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Summary. The balancing methods are hybrid nonoverlapping Schwarz domain de-
composition methods from the Neumann-Neumann family. They are efficient and
easy to implement. We present a new balancing algorithm for mortar finite element
methods. We prove a condition number estimate which depends polylogarithmically
on the number of nodes on each subregion edge and does not depend on the num-
ber of subregions from the partition of the computational domain, just as in the
continuous case.

1 Introduction

The balancing method of Mandel [7] is a hybrid nonoverlapping Schwarz do-
main decomposition method from the Neumann-Neumann family. It is easy
to implement and uses a natural coarse space of minimal dimension which
allows for an unstructured partition of the computational domain. The con-
dition numbers of the resulting algorithms depend polylogarithmically on the
number of degrees of freedom in each subregion. There is a close connection
between the balancing method and the FETI [5] and FETI–DP [4]; cf. [6]. A
new version of the balancing method, also related to FETI–type algorithms,
was recently proposed by Dohrmann et al. [9, 10].

Mortar finite elements were first introduced by Bernardi et al. [2] and
are actively used in practice for their advantages over the conforming finite
elements, e.g., flexible mesh generation and straightforward local refinement.
In this paper, we propose an extension of the balancing method to mortar
finite elements. As in the continuous case, every local space is associated with
a subregion from the partition of the computational domain. The values of
the mortar function on a nonmortar side depend on, but are not equal to,
its values on the mortar sides opposite the nonmortar. To account for this
dependence, the local are spaces defined on extended subregions, instead of
using local spaces and local solvers defined on each subregion. In this regard,
our algorithm is different from classical Neumann-Neumann methods.
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We establish a polylogarithmic upper bound for the condition number of
our algorithm. The same bound was obtained for the balancing algorithm
of Dryja [3], as well as for other mortar algorithms, e.g., the iterative sub-
structuring method of Achdou et al. [1], in the geometrically nonconforming
case.

While the algorithm proposed here is based on a similar philosophy to the
method suggested in [3], since the Schwarz framework is used to study the
convergence properties of both algorithms, major differences exist between
the two algorithms. For example, in the algorithm [3], the local spaces are
associated with pairs of opposite nonmortar and mortar sides.

2 Abstract Schwarz Theory

We use this elegant framework of the abstract Schwarz theory [11] to study
the convergence properties of the balancing algorithm proposed in this paper.

Let V be a finite dimensional space, with a coercive inner product a :
V × V → R, and let f : V → R be a continuous operator. We want to find the
unique solution u ∈ V of

a(u, v) = f(v), ∀ v ∈ V. (1)

Assume that V can be written as V = V0 + V1 + . . . + VN , where the
sum is not necessarily direct and Vi ⊂ V , i = 0 : N . Let Ii : Vi → V
be embedding operators and let ãi : Vi × Vi → R be bilinear forms which
are symmetric, continuous, and coercive. The corresponding projection-like
operators T̃i : V → Vi are defined by

ãi(T̃iv, vi) = a(v, Iivi), ∀ vi ∈ Vi, v ∈ V. (2)

Using the operators Ti : V → V , Ti = IiT̃i, the additive and multiplicative
Schwarz methods for solving (1) can be introduced.

The balancing method is a hybrid method, combining the potential for par-
allelization of the additive methods and the fast convergence of the multiplica-
tive methods. Choose the bilinear form ã0 to be exact, i.e., ã0(·, ·) = a(·, ·).
The coarse space solver T0 is therefore a projection, subsequently denoted by
P0. The balancing method consists of solving Tbalu = gbal, where

Tbal = P0 + (I − P0)(T1 + . . .+ TN)(I − P0). (3)

Here, gbal is obtained by solving N local problems of the same form as (2)
that do not require any knowledge of u. The equation Tbalu = gbal is a pre-
conditioned version of (1) and can be solved without further preconditioning
using CG or GMRES algorithms.
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3 A Mortar Discretization of an Elliptic Problem

As model problem for two dimensional self–adjoint elliptic PDEs with ho-
mogeneous coefficients, we choose the Poisson problem with mixed boundary
conditions on Ω: Given f ∈ L2(Ω), find u ∈ H1(Ω) such that

−∆u = f on Ω, with u = 0 on ∂ΩD and ∂u/∂n = 0 on ∂ΩN , (4)

where ∂ΩN and ∂ΩD are the parts of ∂Ω = ∂ΩN ∪ ∂ΩD where Neumann
and Dirichlet boundary conditions are imposed, respectively, and ∂ΩD has
positive Lebesgue measure.

