is discretized.

4 Numerical Results

As test problems, we use finite difference and spectral element discretizations
of the modified Helmholtz problem in two spatial dimensions with appropriate
boundary conditions,

Lu = (η − ∆)u = f, in Ω. (20)

Discretization of (20) using a standard five point finite difference stencil on an
equidistant grid on the domain Ω = (0, 1)× (0, 1) with homogeneous Dirichlet
boundary conditions leads to the matrix problem

AFDu = f , AFD =
1

h2









Tη −I

−I Tη

. . .

. . .
. . .









, Tη =









ηh2 + 4 −1

−1 ηh2 + 4
. . .

. . .
. . .









.

The subdomain matrices Aj , j = 1, 2 of a classical Schwarz method are of the
same form as AFD, just smaller. To obtain the optimized subdomain matrices
Ãj , it suffices according to Section 3 to replace the last diagonal block Tη in
A1 and the first one in A2 by an approximation of the Schur complements.
Based on the discretized PDE, we use here the matrix [Gan03]

T̃ =
1

2
Tη + phI +

q

h
(T0 − 2I), T0 := Tη|η=0, (21)

which corresponds to a general optimized transmission condition of order 2
with the two parameters p and q. The optimal choice of the parameters p and
q in the new block T̃ depends on the problem parameter η, the overlap in the
method, the mesh parameter h and the lowest frequency along the interface,
kmin. Using the results in [Gan03], one can derive the hierarchy of choices in
Table 1 for h small.

Figure 1 illustrates the effect of replacing the interface blocks on the per-
formance of the RAS iteration for the model problem on the unit square with
η = 1 and h = 1/30. The asymptotic formulas from [Gan03] were employed
for the various choices of the parameters in (21). Clearly, the convergence
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p q

T0
√

η 0
T2

√
η 1

2
√

η

O0, no overlap
√

π(k2

min + η)1/4h−1/2 0

O0, overlap Ch 2−1/3(k2

min + η)1/3(Ch)−1/3 0

O2, no overlap 2−1/2π1/4(k2

min + η)3/8h−1/4 2−1/2π−3/4(k2

min + η)−1/8h3/4

O2, overlap Ch 2−3/5(k2

min + η)2/5(Ch)−1/5 2−1/5(k2

min + η)−1/5(Ch)3/5

Table 1. Choices for the parameters p and q in the new interface blocks T̃ in (21).
Tj stands for Taylor of order j, and Oj stands for optimized of order j.

0 2 4 6 8 10 12 14 16 18 20
10

−20

10
−15

10
−10

10
−5

10
0

10
5

RAS
RAS with T0
RAS with T2
RAS with O0
RAS with O2

iterations

er
ro

r

Fig. 1. Convergence curves of classical RAS, compared to the hierarchy of optimized
RAS methods: Taylor optimized zero-th order (T0) and second order (T2), and RAS
optimized zero-th (O0) and second order (O2).

of RAS is greatly accelerated and the number of operations per iteration is
identical.

In a nodal spectral element discretization, the computational domain Ω
is partitioned into K elements Ωk in which u is expanded in terms of the
N–th degree Lagrangian interpolants hi defined in Ronquist [Ron88]. A weak
variational problem is obtained by integrating the equation with respect to test
functions and directly evaluating inner products using Gaussian quadrature.

The model problem (20) is discretized on the domain Ω = (0, 2) × (0, 4)
with periodic boundary conditions and 32 spectral elements. The right hand
side is constructed to be C0 along element boundaries as displayed in Fig-
ure 2. Non-overlapping Schwarz methods are well-suited to spectral element
discretizations. Here, a zero-th order optimized transmission condition is em-
ployed in AS applied to the augmented system. The resulting optimized
Schwarz iteration is accelerated by a generalized minimal residual (GMRES)
Krylov method [SS86]. Figure 2 also contains a plot of the residual error ver-
sus the number of GMRES iterations for diagonal (the inverse mass matrix)
and optimized Schwarz preconditioning.
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Fig. 2. Left panel: Right hand side of modified Helmholtz problem. Right panel:
Residual error versus GMRES iterations.
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