To keep the presentation concise, we only discuss geometrically conforming
mortar elements. Let {Ωi}i=1:N be a geometrically conforming mortar decom-
position of a polygonal domain Ω of diameter 1 into rectangles of diameter
of order H . (This notation is not coincidental: for the balancing method pro-
posed here, each local space Vi will correspond to one subregion Ωi.) The
restriction of the mortar finite element space V h to any rectangle Ωi is a Q1

finite element function on a mesh of diameter h. Weak continuity is required
across Γ , the interface between the subregions {Ωi}i=1:N . We choose a set of
edges of {Ωi}i=1:N , called nonmortars, which form a disjoint partition of Γ .
For each nonmortar side γ there exists exactly one side opposite to it, which
is called a mortar side. The jump [w] of a mortar function w ∈ V across any
nonmortar γ must be orthogonal to a space of test functions Ψ(γ), i.e.,

∫

γ

[w] ψ ds = 0, ∀ ψ ∈ Ψ(γ). (5)

In [2], Ψ(γ) consists of continuous, piecewise linear functions on γ that are
constant in the first and last mesh intervals of γ. Note that the end points of
the nonmortar sides are associated with genuine degrees of freedom.

We discretize the Poisson problem (4) by using the mortar finite element
space V h. and obtain the discrete problem

Find uh ∈ V h such that aΓ (uh, vh) = f(vh), ∀ vh ∈ V h, (6)

where the bilinear form aΓ (·, ·) is defined as the sum of contributions from
the individual subregions, and f(·) is the L2-inner product by the function f :

aΓ (vh, wh) =

N∑

i=1

∫

Ωi

∇vh · ∇wh dx and f(v) =

∫

Ω

fv dx.

Let V h(Γ ) be the restriction of V h to the interface Γ , and let V be the
space of discrete piecewise harmonic functions defined as follows: If vΓ ∈
V h(Γ ), then its harmonic extension H(vΓ ) ∈ V is the only function in V h

which, on every subregion Ωi, is equal to the harmonic extension of vΓ |∂Ωi

with respect to the H1-seminorm.
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As in other substructuring methods, we eliminate the unknowns corre-
sponding to the interior of the subregions. Problem (6) becomes a Schur com-
plement problem on V h(Γ ):

Find uΓ ∈ V h(Γ ) s.t. aΓ (H(uΓ ),H(vΓ )) = f(H(vΓ )), ∀ vΓ ∈ V h(Γ ). (7)

For simplicity, we denote V h(Γ ) by V and let a(·, ·) = aΓ (H(·),H(·)) be
the inner product on V . Problem (7) can be formulated on V as follows:

Find u ∈ V s.t. a(u, v) = f(v), ∀ v ∈ V. (8)

4 A Balancing Algorithm for Mortars

In this section, we introduce a new balancing algorithm for mortar finite
elements. Our results can be extended to second order self-adjoint elliptic
problems with mixed boundary conditions discretized by geometrically non-
conforming mortars, and to three dimensional problems.

We solve (8) using the technique outlined in Section 2. To do so, we need
to introduce a coarse space V0 and local spaces Vi, i = 1 : N . The major
difference between the classical balancing method and our algorithm for mor-
tars is related to the extended subregions Ω̃i, which replace the individual
subregions in the definition of the local bilinear forms ãi(·, ·). An important
role in the balancing algorithm is played by the counting functions associated
with the interface nodes of each extended subregion. In [12], we showed that
defining ãi(·, ·) only on Ωi does not lead to a convergent algorithm.

Extended Subregions: The extended subregion Ω̃i is defined as the union of Ωi

and all its neighbors that have a mortar side opposite ∂Ωi. Let Ni be the set
made of the corner nodes of Ωi, all the nodes on the mortar sides of Ωi, and
all the nodes on the mortar sides opposite the nonmortar sides of Ωi.

The counting function νi : Γ → R corresponding to Ωi is a mortar function
taking the following values at the genuine degrees of freedom:

νi(x) =






number of sets Nj with x ∈ Nj , if x ∈ Ni;
0, if x /∈ Ni;
1, if x ∈ ∂Ωi ∩ ∂ΩD.

In the geometrically conforming case, the value of νi at every interior node
of the mortar sides where νi does not vanish is equal to 2, and Range(νi) ⊆

{0, 1, . . . , 4}. Let ν†i be the mortar function with nodal values ν†i (x) = 1/νi(x)

if νi(x) 6= 0 and ν†i (x) = 0 otherwise. As in the continuous finite element case,

ν†i form a partition of unity, i.e.,
∑N

i=1 ν
†
i = 1.

Coarse Space V0: The coarse space V0 has one basis function, H(ν†i ), the

harmonic extension of ν†i , per subregion Ωi. The bilinear form a0 is exact,

i.e., ã0(·, ·) = a(·, ·). Therefore, a(P0u,H(ν†i )) = a(u,H(ν†i )), and
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Fig. 1. All possible instances of extended subregions Ω̃i (shaded) corresponding to
one subregion Ωi (center in each picture). The values of the counting function νi

at the corners of Ωi are recorded. Mortar sides are marked with an additional solid
line.

a((I − P0)u,H(ν†i )) = 0, ∀ u ∈ V. (9)

Local Spaces: The local space Vi is associated with the subregion Ωi, is em-
bedded in V , i.e., Vi ⊂ V , and consists of piecewise harmonic functions which
vanish at all the genuine degrees of freedom of Γ \ Ni. The bilinear form

ãi(·, ·) : Vi × Vi → R is defined using the extended subregion Ω̃i:

ãi(vi, wi) =
∑

Ωj⊂Ω̃i

∫

Ωj

∇H(Ih(νivi)) · ∇H(Ih(νiwi)) dx, (10)

where Ih : L2(Ω) → V is the nodal basis interpolation onto the mortar space

V . The projection-like operator Ti is given by Ti = IiT̃i, where

ãi(T̃iu, vi) = a(u, vi), ∀ vi ∈ Vi. (11)

If Ω̃i 6= Ωi, i.e., if Ω̃i contains more than one subregion, then any vi ∈ Vi

vanishes on ∂Ω̃i \ ∂Ωi. The problem (11) is well–posed since it is a Poisson

problem on Ω̃i with zero Dirichlet boundary conditions on ∂Ω̃i \ ∂Ωi.

If Ω̃i = Ωi, then all the sides of Ωi are mortars; cf. Figure 1, upper left
picture. This corresponds to the case of a floating subregion in the classical
balancing algorithm, and requires using balanced functions. Note that H(νiν

†
i )

is equal to 1 on Ωi, and therefore
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ãi(T̃iu,H(ν†i )) =

∫

Ωi

∇H(Ih(νi T̃iu)) · ∇H(νiν
†
i ) dx = 0.

For the local problem (11) to be solvable, u must satisfy

a(u,H(ν†i )) = 0, (12)

for every floating subregion Ωi. Such functions are called balanced functions.
From (9), we conclude that any function in Range(I − P0) is balanced.

Moreover, if Ω̃i = Ωi, the local problem (11) corresponds to a pure Neu-

mann problem. We make the solution unique by requiring T̃iu to satisfy

∫

Ωi

H(Ih(νi T̃iu)) dx = 0. (13)

The preconditioned operator for our balancing algorithm for mortars is
Tbal = P0 + (I − P0)(T1 + . . . + TN )(I − P0). The convergence analysis of
Tbal relies on that of the Neumann-Neumann operator TN−N = P0 + T1 +
. . .+TN , since κ(Tbal) ≤ κ(TN−N); cf., e.g., [8]. However, Neumann-Neumann
algorithms with the spaces and approximate solvers considered in this paper
would not converge.

5 Condition number estimate

The condition number estimate for our algorithm is based on abstract Schwarz
theory; see, e.g., [11]. A technical results has to be proven first, and the tech-
niques are somewhat different for floating and non-floating regions:

Lemma 1. Let u ∈ V and let ui = H(Ih(ν†i (u − αi))) ∈ Vi, where αi is the

weighted averages of u over Ωi, i.e.,

αi =
1

µ(Ωi)

∫

Ωi

u dx. (14)

Then

a(ui, ui) ≤ C
(
1 + log(H/h)

)2
ãi(ui, ui), ∀ ui ∈ Range(Ti) (15)

a(ui, ui) ≤ C
(
1 + log(H/h)

)2
|u|2

H1(Ω̃i)
. (16)

Also, if Ωi is a floating subregion, i.e., if Ω̃i = Ωi, then ãi(ui, ui) = |u|2
H1(Ω̃i)

.

If Ωi is a nonfloating subregion, i.e., if Ω̃i 6= Ωi, then ãi(ui, ui) ≤ C
(
1 +

log(H/h)
)2
|u|2

H1(Ω̃i)
.
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Using the results of Lemma 1, we can show that ãi(·, ·) is bounded from
below by a(·, ·), and prove that for any function in V there exists a stable
splitting into local functions; see [12] for detailed proofs.

Lemma 2. There exists a constant C, not depending on the local spaces Vi,

such that

a(ui, ui) ≤ C
(
1 + log(H/h)

)2
ãi(ui, ui), ∀ ui ∈ Range(Ti), ∀ i = 1 : N.

Lemma 3. Let u ∈ V and let αi be the weighted averages 14 of u over Ωi.

Define u0 ∈ V0 as u0 =
∑N

i=1 αiH(ν†i ) and let ui ∈ Vi be given by ui =

H(Ih(ν†i (u− αi))). Then u = u0 +
∑N

i=1 ui and

a(u0, u0) +

N∑

i=1

ãi(ui, ui) ≤ C
(
1 + log(H/h)

)2
a(u, u).

Based on the results of Lemmas 2 and 3, a bound on κ(TN−N), and there-
fore on κ(Tbal), can be established by using the abstract Schwarz theory [11].

Theorem 1. The condition number of the balancing algorithm is independent

of the number of subregions and grows at most polylogarithmically with the

number of nodes in each subregion, i.e.,

κ(Tbal) ≤ C
(
1 + log(H/h)

)4
,

where C is a constant that does not depend on the properties of the partition.

6 Numerical Results

We tested the convergence properties of our balancing algorithm for a two di-
mensional problem discretized by geometrically nonconforming mortar finite
elements. The model problem was the Poisson equation on the unit square
Ω with mixed boundary conditions. We partitioned Ω into N = 16, 32, 64,
and 128 geometrically nonconforming rectangles, and Q1 elements were used
in each square. For each partition, the number of nodes on each edge, H/h,
was taken to be, on average, 4, 8, 16, and 32, respectively, for different sets
of experiments. The preconditioned conjugate gradient iteration was stopped
when the residual norm decreased by a factor of 10−6. The experiments were
carried out in MATLAB. We report iteration counts, condition number esti-
mates, and flop counts of our algorithm in Table 1.

Our balancing algorithm has similar scalability properties as those of the
classical balancing algorithm. When the number of nodes on each subregion
edge, H/h, was fixed and the number of subregions, N , was increased, the
iteration count showed only a slight growth. When H/h was increased, while
the partition was kept unchanged, the small increase in the number of iter-
ations was satisfactory. The condition number estimates exhibited a similar
dependence, or lack thereof, on N and H/h.
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Table 1. Convergence results, geometrically nonconforming mortars

N H/h Iter Cond Mflops N H/h Iter Cond Mflops

16 4 11 9.2 4.7e-1 64 4 14 9.9 4.0e+0
16 8 13 10.8 2.6e+0 64 8 15 12.1 1.6e+1
16 16 14 12.1 1.6e+1 64 16 17 13.4 9.4e+1
16 32 15 13.3 1.3e+2 64 32 19 13.9 7.2e+2

32 4 12 9.6 1.5e+0 128 4 14 10.3 1.0e+1
32 8 14 11.3 7.2e+0 128 8 15 12.0 3.6e+1
32 16 15 12.9 4.5e+1 128 16 18 13.7 2.1e+2
32 32 16 13.6 3.3e+2 128 32 19 13.9 1.5e+3
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